Домой / Видео / Системы солнечной генерации. Фотоэлектричество. Солнечный генератор – альтернативный источник энергии

Системы солнечной генерации. Фотоэлектричество. Солнечный генератор – альтернативный источник энергии

По мнению Международного энергетического агентства, б ыстро сокращающиеся затраты на производство делают солнечные панели самым дешевым способом генерации электричества. По итогам прошлого года рост солнечной генерации превысил по темпам развития другие сектора электроэнергетики. С 2010 г. стоимость нового солнечного модуля снизилась на 70%, тогда как на оборудование в ветроэнергетике на 25% и расходы на аккумуляторы для электрокаров на 40%.

Согласно прогнозам независимых экспертов Bernreuter Research, к концу 2017 г. прирост мощностей в солнечной энергетике в глобальном масштабе достигнет 100 ГВт. Совокупная мощность установленных в мире СЭС по итогам 2016 г. составляла 74 ГВт. Самый большой прирост в этом сегменте приходится на Китай. Суммарная мощность новых солнечных станций достигла в КНР – 52 ГВт, на втором и третьем местах расположились США (12,5 ГВт) и Индия (9 ГВт). За год прирост составил более 30%: сейчас общие мощности солнечной электроэнергетики, по данным экспертов, составляют 300 ГВт.

По оценкам МЭА, в перспективе развитие солнечной энергетики получит особенно широкое распространение в Китае и Индии. Так, в последней недавно запустили специальную программу по электрификации, которая охватит 40 млн домохозяйств только до конца 2018 г. Решать проблемы снабжения электричеством будут в основном за счет дешевой солнечной энергии.

Однако, в отличие от АТР, в европейских странах доминирует ветроэнергетика. Согласно прогнозу МЭА, после 2030 г. именно она станет главным источником для выработки электроэнергии в европейских странах. «Солнечная энергетика быстро завоевывает рынки, включая Китай и Индию, поскольку именно она становится самым дешевым источником производства электроэнергии. Элекротранспорт, благодаря государственной поддержке и снижению затрат на выпускаемые аккумуляторы, быстро развивается», - утверждает исполнительный директор МЭА Фатих Бироль.

В период после 2030 г. в Европейском союзе на ВИЭ придется порядка 80% вводимых новых мощностей, а энергия ветра станет ведущим источником производства электроэнергии. Быстрое развитие солнечной энергетики, в особенности в Китае и Индии, позволит ей стать крупнейшим источником генерации к 2040 г. К этому времени доля всех возобновляемых источников энергии в общем объеме производства электроэнергии достигнет 40%.

МЭА отмечает быстрое развертывание мощностей и снижение затрат на экологически чистые энергетические технологии. Эксперты особо подчеркивают высокие темпы электрификации. По итогам прошлого года, расходы потребителей на электричество в глобальном масштабе достигли паритета с их расходами на нефтепродукты.

Вплоть до 2040 г. развитие возобновляемой энергетики будет по-прежнему поддерживаться со стороны государства. Однако трансформация энергетического сектора будет происходить главным образом благодаря миллионам домашних хозяйств, поселений и предприятий, инвестирующих в создание собственных распределенных мощностей возобновляемой энергетики.

Без учета крымских СЭС сегодня в России действует 10 станций общей мощностью около 100 МВт. В Крыму есть пять солнечных электростанций общей мощностью 300 МВт. В ноябре в России введена в строй первая Бичурская солнечная электростанция в Бурятии. Пока стоимость сооружения одной такой СЭС в стране составляет порядка 1 млрд рублей, при 70% локализации использованного оборудования. В сентябре компания «Хевел» запустила Майминскую СЭС на Алтае, мощностью в 20 МВт, стоимостью в 2 млрд рублей с использованием новых гетероструктурных моделей с повышенной эффективностью. Это уже четвертая СЭС на Алтае у «Хевел». Всего российским компаниям предстоит построить к 2024 г. 57 СЭС общей мощностью в 1,5 ГВт.

Нина Маркова


Энтузиасты создали «волшебный» чемоданчик, который позволит заряжать свои мобильные устройства, ноутбуки и даже налаживать освещение там, где нет электричества. Все что нужно новинке – солнечный свет.

Ученые, размышляющие, о цивилизационном развитии разумных форм жизни считают, что характеризовать их нужно в первую очередь по принципу того, как данная форма получает для своих нужд энергию. Первый этап – получение энергии из ресурсов, человечество уже минуло, и сейчас находиться в начале второго, переходного этапа своего развития – использовании энергии самого космоса.


Хотя сегодня получение электроэнергии при помощи сжигания сырья остается одним из самых популярных способов, генераторы, основанные на получении солнечной энергии, стремительно набирают популярность. Вторгается солнечная энергия в нашу цивилизацию не только на уровне высокой науки и техники, но и на вполне бытовом уровне. Уже сегодня есть множество устройств, позволяющих получать солнечную энергию. Одним из таких является и недавно созданный Kalipak Portable Solar Generator.


Название данного девайса говорит все и сразу, что о нем вообще следует знать, во всяком случае, в общих чертах. В сложенном виде выглядит Kalipak Portable Solar Generator, как чемоданчик. Первое, что следует знать, что это электрический генератор, способный аккумулировать солнечную энергию. Получение энергии производится, как несложно догадаться, при помощи раскладных солнечных батарей. Мощность солнечных панелей 20 Ватт. Вторая важная деталь – это аккумуляторы. В Kalipak используются литий-ионные батареи. Заряжать их можно как от солнца, так и предварительно от электросети дома.

Передавать имеющийся заряд энергии Kalipak может почти любым устройствам. Для этого предусмотрены сразу 4 сверхмощных USB-разъёма. Помимо них есть еще 2 отдельных порта на 12 В, которые можно использовать, например, для налаживания освещения. Что касается емкости батарей, то полного заряда хватит, чтобы зарядить 32 iPhone или 10 ноутбуков.

Отдельно следует отметить, что в переносном генераторе имеется свой жесткий диск для хранения информации с мобильных устройств и компьютеров. Есть также возможность синхронизировать датчики чемоданчика с мобильными устройствами на базе операционных систем iOS и Android.

В продолжение темы , которым не страшна самая страшная стихия.

Начиная с нефтяного кризиса 1970-х годов, общество начало задумаваться о поиске альтернативы традиционной углеводородной энергетике. Потенциал солнечной энергии, как самый большой и доступный для человечества, всегда приковывал внимание научного сообщества. Использование возобновляемой энергии легло в основу концепции целых социальных и политических движений. В последние десять-пятнадцать лет солнечная энергетика быстро развивалась и получила некоторое распространение в секторе электрогенерации. В целом, можно говорить об экспонециальном тренде роста электрогенерации фотовольтаики в последние двадцать лет :


Казалось бы, сейчас уже достаточно эмпирических данных, а значит можно оценить возможности отрасли отнюдь не теоретически. Но несмотря на это, мнения остаются крайне полярны. Одна сторона отмечает, что себестоимость электроэнергии солнечных электростанций дороже традиционных, отсутствуют рентабельные технологии хранения электроэнергии, необходимые по причине суточных колебаний генерации и многое другое. Другая же сторона рапортует об экспоненциальном росте электрогенерации СЭС, снижении себестоимости ниже уровня традиционной тепловой электроэнергетики. Кто же прав? Как мы часто отмечаем, истина посередине. На наш взгляд, причина разногласий в оценках достаточно проста и разрешает спор противоречащих сторон: актуальность солнечной энергетики очень сильно варьируется по множеству параметров и в зависимости от ситуации оказывается прав то лагерь сторонников, то наоборот. Здесь и далее под солнечной энергетикой подразумевается фотоэвольтаика, применение гелиотермальных технологий пока дороже и такие электростанции менее распространены.

Концептуальный уровень - нишевый подход

По каким причинам возник сыр-бор разногласий?
Инсоляция. Если сравнивать Калифорнию и северные области России, то можно говорить о четырёхкратной разнице с пропорциональным влиянием на себестоимость.
Последние 35 лет цены на фотоэлементы сокращались и даже появилась эмпирическая закономерность: каждые 5 лет цена падает в два раза. Таким образом, оценки себестоимости солнечной генерации постоянно устаревают и этот фактор должен учитываться в обсуждении.
Сложность электрораспределительных сетей, необходимость в технологиях хранения генерируемой электроэнергии, маневровых мощностях, росте пропускной способности магистральных электросетей увеличивается с ростом доли солнечной энергетики в электробалансе.
Себестоимость традиционной электроэнергетики сильно варьируется в зависимости от выбора исследуемого государства и временного периода.
Можно ещё долго продолжать, но очевидно, что если рассмотреть вариант с высокой инсоляцией, с предпологаемыми низкими ценами ближайшего будущего, небольшой долей в электробалансе и дорогой местной традиционной электроэнергетикой, то солнечная энергетика значительно превзойдёт традиционную по рентабельности и не потребует особых инвестиций в инфраструктуру. Для обратной же ситуации солнечная энергетика будет выглядеть неприемлемо.

Таким образом, нельзя “рубить с плеча” и бросаться тезисами о солнечной энергетике без оглядки на территориальные, климатические и другие условия конкретного случая. На наш взгляд, следует применять “нишевый” подход, чтобы понять приемлемость солнечной электрогенерации.

Количественные оценки - себестоимость электроэнергии

Оценки себестоимости электрогенерации фотовольтаики зависят от выбранной методологии, стоимости капитала и других параметров, поэтому для получения общей картины стоит опираться на множество независимых оценок:

Верхние границы традиционной энергетики, не говоря уже о генерации из нефтепродуктов, пересекаются с нижними границами оценок себестоимости электроэнергии фотовольтаики. Совместно с другими нюансами это и создаёт ниши привлекательности солнечной энергетики. По нашим оценкам, на сегодня их размер составляет примерно 3-5% мировой электрогенерации. Вне этих узких ниш солнечная энергетика, в целом и на сегодня, экономически не целесообразна.

Размер ниш незначителен относительно всей мировой электрогенерации, но он всё ещё превышает установленые мощности в три раза, что предоставляет солнечной энергетике возможности для дальнейшего многолетнего роста. Учитывая факторы роста потребления электроэнергии в развивающихся странах, снижения стоимости солнечной электрогенерации и увеличения стоимости традиционой генерации, логично предположить, что “ниши” будут со временем увеличиваться. Рассмотрим примеры.

Архипелаг солнечной энергетики

Если смотреть на общем уровне, то на сегодня и в целом применение солнечной энергетики достаточно малообосновано. Но среди океана традиционной энергетики есть место и отдельным островам фотовольтаики. Перечислим причины, по которым появились ниши для солнечной энергетики:

Замещение нефтепродуктов . Во-первых, уже упомянутая себестоимость. Например, Япония, которая занимает третье место в мировой электрогенерации, 10% электроэнергии производит из нефтепродуктов и это не следствие фукусимской трагедии - так было и ранее. По данным Всемирного Банка, в 43 странах доля нефтеподуктов (мазут, дизельное топливо) в электрогенерации выше 10% . Обычно, такая электрогенерация применяется временно, для прохождения дневных пиков потребления электроэнергии, так как ночью электропотребление существенно ниже. Эту дорогую во всех смыслах пиковую дневную генерацию, $100/МВт*ч и выше в случае нефтепродуктов, удобно и дешево заменить солнечной ($100 и ниже), чем Япония и начала заниматься. Аналогичная ситуация может наблюдаться и в случае дорогого импорта природного газа.

Дефицит собственных энергоресурсов . Другим наглядным примером является Индия. В стране имеется катастрофический дефицит как электроэнергии, так и собственной добычи энергоресурсов, о чём красноречиво говорили предвыборные обещания премьер-министра: “Электричество в каждый дом!”. Столь острая нехватка мотивирует решать вопрос любыми путями, да и помимо базовой генерации, нужна и пиковая. Но в стране недостаточные ресурсы угля и не проложено ни одного газопровода - США много лет грозят Пакистану санкциями за согласие войти в проект транспортировки газа из Ирана в Индию через свою территорию, хотя недавно дело сдвинулось с мёртвой точки.

Итогом хронического энергодефицита, политических игр внешних игроков, импортозависимости и т.п. стало решение нарастить долю солнечной электрогенерации, благо высокая инсоляция и дешевая рабочая сила позволят сделать это относительно дёшево, пусть и дороже угольной энергетики. В условиях бешенной динамики экономики (рост 7,5% за 2014г) и вышеперечисленных причин это лучше чем текущее полное отсутствие доступа к электроэнергии у 250 млн. граждан Индии. Министерство Новой и Возобновляемой Энергетики запустило программу проектов с символичным названием “ультра мега солнечные электростанции”, в рамках которой выделены территории под парки солнечных электростанций, подведена инфраструктура и т.п. Ближайшая цель - 100 ГВт к 2022 году .

Экологические факторы . Себестоимость тепловой генерации в большинстве стран ниже солнечной, особенно в Китае. Но, например, здоровье за деньги не купишь. Загрязнение воздуха ежегодно уносит жизни порядка 0,5-1 млн жителей Китая и негативно влияет на социальную и политическую обстановку. Вдобавок, две трети мировых производственных мощностей фотоэлементов находятся именно в поднебесной . Так появилась очередная ниша для солнечной энергетики и Национальный Центр Возобновляемой Энергетики Китая ставит целью 100 ГВт установленной мощности к 2020г и 400 ГВт к 2030 . Учитывая, что за первый квартал 2015 года установленная мощность фотовольтаики в Китае увеличилась на 5 ГВт и достигла 33 ГВт , цели выглядят вполне адекватно.

Есть и комплексные случаи, например Австралия. Пока генерирующие компании и политические силы спорят кто виноват в высоких розничных ценах на электроэнергию, а именно $250-350/МВт*ч, 14% домохозяйств уже используют фотоэлементы . И так далее.

Таким образом, при использовании нишевого подхода становится очевидно, что в случае конкретных узких ниш правда на стороне приверженцев солнечной энергетики, а в остальных случаях справедливы уже тезисы противников. Но, по-прежнему, упрощения велики и нюансы корректного подхода будут рассмотриваться и ниже.

Перспективы. Себестоимость как функция от времени.

Вопрос развития энергетики не должен ориентироваться на тактические факторы и текущую себестоимость. Срок службы АЭС приближается к столетию, капитальные расходы на разработку отдельных месторождений углеводородов вышли на порядок сотен миллиардов долларов с соответствующим масштабом сроков окупаемости, себестоимость электроэнергии фотоэлементов снижается ежегодно на 15% и так далее. То есть, подход обязан быть стратегичным и с горизонтом планирования в несколько десятилетий, а в случае Франции и России, где особая роль отводится атомной энергетике, горизонт планирования выходит на исторический масштаб - век. А значит контрпродуктивно ориентироваться на текущую себестоимость электрогенерации.

Прогноз, как известно, дело неблагодарное. Тем не менее, это лучше чем ничего. Технологический прогресс позволял экспоненциально удешевлять производство фотоэлементов (в 200 раз за последние 35 лет), инверторов и т.п., а развитие рынка толкает вниз и цены установки и обслуживания. Маловероятно, что прогресс остановится, а рабочие станут менее квалифицированными, поэтому ожидается и дальнейшее снижения цен на фотоэлементы и сопутствующие услуги, в то время как цены на энергоресурсы “при прочих равных” будут расти. Общая суть всех прогнозов одинакова - экспоненциальное снижение себестоимости, которое отмечалось последние 35 лет, продолжится и видимых причин для остановки прогресса пока нет:

В рамках “нишевого подхода” логично опираться на нижнюю границу себестоимости, так как своё развитие солнечная энергетика начинает с наиболее рентабельных ситуаций и будет долго и медленно заполнять их. Заполнение даже 5% мировой электрогенерации займёт около 10 лет.

В соответствии с прогнозами Международного Энергетического Агентства, членом которого является и Россия, и немецкого Института Солнечной Энергетики им. Фраунгофера, солнечная энергия дешевеет, но не становится “дармовой”. Дешёвая традиционная энергетика таких стран как Россия, США, Китай, Норвегия и т.п., предположительно, будет дешевле солнечной в течение многих лет.

Сетевой контекст

Проблема интеграции солнечной энергетики большого масштаба в единую энергосеть сегодня не решена и, более того, решения нет даже на горизонте. “Солнце” это удобный вариант справиться с дневными пиками потребления, но в ряде случаев существует проблема вечернего пика не говоря уже о зиме. Даже неожиданный летний утренний туман, скрывший солнце от нескольких гигаватт фотовольтаики Германии, может озадачить инженеров электросетей - примеры имеются . На данный момент, например Европа, решает свои “сетевые” дисбалансы с помощью импорта и экспорта электроэнергии, но на наш взгляд возможности этого инструмента ограничены. На концептуальном уровне есть ряд подходов:

Резервирование . Удобный пример это Германия. Из-за описанных выше проблем приходится держать “в боевой готовности” 10 ГВт генерации на газовом топливе, то есть резервировать солнечную генерацию, хотя применение солнечной генерации позволило летом почти полностью отказаться от этой дорогой генерации на дневных пиках. Основная часть себестоимости электроэнергии газовой ТЭС это топливо, и общество, в какой-то степени выиграло, сэкономив на импорте природного газа, несмотря на простаивание ТЭС в летнее время.

Обратная ситуация наблюдается в случае маневровых угольных ТЭС, где основная доля себестоимости это капитальные расходы. В этом случае всё наоборот: топливо занимает небольшую долю себестоимости и при снижении коэффициента использования установленной мощности (КИУМ) электроэнергия в целом обойдётся для общества дороже, так как придётся платить и за солнечную генерацию и за простаивающие мощности угольных ТЭС, которые намного дороже газовых .

Аккумуляция . К вопросу сетевых проблем возможно подойти и через аккумуляцию электроэнергии. В странах, где летняя инсоляция значительно превышает зимнюю (напр. Германия), проблемы интеграции начинаются когда фотовольтаика формирует 7% среднегодовой электрогенерации. В этом случае летом среднесуточная доля поднимается к 10%, а в дневные часы - до 30% , что представляет серьёзную проблему для энергосистемы. Аккумуляция - напрашивающийся выход для дальнейшего развития ситуации, несмотря на то, что на данный момент в ней пока нет необходимости . Более того, сомнения о масштабном развитии солнечной энергетики редуцируемы к вопросу дешёвой аккумуляции, так как проблема высокой себестоимости электрогенерации фотоэлементов с высокой вероятностью рано или поздно перестанет существовать и останется только проблема интеграции в сеть.

На 2014 год мировая установленная мощность аккумулирующих систем составляет 145 ГВт, 99% представлены гидроаккумулирующими электростанциями (ГАЭС) . Аккумулирующие системы на сжатом воздухе (АССВ) применяются не одно десятилетие, но пока не получили распространения - текущее исполнение обоих систем критично к географическим и геологическим условиям.


Текущий нижний порог составляет $80/МВт*ч и есть основания полагать, что АССВ и другие технологии способны его понизить, но скорее это реальность как минимум следующего десятилетия. Дополнительные $80/МВт*ч аккумулирующих мощностей неподъёмны для солнечной энергетики, но в какой-то степени это вопрос методологии. Аккумуляторные батареи свинцово-кислотного и других типов на данный момент и в среднесрочной перспективе не целесообразны в роли аккумулирующих систем для промышленной фотовольтаики.

EROEI фотовольтаики - энергетическая рентабельность

Вкратце про энергетическую рентабельность, с примерами и рассчётами, рассказывалось в предыдущей статье, поэтому опустим повторение основ. EROEI фотовольтаики не является “тайной за семью печатями” и существует множество исследований на этот счёт. Если суммировать 38 исследований , то можно получить следующий диапазон EROEI для разных технологий:

На наш взгляд, это хорошие результаты. Соответственно, энергетически, солнечные фотоэлементы окупаются за 0,5-4 года.

Территориальные аспекты

Территориальный вопрос для фотовольтаики это ещё один отличный пример “серединной истины” - cтраны сильно различаются по потреблению электроэнергии на единицу своей площади. Ребята из Массачусетсткого Технологического Института оценивают необходимую площадь фотовольтаики для удовлетворения потребности США в электроэнергии как квадрат 170х170 км . Эту же цифру можно получить и эмпирическим путём: например, современная солнечная электростанция Solar Star имеет мощность 579 МВт и площадь 13 кв.км, система слежения за солнцем позволяет поднять коэффициент использования установленной мощности (КИУМ) до 30%, а всё потребление электроэнергии в США составляет 4,1*10^15 Вт*ч - ряд несложных вычислений приведёт любознательного читателя к тому же числу. Для примера, ниже карта США, на которую мы нанесли необходимую площадь солнечных электростанций (с учётом поправки на КИУМ) для удовлетворения всего электропотребления США:


По материалам GoogleMaps

Как видно, несложно отделаться небольшой частью пустынь Аризоны и Невады. Интересно добавить, что суммарная площадь всех крыш в США это квадрат 140х140 км . А вот Япония имеет всего лишь в четыре раза меньшее энергопотребление по сравнению с США и в 25 раз меньшую площадь, поэтому для Японии территориальный нюанс фотовольтаики намного острее и лишних 90х90 км там нет.

Уроки истории: эволюция оценок потенциала фотовольтаики

Парадокс Гегеля гласит, что “история учит человека тому, что человек ничему не учится из истории”. Несмотря на молодость солнечной энергетики, к сегодняшнему дню уже имеется опыт, который “сын ошибок трудных”, и стоит обратить внимание на предыдущие ошибки, чтобы не множить собственные. Суммируя прогнозы по солнечной энергетике многолетней давности двух ведущих энергетических агентств:


Вывод очевиден - фотовольтаика систематически недооценивалась, причём очень сильно: в 2006 году МЭА прогнозировало 87 ГВт на 2030, но этот уровень был превзойдён уже через шесть лет. Базовый прогноз 2009 года (208 ГВт) будет превзойдён в 2015-2016. Аналогичны были и прогнозы АЭИ (EIA), подразделения Минэнерго США. Суть прогнозов была одинакова - замедление текущего экспоненциального развития, но развитие фотовольтаики систематически опровергало эти предпосылки.
Таким образом, смотреть на развитие фотовольтаики в пессимистичных красках будет, скорее, ошибкой, чему и учит ретроспектива. Следует упомянуть и эффект низкой базы: несмотря на то, что солнечная генерация увеличивалась на 50% ежегодно, в абсолютных числах это составляет около 30 ТВт*ч для последних лет. В то время как мировое потребление электроэнергии увеличивается, в среднем, на 650 ТВт*ч ежегодно . То есть вклад фотовольтаики пока ничтожно мал - 1% мировой электрогенерации и 0,2% мирового производства первичной энергии (этот параметр включает в себя вообще все источники энергии: углеводороды и т.п.).

Выводы

Истина посередине, между двумя обозначенными в начале материала позициями.
  • Электрогенерация фотовольтаики растёт с высокой скоростью и тенденция продолжится
  • Существенный вклад в мировую электрогенерацию из-за низкой текущей базы произойдёт в лучшем случае в 2030-х
Таким образом, несмотря на существенный прогресс как фотовольтаики, так и возобновляемых источников энергии в целом, придётся ещё достаточно долго использовать ископаемые топлива, а трудности перехода на новый энергоуклад - впереди. Развитие в целом и увеличение энергопотребления в частности это неизменные атрибуты человечества на протяжении сотен лет и общество, несомненно, продолжит совершенствоваться. По данным Всемирного Банка, миллиард человек находится без доступа к электроэнергии и задача обеспечить человечество электроэнергией является вызовом для солнечной энергетики. Учитывая, что мировое потребление электроэнергии растёт со скоростью 3% в год, а к 2040 году вырастет вдвое, размер ниш будет увеличиваться как в относительных, так и в абсолютных цифрах.
Интересно взглянуть на результаты и в цивилизационном аспекте :

В рамках предложенного подхода можно утверждать, что искусственно созданная ниша в Европе, в целом, заполнилась и дальнейшее развитие туманно и будет определяться экономической конъюктурой. Поэтому европейская ассоциация фотовольтаики прогнозирует развитие фотовольтаики в широком диапазоне: 120-240 ГВт к 2020 году . Вектор и производства и применения фотоэлементов за последние два года перенаправлен в Азию, где в течение двух лет установленная мощность фотоэлементов превысит соответствующую для стран Европы.

  • Устройство и принцип работы
  • Где применяются?
  • Преимущества устройства

В настоящее время актуальной становится обеспеченность энергоресурсами отдаленных и труднодоступных районов. Причин этому несколько. Во-первых, электричество - незаменимый элемент комфортного существования современного человека. Во-вторых, снижение затрат за пользование электричеством и постоянная бесперебойная его подача имеют большое значение в наше время. Солнечный генератор - это прибор, с помощью которого можно решить вопросы энергообеспеченности и экономии энергоресурсов.

Устройство и принцип работы

Солнечный генератор представляет собой металлический корпус-моноблок со съемной крышкой. Он состоит из нескольких несложных элементов:

  1. Фотопанели, которые создают постоянный ток.
  2. Аккумулятор для накопления энергии.
  3. Инвертор, преобразующий постоянный ток в переменный.
  4. Контроллер заряда, накапливающий энергию в аккумуляторе.

Принцип работы: солнечная панель собирает энергию от солнца и сохраняет её в аккумуляторе для использования в дальнейшем. При этом вырабатывается постоянный ток. Также батареи обеспечивают питание максимальной нагрузки, то есть ток нагрузки обеспечивает сумма токов от солнечной батареи и аккумулятора.

Если нужно получить 220В переменного тока, то следует использовать преобразователи постоянного тока в переменный. Энергия солнца в генераторе может применяться также напрямую разными нагрузками постоянного тока.

Солнечный генератор электроэнергии имеет предохранительные модули, защищающие от превышения допустимых значений тока и напряжения. Что важно - если в какое-то время нет солнечных лучей, то генератор можно подзарядить от обыкновенной электросети.

Где применяются?

Солнечные генераторы бывают разных моделей и имеют различные характеристики (а именно производительность, ёмкость аккумулятора, время, необходимое для зарядки и т.д.). Но чаще всего у них у всех выходные параметры - розетки на 220 В и выходы на 12 В, а также в наличии дисплей, отображающий работу прибора.
Несмотря на свою универсальность, генераторы на солнечных батареях зависят от погодных условий. А потому могут применяться только в качестве резервного или вспомогательного источника электроэнергии. Особую актуальность это имеет для жилых домов, тем более в отдаленных уголках страны и районах с нестабильным электроснабжением.

Солнечные батареи устанавливаются на улице в местах с наибольшим доступом солнечных лучей, ведь их эффективность напрямую зависима от освещенности. Чаще всего ставят их на крышах домов либо на других подходящих участках. При этом желательно предусмотреть возможность менять угол наклона фотоэлементов. Например, увеличив её до 75-80 градусов, получаем то, что лучи солнца в 12-00 дня практически перпендикулярны поверхности батареи. Солнечные батареи устанавливаются и подключаются очень просто, их удобно обслуживать. К генератору они подключаются с помощью специального сетевого шнура.

Солнечный генератор создан для использования в качестве основного и дополнительного (резервного, аварийного) источника тока частных домов и коттеджей, дач, объектов торговли, демонстрационных площадок, туристических баз и тому подобное. У него весьма обширный спектр использования. Можно применять для обеспечения электричеством осветительных и бытовых приборов (холодильников, телевизоров, ноутбуков, компьютеров, оргтехники), электроинструмента, дренажных и циркуляционных насосов, отопительных котлов и так далее. Время автономной работы у всех моделей разное, но практически все они довольно производительны и могут работать непрерывно до 10-12 часов.

Преимущества устройства

Солнечный генератор имеет такие преимущества:

  1. Не зависит от электросети, заряд от энергии солнца.
  2. Возможность подзарядки от сети 220 В (или даже от прикуривателя).
  3. Выходная мощность переменного тока до 1500 Вт.
  4. На выходе 220 В переменного и 12 В постоянного тока.
  5. Не боится короткого замыкания.
  6. Не зависит от топлива (бензин, дизельное топливо), так как его не потребляет.
  7. Работа без шумов.
  8. Отсутствие вредных выбросов, альтернативный источник электроэнергии.
  9. Возможность применения в помещениях без вентиляции.
  10. Эстетичный дизайн, компактность и удобство использования.
  11. Наличие светодиодного индикатора зарядки аккумулятора.
  12. Регулируемый кронштейн для крепления солнечных панелей.
  13. Легко транспортируется.
  14. Экономит электроэнергию.

Свой генератор электричества - удовольствие не из дешевых. На начальном этапе придётся понести определенные затраты на его приобретение и установку. Он дороже привычных топливных моделей. Но не стоит об этом беспокоиться, так эти первоначальные инвестиции достаточно быстро окупятся, и уже спустя несколько лет Вы будете наслаждаться бесперебойным электроснабжением, экономя при этом свои деньги.

Можно ли собрать устройство самостоятельно?

Сейчас можно приобрести любую модификацию солнечного генератора, а можно сделать его своими руками. Для этого достаточно иметь необходимые знания по его строению и принципу работы. Можно собрать генератор электрической энергии с любым напряжением и током на выходе путем соединения цепочек фотоэлементов или батарей в последовательно-параллельные комбинации. При этом важно помнить, что параллельное подключение увеличивает мощность, а последовательное - напряжение.

Ни для кого не секрет, что природные ресурсы, используемые человеком, начинают заканчиваться. А благодаря альтернативным источникам энергии, таким как солнечный генератор можно сохранить природные ресурсы и восстанавливать их запасы. В наше время появились технологии, позволяющие использовать на пользу человека щедрый источник энергии - солнечные лучи.

Солнце - это безвозмездный совершенно чистый и неиссякаемый источник энергии. Генератор электрической энергии, несомненно, будет способствовать сохранению экологии на нашей планете и жизни будущих поколений.

Мы живём в мире будущего, хотя не во всех регионах это заметно. В любом случае возможность развития новых источников энергии сегодня всерьёз обсуждается в прогрессивных кругах. Одним из самых перспективных направлений выступает солнечная энергетика.

На данный момент около 1% электроэнергии на Земле получается вследствие переработки солнечного излучения. Так почему мы до сих пор не отказались от других «вредных» способов, и откажемся ли вообще? Предлагаем ознакомиться с нашей статьей и попытаться самостоятельно ответить на этот вопрос.

Как солнечная энергия преобразуется в электричество

Начнём с самого важного – каким образом солнечные лучи перерабатываются в электроэнергию.

Сам процесс носит название «Солнечная генерация» . Наиболее эффективные пути его обеспечения следующие:

  • фотовольтарика;
  • гелиотермальная энергетика;
  • солнечные аэростатные электростанции.

Рассмотрим каждый из них.

Фотовольтарика

В этом случае электрический ток появляется вследствие фотовольтарического эффекта . Принцип такой: солнечный свет попадает на фотоэлемент, электроны поглощают энергию фотонов (частиц света) и приходят в движение. В итоге мы получаем электрическое напряжение.

Именно такой процесс происходит в солнечных панелях, основу которых составляют элементы, преобразующие солнечное излучение в электричество.

Сама конструкция фотовольтарических панелей достаточно гибкая и может иметь разные размеры. Поэтому в использовании они очень практичны. К тому же панели имеют высокие эксплуатационные свойства: устойчивы к воздействию осадков и перепадам температур.

А вот как устроен отдельный модуль солнечной панели :

О применении солнечных батарей в качестве зарядных устройств, источников питания частных домах, для облагораживания городов и в медицинских целях можно почитать в .

Современные солнечные панели и электростанции

Из недавних примеров можно отметить солнечные панели компании SistineSolar . Они могут иметь любой оттенок и текстуру в отличие от традиционных тёмно-синих панелей. А это значит, что ими можно «оформить» крышу дома так, как Вам заблагорассудится.

Другое решение предложили разработчики Tesla. Они выпустили в продажу не просто панели, а полноценный кровельный материл, перерабатывающий солнечную энергию. содержит встроенные солнечные модули и также может иметь самое разнообразное исполнение. При этом сам материал гораздо прочнее обычной кровельной черепицы, у Solar Roof даже гарантия бесконечная.

В качестве примера полноценной СЭС можно привести недавно построенную в Европе станцию с двусторонними панелям. Последние собирают как прямое солнечное излучение, так и отражающее. Это позволяет повысить эффективность солнечной генерации на 30%. Эта станция должна вырабатывать в год около 400 МВт*ч.

Интерес вызывает и крупнейшая плавучая СЭС в Китае . Её мощность составляет 40 МВт. Подобные решения имеют 3 важных преимущества:

  • нет необходимости занимать большие наземные территории, что актуально для Китая;
  • в водоёмах уменьшается испаряемость воды;
  • сами фотоэлементы меньше нагреваются и работают эффективнее.

Кстати, эта плавучая СЭС была построена на месте заброшенного угледобывающего предприятия.

Технология, основанная на фотовольтарическом эффекте, является наиболее перспективной на сегодня, и по оценкам экспертов солнечные панели уже в ближайшие 30-40 лет смогут производить около 20% мировой потребности электроэнергии.

Гелиотермальная энергетика

Тут подход немного другой, т.к. солнечное излучение используется для нагревания сосуда с жидкостью. Благодаря этому она превращается в пар, который вращает турбину, что приводит в выработке электричества.

По такому же принципу работают тепловые электростанции, только жидкость нагревается посредством сжигания угля.

Самый наглядный пример использования данной технологии – это станция Иванпа Солар в пустыне Мохаве. Она является крупнейшей в мире солнечной гелиотермальной электростанцией.

Работает она с 2014 года и не использует никакого топлива для производства электричества – только экологически чистая солнечная энергия.

Котёл с водой располагается в башнях, которые Вы можете видеть в центре конструкции. Вокруг расположено поле из зеркал, направляющих солнечные лучи на вершину башни. При этом компьютер постоянно поворачивает эти зеркала в зависимости от расположения солнца.


Солнечный свет концентрируется на башне

Под воздействием концентрированной солнечной энергии вода в башне нагревается и становится паром. Так возникает давление, и пар начинает вращать турбину, вследствие чего выделяется электричество. Мощность этой станции – 392 мегаватт, что вполне можно сопоставить со средней ТЭЦ в Москве.

Интересно, что подобные станции могут работать и ночью. Это возможно благодаря помещению части разогретого пара в хранилище и постепенном его использовании для вращения турбины.

Солнечные аэростатные электростанции

Это оригинальное решение хоть и не получило широкого применения, но всё же имеет место быть.

Сама установка состоит из 4 основных частей:

  • Аэростат – располагается в небе, собирая солнечное излучение. Внутрь шара поступает вода, которая быстро нагревается, становясь паром.
  • Паропровод – по нему пар под давлением спускается к турбине, заставляя её вращаться.
  • Турбина – под воздействием потока пара она вращается, вырабатывая электрическую энергию.
  • Конденсатор и насос – пар, прошедший через турбину, конденсируется в воду и поднимается в аэростат с помощью насоса, где снова разогревается до парообразного состояния.

В чём преимущества солнечной энергетики

  • Солнце будет давать нам свою энергию ещё несколько миллиардов лет. При этом людям не нужно тратить средства и ресурсы для её добычи.
  • Генерация солнечной энергии – полностью экологичный процесс, не имеющий рисков для природы.
  • Автономность процесса. Сбор солнечного света и выработка электроэнергии проходит с минимальным участием человека. Единственное, что нужно делать, это следить за чистотой рабочих поверхностей или зеркал.
  • Выработавшие свой ресурс солнечные панели могут быть переработаны и снова использованы в производстве.

Проблемы развития солнечной энергетики

Несмотря на реализацию идей по поддержанию работы солнечных электростанций в ночное время, никто не застрахован от капризов природы. Затянутое облаками небо в течение нескольких дней значительно понижает выработку электричества, а ведь населению и предприятиям необходима его бесперебойная подача.

Строительство солнечной электростанции – удовольствие не из дешёвых. Это обусловлено необходимостью применять редкие элементы в их конструкции. Не все страны готовы растрачивать бюджеты на менее мощные электростанции, когда есть рабочие ТЭС и АЭС.

Для размещения таких установок необходимы большие площади, причём в местах, где солнечное излучение имеет достаточный уровень.

Как развита солнечная энергетика в России

К сожалению, в нашей стране пока во всю жгут уголь, газ и нефть, и наверняка Россия будет в числе последних, кто полностью перейдёт на альтернативную энергетику.

На сегодняшний день солнечная генерация составляет всего 0,03% энергобаланса РФ . Для сравнения в той же Германии этот показатель составляет более 20%. Частные предприниматели не заинтересованы во вложении средств в солнечную энергетику из-за долгой окупаемости и не такой уж высокой рентабельности, ведь газ у нас обходится гораздо дешевле.

В экономически развитых Московской и Ленинградской областях солнечная активность на низком уровне. Там строительство солнечных электростанций просто нецелесообразно. А вот южные регионы довольно перспективны.