Домой / Основные настройки / Sata диск что. Интерфейсы подключения жестких дисков — IDE, SATA и другие. Дальнейшее развитие SATA

Sata диск что. Интерфейсы подключения жестких дисков — IDE, SATA и другие. Дальнейшее развитие SATA

Доброго времени суток! В прошлой записи мы с вами в подробностях рассмотрели устройство харда, но я специально ничего не сказал про интерфейсы — то есть способы взаимодействия харда и остальных устройств компа, или если еще конкретней, способы взаимодействия (соединения) харда и материнской платы писишника.

А почему не сказал? А потому что эта тема — достойна объема никак не меньшего целого поста. Так что сейчас разберем подробно наиболее популярные на сегодняшний день интерфейсы . Сразу оговорюсь, что запись или пост (кому как удобнее) в данный раз будет иметь внушительные размеры, но куда деваться, без этого к сожалению никак, потому как если написать кратко, получится не совсем понятно.

Быстрая навигация

Понятие интерфейса жесткого диска ПК

Для начала давайте дадим определение понятию «интерфейс». Говоря простым языком (а именно им я и буду по-возможности выражаться, поскольку блог то на обычных людей рассчитан, таких как мы с вами), интерфейс — способ взаимодействия устройств друг с другом и не только устройств. К примеру, многие из вас должно быть слышали про так называемый «дружественный» интерфейс какой-либо программы. Что это значит? Это значит, что взаимодействие человека и программы более легкое, не требующее со стороны пользователя большИх усилий, по сравнению с интерфейсом «не дружественным». В нашем же случае, интерфейс — просто способ взаимодействия конкретно харда и материнской платы писишника. Он представляет собой набор специальных линий и специального протокола (набора правил передачи данных). То есть чисто физически — шлейф (кабель, провод), с 2-х сторон которого располагаются входы, а на жестком диске и материнке есть специальные порты (места, куда присоединяется кабель). Таким образом, понятие интерфейс — включает в себя соединительный кабель и порты, находящиеся на соединяемых им устройствах.

Виды взаимодействия винтов и материнской платы компа (виды интерфейсов)

Что ж, первым на очереди у нас будет самый «древний» (80-е года) из всех, в современных HDD его уже не встретить, это интерфейс IDE (он же ATA, PATA).

IDE

IDE — в переводе с английского «Integrated Drive Electronics», что буквально означает — «встроенный контроллер». Это уже потом IDE стали называть интерфейсом для передачи данных, ввиду того, что контроллер (находящийся в устройстве, в основном в жестких дисках и оптических приводах) и надо было чем-то соединять. Его (IDE) еще называют ATA (Advanced Technology Attachment), получается что то вроде «Усовершенствованная технология подсоединения». Дело в том, что ATA — параллельный интерфейс передачи данных, за что вскоре (буквально сразу после выхода SATA, о котором речь пойдет чуть ниже) он был переименован в PATA (Parallel ATA).

Что тут сказать, IDE хоть и был очень медленный (пропускная способность канала передачи данных составляла от 100 до 133 мегабайта в секунду в разных версиях IDE — и то чисто теоретически, на практике гораздо меньше), однако позволял присоединять сразу сразу два устройства к материнской плате, используя при этом один шлейф.

Причем в случае подключения сразу 2-х устройств, пропускная способность линии делилась пополам. Но, это далеко не единственный недостаток IDE. Сам провод, как видно из рисунка, достаточно широкий и при подключении займет львиную долю свободного пространства в системном блоке, что негативно скажется на охлаждении всей в целом. В общем IDE уже устарел морально и физически, по данной причине разъем IDE уже не встретить на многих современных материнских платах, хотя до недавнего времени их еще ставили (в количестве 1 шт.) на бюджетные платы и на некоторые платы среднего ценового сегмента.

SATA

Следующим, не менее популярным, чем IDE в свое время, интерфейсом является SATA (Serial ATA), характерной особенностью которого является последовательная передача данных. Стоит отметить, что на момент написания поста — является самым массовым для применения в компьютерах.

Существуют три основных варианта (ревизии) SATA, отличающиеся друг от друга пропускной способностью: rev. 1 (SATA I) — 150 Мб/с, rev. 2 (SATA II) — 300 Мб/с, rev. три (SATA III) — 600 Мб/с. Но это только в теории. На практике же, скорость записи/чтения винтов в основном не превышает 100-150 Мб/с, а оставшаяся скорость пока не востребована и влияет разве что на скорость взаимодействия контроллера и кэш-памяти HDD (повышает скорость доступа к диску).

Из нововведений отмечу — обратную совместимость всех версий SATA (диск с разъемом SATA rev. 2 можно подключить к мат. плате с разъемом SATA rev. три и т.п.), улучшенный внешний вид и удобство подключения/отключения кабеля, увеличенная по сравнению с IDE длина кабеля (1 метр максимально, против 46 см на IDE интерфейсе), поддержка функции NCQ начиная уже с первой ревизии. Спешу обрадовать обладателей старых устройств, не поддерживающих SATA — существуют переходники с PATA на SATA, это реальный выход из ситуации, позволяющий избежать траты денег на покупку новой материнской платы или нового жесткого диска.

Так же, в отличие от PATA, интерфейсом SATA предусмотрена «горячая замена» жестяков, это значит, что при включенном питании системника компа, можно присоединять/отсоединять жесткие диски. Только для ее реализации надо будет немного покопаться в настройках БИОС и включить режим AHCI.

eSATA (External SATA)

Следующий по списку — eSATA (External SATA) — был создан в 2004 году, слово «external» говорит о том, что он используется для подключения внешних жестких дисков. Поддерживает «горячую замену» дисков. Длина интерфейсного кабеля увеличена по сравнению с SATA — максимальная длина составляет в данный момент аж два метра. eSATA физически не совместим с SATA, но обладает той же пропускной способностью.

Но eSATA — далеко не единственный способ подключить внешние устройства к компу. Например FireWire — последовательный высокоскоростной интерфейс для подключения внешних устройств, в том числе HDD.

Поддерживает «горячу замену» винтов. По пропускной способности сравним с USB 2.0, а с появлением USB 3.0 — даже проигрывает в скорости. Однако у него все же есть преимущество — FireWire может обеспечить изохронную передачу данных, что способствует его применению в цифровом видео, так как он даёт возможность передавать данные в режиме реального времени. Несомненно, FireWire популярен, но не настолько, как к примеру USB или eSATA. Для подключения винтов он используется довольно редко, в большинстве случаев при помощи FireWire подключают различные мультимедийные устройства.

USB (Universal Serial Bus)

USB (Universal Serial Bus), пожалуй самый распространенный интерфейс, используемый для подключения внешних жестяков, флешек и твердотельных накопителей (SSD). Как и в предыдущем случае — есть поддержка «горячей замены», довольно большая максимальная длина соединительного кабеля — до 5 метров в случае использования USB 2.0, и до три метров — если используется USB 3.0. Наверное можно сделать и бОльшую длину кабеля, но в этом случае стабильная работа устройств будет под вопросом.

Скорость передачи данных USB 2.0 составляет порядка 40 Мб/с, что в общем-то является низким показателем. Да, конечно, для обыкновенной повседневной работы с файлами пропускной способности канала в 40 Мб/с хватит за глаза, но как только речь пойдет о работе с крупными файлами, поневоле начнешь смотреть в сторону чего-то более скоростного. Но оказывается выход есть, и имя ему — USB 3.0, пропускная способность которого, по сравнению с предшественником, возросла в 10 раз и составляет порядка 380 Мб/с, то есть практически как у SATA II, даже чуть больше.

Есть две разновидности контактов кабеля USB, это тип «A» и тип «B», расположенные на противоположных концах кабеля. Тип «A» — контроллер (материнская плата), тип «B» — подключаемое устройство.

USB 3.0 (тип «A») совместим с USB 2.0 (тип «A»). Типы «B» не совместимы между собой, как видно из рисунка.

Thunderbolt (Light Peak)

Thunderbolt (Light Peak). В 2010 году компанией Intel был продемонстрирован первый комп с данным интерфейсом, а чуть позднее в поддержку Thunderbolt к Intel присоединилась не менее известная компания Apple. Thunderbolt достаточно крут (ну а как иначе то, Apple знает во что стоит вкладывать деньги), стоит ли говорить о поддержке им таких фич, как: пресловутая «горячая замена», сразуе соединение сразу с несколькими устройствами, действительно «огромная» скорость передачи данных (в 20 раз быстрее USB 2.0).

Максимальная длина кабеля составляет только три метра (видимо больше и не надо). Тем не менее, несмотря на все перечисленные преимущества, Thunderbolt пока что не является «массовым» и применяется преимущественно в дорогих устройствах.

Идем дальше. На очереди у нас пара из очень похожих друг на друга интерфейсов — SAS и SCSI. Похожесть их заключается в том, что они оба применяются преимущественно в серверах, где требуется высокая производительность и как можно меньшее время доступа к жесткому диску. Но, существует и обратная сторона медали — все преимущества данных интерфейсов компенсируются ценой устройств, поддерживающих их. Жесткие диски, поддерживающие SCSI или SAS стоят на порядок дороже.

SCSI (Small Computer System Interface)

SCSI (Small Computer System Interface) — параллельный интерфейс для подключения различных внешних устройств (не только жестких дисков).

Был разработан и стандартизирован даже несколько раньше, чем первая версия SATA. В свежих версия SCSI есть поддержка «горячей замены».

SAS (Serial Attached SCSI)

SAS (Serial Attached SCSI) пришедший на смену SCSI, должен был решить ряд недостатков последнего. И надо сказать — ему это удалось. Дело в том, что из-за своей «параллельности» SCSI использовал общую шину, так что с контроллером сразу могло работать только лишь одно из устройств, SAS — лишен этого недостатка.

Кроме этого, он обратно совместим с SATA, что несомненно является крупным плюсом. К сожалению цена винтов с интерфейсом SAS близка к стоимости SCSI-винчестеров, но от этого никак не избавиться, за скорость приходится платить.

NAS (Network Attached Storage)

Если вы еще не утомились, предлагаю рассмотреть еще один прикольный способ подключения HDD — NAS (Network Attached Storage). В настоящее время сетевые системы хранения информации (NAS) имеют большую популярность. По сути, это отдельный комп, этакий мини-сервер, отвечающий за хранение данных. Он подключается к другому ПК через сетевой кабель и управляется с другого компа через обычный браузер. Это все надо в тех случаях, когда требуется большое дисковое пространство, которым пользуются сразу несколько людей (в семье, на работе). Данные от сетевого хранилища передаются к писишникам юзеров либо по обычному кабелю (Ethernet), либо при помощи Wi-Fi. На мой взгляд, очень удобная штука.

Надеюсь вам понравился материал, предлагаю добавить в закладки бложик, чтобы ничего не пропустить и встретимся с вами уже в следующих постах сайта.

Установка SSD в систему с SATA 3 Гбит/с | По-прежнему отличный способ обновить PC?

Есть множество способов улучшения характеристик PC. Но обычно, самым эффективным является замена комплектующих. Также популярным остаётся разгон. Однако раньше он давал более ощутимый прирост скорости для CPU, GPU и памяти. Возьмите Celeron 300A, разгоните до 450 МГц и получите увеличение 50% прироста. Чтобы получить нечто подобное на нужно разогнать его до 5,25 ГГц. Но даже в этом случае нет гарантии, что настольные приложения также будут масштабироваться.

К тому же, мы сожгли уже достаточно компьютерного "железа", чтобы в полной мере ощутить риски связанные с разгоном (именно поэтому в обзорах материнских плат с чипсетами Intel седьмой серии мы придерживаемся напряжения процессора 1,35 В). Манипуляции с референсными частотами, множителями, напряжением и задержками могут навредить стабильности вашей системы.

Если вас устраивает процессор и материнская плата, сбалансировать систему для оптимальной работы можно с помощью более современной видеокарты, увеличения объёма оперативной памяти и установки твердотельного накопителя. Сегодня фокус на SSD, стоимость которых часто ниже $1/Гбайт, сейчас они дешёвые как никогда. Мы говорили это раньше и повторим сегодня: если у вас ещё нет SSD – купите. Он изменит ваше представление об отзывчивости системы.

Современные SSD уже упираются в потолок пропускной способности интерфейса SATA 6Гбит/с, в то время как скорость механических жёстких дисков за последние пять лет почти не увеличилась. Многие твердотельные накопители легко достигают 550 Мбайт/с при последовательной передаче данных, но что более важно, они с ловкостью управляются с произвольными операциями ввода/вывода в реальном времени. SSD может обработать на порядок больше запросов в секунду, чем обычные носители информации (десятки тысяч против нескольких сотен).

Распыляться можно весь день, но факт в том, что SSD – это стоящий апгрейд для тех, кто в своей системе использует только HDD, и его подтверждают цифры. С SSD запуск Windows и приложений происходит быстрее, как и перемещения файлов.

Но хватит ли старого интерфейса SATA 3Гбит/с для современного SSD с SATA 6Гбит/с?

Мы каждый раз задаём себе этот вопрос, когда на системных платах среднего класса кончаются разъёмы SATA 6 Гбит/с (от ред.: в данный момент, мы производим видеозахват на массив из четырёх Crucial m4 , подключённых к разъёмам 3 Гбит/с). А что если ваша старая система поддерживает только стандарт прошлого поколения? Стоил ли делать апгрейд? Учитывая, что самые быстрые SSD часто сдерживаются шириной интерфейса SATA 6 Гбит/с, логично предположить, что 3 Гбит/с будет "резать" производительность. Но насколько? Разница будет ощутима на практике, либо только в результатах тестов? Нужно ли обновлять контроллер накопителей?

В поисках ответов на эти вопросы, мы взяли Samsung 840 Pro , подключили его к разъёму 6 Гбит/с, а затем к разъёму предыдущего поколения. Поскольку эти накопители Samsung сейчас считаются одними из самых быстрых, полученные результаты применимы к большинству SSD high-end класса, представленных на рынке. Обратите внимание, что мы не тестируем порт SATA 1,5 Гбит/с. Было бы интересно добавить этот интерфейс для сравнения, однако он откидывает нас обратно примерно в 2005 год. Если вашему PC уже восемь лет, пора задуматься о покупке нового.

Установка SSD в систему с SATA 3 Гбит/с | Тестовый стенд и бенчмарки

Для сегодняшнего тестирования мы используем Samsung 840 Pro MZ-7PD256 на базе собственного контроллера компании S4LN021X01-8030 NZWD1 с поддержкой SATA 6 Гбит/с (ещё известный как MDX), использующего трёхъядерный процессор Cortex-R4. Микросхема дополнена кэшем данных DDR3 на 512 Мбайт. Есть и не Pro модели с трёхуровневыми ячейками памяти, но скорость и выносливость у них ниже, чем у старших моделей с 21-нанометровой NAND-памятью с многоуровневыми ячейками. На линейку 840 Pro компания Samsung даёт пять лет гарантии.


По данным Samsung скорость последовательного чтения Samsung 840 Pro достигает 540 Мбайт/с, записи - 520 Мбайт/с. Он должен обеспечивать до 100 000 произвольных операций ввода/вывода блоками по 4 Кбайт в секунду. Сейчас на Amazon модель ёмкостью 256 Гбайт продаётся за $230. Есть также версии на 128 и 512 Гбайт, за $140 и $460 соответственно.

Технические характеристики Samsung SSD 840 Pro

Производитель Samsung
Модель 840 Pro
Модельный номер MZ-7PD256
Форм-фактор 2,5" (7 мм)
Ёмкость, Гбайт 256
Контроллер MDX
Тип флеш-памяти 21 нм MLC Toggle-mode NAND
Резервирование 7%
Кэш, Мбайт 512
Интерфейс SATA 6 Гбит/с
В комплекте Samsung Magician Software
Гарантия пять лет

Тестовый стенд и ПО

Мы использовали тестовый стенд под управлением Windows 7 с материнской платой Gigabyte Z68X-UD3H-B3, процессором Intel Core i5-2500K и памятью Corsair TR3X6G1600C8D объёмом 4 Гбайт. SSD был подключён к первому разъёму 6 Гбит/с, и нам удалось переключить его в режим 3 Гбит/с в прошивке Gigabyte.

В качестве базы для сравнения мы выбрали жёсткий диск . VelociRaptor – это накопитель типоразмера 2,5" в формате 3,5", его ёмкость составляет 1 Тбайт. Благодаря скорости вращения шпинделя 10 000 об/мин и пластинам 2,5" он показал самую высокую скорость среди конкурирующих жёстких дисков. Подробности в нашей статье "Western Digital VelociRaptor WD1000DHTZ: тест и обзор обновлённой версии самого быстрого HDD" .

CPU
Материнская плата Gigabyte Z68X-UD3H-B3, Revision: 0.2 Chipset: Intel Z68 Express, BIOS: F3
Память 2 x 2 Гбайт DDR3-1333, Corsair TR3X6G1600C8D
Системный SSD Intel X25-M G1, 80 Гбайт, Прошивка 0701, SATA 3 Гбит/с
Контроллер Intel PCH Z68 SATA 6Gb/s
Питание
Тесты
Общая производительность h2benchw 3.16
PCMark 7 1.0.4
Производительность ввода/вывод IOMeter 2006.07.27
Fileserver-Benchmark
Webserver-Benchmark
Database-Benchmark
Workstation-Benchmark
Линейное чтение
Линейная запись
Случайное чтение блоков по 4 Кбайта
Случайная запись блоков по 4 Кбайта
ПО и драйверы
Операционная система Windows 7 x64 Ultimate SP1
Intel Inf 9.2.0.1030
Intel Rapid Storage 10

Установка SSD в систему с SATA 3 Гбит/с | Тестовый стенд и бенчмарки для реальных задач

Кроме обычных синтетических бенчмарков, мы добавили более реалистичные тесты. Для создания множества задач, характерных для повседневного использования, мы перешли на Professional 64-bit.

Реальные тесты:

  1. Загрузка . Отсчёт начинается с момента, когда экран POST показывает нули и заканчивается, когда появляется рабочий стол Windows.
  2. Выключение . После трёх минут работы , мы выключаем систему и начинаем отсчёт. Таймер останавливается, когда система выключена.
  3. Загрузка и Adobe Photoshop. После загрузки , командный файл запускает редактор изображений Adobe Photoshop CS6 и загружает фотографию с разрешением 15 000 x 7 266 пикселей и размером 15,7 Мбайт. После Adobe Photoshop закрывается. Отсчёт начинается после экрана POST и заканчивается, когда Adobe Photoshop выключен. Мы повторяем тест пять раз.
  4. Пять приложений. После загрузки , командный файл запускает пять различных приложений. Отсчёт начинается с запуском первого приложения и заканчивается с закрытием последнего. Мы повторяем тест пять раз.

Скриптовая последовательность для теста пяти приложений:

  • Загрузка презентации Microsoft PowerPoint и затем закрытие Microsoft PowerPoint.
  • Запуск рендерера командной строки Autodesk 3ds Max 2013 и рендеринг изображения в разрешении 100x50 пикселей. Картинка такая маленькая, потому что мы тестируем SSD, а не CPU.
  • Запуск встроенного в ABBYY FineReader 11 бенчмарка и конвертирование тестовой страницы.
  • Запуск встроенного в MathWorks MATLAB бенчмарка и его выполнение (один раз).
  • Запуск Adobe Photoshop CS6 и загрузка изображения, которое использовалось в третьем реалистичном бенчмарке, но в оригинальном формате TIF с разрешением 29 566 x 14 321 пикселей и размером 501 Мбайт.

Тестовый стенд для реальных задач

Конфигурация тестового стенда
CPU Intel Core i7-3690X Extreme Edition (32 нм Sandy Bridge-E), 6 ядер/12 потоков, 3,3 ГГц, кэш L2 6 x 256 Кбайт, общий кэш L3 15 Мбай, TDP 130 Вт, 3,9 ГГц max. Turbo Boost
Материнская плата Intel DX79SI, Chipset: Intel X79 Express, BIOS: 280B
Память 4 x 4 Гбайт DDR3-1333, Kingston KHX1600C9D3K2/8GX
Системный SSD Samsung 840 Pro, 256 Гбайт, прошивка DXM04B0Q, SATA 6 Гбит/с
Контроллер Intel PCH Z68 SATA 6 Гбит/с
Питание Seasonic X-760 760 Вт, SS-760KM Active PFC F3
Тесты
Тестовые программы 3ds Max 2013
FineReader 11
Matlab 2012b
Photoshop CS6
PowerPoint 2010
ПО и драйверы
Операционная система Windows 8 x64 Pro




Установка SSD в систему с SATA 3 Гбит/с | Результаты тестов

Скорость последовательных операций ввода/вывода

Как и ожидалось, интерфейс SATA 3 Гбит/с оказался бутылочным горлышком для Samsung 840 Pro при последовательных операциях чтения и записи. SSD более широко раскрывается на канале 6 Гбит/с. У Western Digital VelociRaptor WD1000DHTZ тоже высокий результат для механического диска. Через шину 6 Гбит/с его скорость превышает планку в 200 Мбайт/с.

Бенчмарк CrystalDiskMark 3.0 подтверждает результаты AS-SSD. Обратите внимание, что последовательное чтение и запись в этих тестах происходит с большими объёмами данных. Под Windows большая часть операций ввода/вывода являются произвольными. Последовательные операции здесь больше исключение, чем правило.

Время доступа

В среднем, VelociRaptor 3,5" находит запрашиваемые AS-SSD данные за семь миллисекунд. Это быстро для HDD и связано со скоростью вращения шпинделя 10 000 об/мин. Однако диск Western Digital VelociRaptor WD1000DHTZ даже близко не достигает скорости SSD, который на два порядка быстрее. Его показатели измеряются уже в микросекундах. В то же время, при измерении времени доступа мы не видим практической разницы между SATA 3 и 6 Гбит/с.

Скорость произвольных операций блоками по 4 Кбайт

AS-SSD: произвольное чтение/запись блоками по 4 Кбайт

Этот бенчмарк наиболее важен для понимания реальной производительности. При произвольном чтении и записи блоками по 4 Кбайт самый быстрый HDD просто не в состоянии соперничать с SSD. При подключении к порту 6 Гбит/с Samsung 840 Pro показал чуть более высокий результат, чем с разъёмом 3 Гбит/с. Запись происходит на 20 Мбайт/с быстрее, а чтение – всего на 2 Мбайт/с.

Увеличение глубины очереди даёт твердотельному накопителю больше команд для одновременной обработки, и здесь более широкий интерфейс действительно обеспечивает преимущество. Однако по большей части – это теория. В настольных окружениях глубина очереди крайне редко достигает 32-х и более команд.

Тем не менее, скорость произвольной записи и чтения через шину 6 Гбит/с как минимум в 1,5 раза быстрее.

CrystalDiskMark: произвольное чтение/запись блоками по 4 Кбайт

Показатели CrystalDiskMark говорят то же, что и предыдущий тест. Преимущество стандарта SATA 6 Гбит/с над 3 Гбит/с при малой глубине очереди, характерной для большинства настольных систем, невелико и хорошо проявляется лишь при высокой очерёдности, присущей серверным средам. В обычном PC или ноутбуке, подсистема хранения в основном работает с одной-четырьмя командами.


Iometer: произвольное чтение/запись блоками по 4 Кбайт

Результаты в Iometer немного отличаются от двух предыдущих тестов, хотя общая тенденция сохраняется. Samsung 840 Pro работает чуть быстрее при подключении к разъёму 6 Гбит/с, особенно при чтении.


Скорость произвольных операций блоками по 512 Кбайт

Через интерфейс SATA 6 Гбит/с запись и чтение данных блоками по 512 Кбайт происходит чуть быстрее, чем через 3 Гбит/с. Western Digital VelociRaptor WD1000DHTZ неплохо показал себя в тесте записи, но в чтении он сильно отстал даже от SSD, подключённого через более медленный интерфейс.

Тесты различных профилей ввода/вывода

Мы использовали профили базы данных, веб-сервера и рабочей станции в Iometer. В них симулируются определённые шаблоны доступа, характерные для каждого окружения.

Samsung 840 Pro одинакового проявил себя в тестах базы данных и рабочей станции, независимо от разъёма SATA 3 или 6 Гбит/с. Однако тест веб-сервера заметно выигрывает от более широкого интерфейса, практически удваивая результат, полученный через шину 3 Гбит/с.



PCMark 7 и трассировка

В PCMark 7 при подключении к разъёму 6 Гбит/с производительность Samsung 840 Pro выше, хотя разница незначительная.

Анализ показывает, что загрузка приложений и импорт изображений в Windows Photo Gallery через SATA 6Гбит/с происходит быстрее, чем через SATA 3 Гбит/с. Но даже через старое соединение SSD в два раза обгоняет жёсткий диск.


В играх производительность накопителя через разъём 6 Гбит/с немного выше.

PCMark Vantage

PCMark Vantage старше, чем PCMark 7. Однако он демонстрирует существенное преимущество интерфейса SATA 3.

Western Digital VelociRaptor WD1000DHTZ умудрился занять второе место в тесте медиацентра. Но вывод остаётся прежним: SSD, независимо от типа подключения, значительно обгоняют лучшие HDD.


AS-SSD Copy Benchmark

В тесте AS-SSD, Samsung 840 Pro при подключении к SATA 6 Гбит/с превышает результат, полученный на шине 3 Гбит/с почти на две трети.

Western Digital VelociRaptor WD1000DHTZ подключается к разъёму SATA III, но его механическая конструкция явно сдерживает производительность.

Тем временем, при сравнении результатов Samsung 840 Pro , становится понятно, что SSD сдерживается возможностями старого интерфейса. Но в любом случае, производительность SSD через SATA II значительно выше, чем у лучшего жёсткого диска, работающего в полную силу.

Этот тест особенно касается пользователей, постоянно копирующих большие объёмы данных на или с SSD. Очевидно, что в такой ситуации, более современный и широкий интерфейс обеспечивает практическую разницу.

Общая производительность

Результаты средней производительности всего тестового пакета показывают, что между SSD, подключённым через SATA III и SATA II существует заметная разница. Естественно, скорость чтения и записи выше, когда накопитель имеет доступ к более широкому каналу и может использовать его на полную.

Однако большинство тестов являются синтетическими. Вполне возможно, что реалистичные тесты нарисуют совсем другую картину.

Если объединить все результаты, взвесив каждый отдельный показатель, мы получим общую диаграмму, которая изображена выше. На ней чётко видно преимущество интерфейса SATA 6 Гбайт/с в синтетических тестах.

AS-SSD тоже показывает общий результат. Производительность Samsung 840 Pro через SATA II заметно ниже, чем через SATA III. Но опять же, даже самый худший результат SSD многократно превышает результаты жёсткого диска.

Тестируемые здесь задачи характерны для повседневного использования настольного компьютера. Мы сразу видим, что разница между SATA II и SATA III при загрузке составляет всего пол секунды. Гораздо заметнее прирост скорости при переходе с HDD на SSD.


По таймеру выключается на 0,6 секунды быстрее, когда Samsung 840 Pro подключён через разъём 6 Гбит/с. На практике вы этого не заметите. Даже HDD, кажется, не так плох в сравнении с SSD от Samsung.


Вторые диаграммы отображают скорость работы накопителей в процентах относительно SSD Samsung на шине SATA 3 Гбит/с.

В этом тесте сразу после загрузки запускается Adobe Photoshop CS6, загружается изображение и затем программа закрывается. Samsung 840 Pro , подключённый через SATA II, выполняет последовательность на секунду дольше, чем тот же SSD через порт SATA III. На работе такая разница никак не скажется. Но вот дополнительные 23 секунды, которые тратит такая же мощная система, но только с HDD (даже таким быстрым как VelociRaptor) вы точно ощутите.


Реальные тесты: пять приложений

Это очередной тест, в котором результаты твердотельного накопителя Samsung 840 Pro , подключённого к разъёмам разного поколения, практически равны. Разница в скорости выполнения всего лишь 1,6 секунды. Если сидеть напротив мониторов двух систем отличить их почти невозможно.


Установка SSD в систему с SATA 3 Гбит/с | Отличная возможность для апгрейда даже с SATA 3Гбит/с

Если судить только по популярным у обозревателей синтетическим тестам (AS-SSD, CrystalDiskMark, PCMark 7, Iometer и др.), то интерфейс SATA 6 Гбит/с просто необходим, чтобы получить максимальную производительность от современных SSD. В случае если вы перемещаете большие объёмы данных - это правда. Однако синтетические тесты не очень хорошо передают ощущения от системы, недавно обновлённой с обычного жёсткого диска на твердотельный накопитель. Более того, они создают иллюзию необходимости современной платформы для раскрытия возможностей передовых SSD. Однако наши реалистичные тесты показывают, что теоретические различия не всегда соответствуют практическим. В большинстве случаев, Samsung 840 Pro , подключённый через SATA 3 Гбит/с, не отставал от того же SSD, подключённого через SATA 6 Гбит/с.

SATA 6 Гбит/с практически не даёт преимуществ для обычного настольного PC

При подключении Samsung 840 Pro через SATA III в синтетических тестах его скорость резко возрастала. Различия были особенно красноречивы, когда мы намеренно задавали произвольные и последовательные операции ввода/вывода при большой глубине очереди. Но когда мы проводили реалистичные тесты загрузки и выключения , а также запуска нескольких приложений, разница сводилась почти к нулю. Именно такой она и будет при повседневном использовании.

Поскольку синтетические тесты целенаправленно дают нагрузки, разработанные для выявления различий между очень быстрыми устройствами, но редко встречающиеся в настольных окружениях, они не соответствуют более распространённым на PC задачам. Скорость произвольного ввода/вывода – это важный аспект, но велика вероятность, что вы никогда не увидите глубину очереди в 32 команды. И хотя нам понравилось измерять пиковую скорость последовательной передачи данных, всё же перемещение больших медиа файлов между двумя одинаковыми накопителями – это относительно редкое явление. Например, если копировать файл ISO с одного SSD на другой, то вы получите существенный прирост через SATA 6 Гбит/с. Но если вы перемещаете тот же файл с SSD на HDD, то даже самый быстрый интерфейс в мире не поможет преодолеть скоростные ограничения магнитного носителя.

Три самых важных аспекта:

С практической точки зрения скорость произвольных операций ввода/вывода очень важна. Под управлением Windows большинство операций ввода/вывода происходит на низкой глубине очереди. В данной ситуации синтетические бенчмарки показывают, что разница между SATA 6 Гбит/с и 3 Гбит/с совсем небольшая. Теоретический разрыв минимален, а практического - вообще нет.

Сейчас мы можем ответить на вопрос, нужны ли разъёмы SATA III 6 Гбит/с при апгрейде на SSD. Очевидно, что вы получите заметный прирост к отзывчивости системы, даже используя разъём SATA 3 Гбит/с. На практике интерфейс 3 Гбит/с не сдерживает производительность основных приложений. Интерфейс SATA III вступает в игру в синтетических тестах, достигающих технологических пределов, в задачах рабочих станций/серверов или в во время передачи больших объёмов данных с SSD на SSD.

Самое главное – установить SSD в систему. Только посмотрите, как Samsung 840 Pro противостоит самому быстрому настольному жёсткому диску под названием Western Digital VelociRaptor WD1000DHTZ . SSD не оставляет ему даже шанса, ни в синтетических, ни в натуральных тестах.

Здравствуйте! В мы с вами в подробностях рассмотрели устройство жесткого диска, но я специально ничего не сказал про интерфейсы - то есть способы взаимодействия жесткого диска и остальных устройств компьютера, или если еще конкретней, способы взаимодействия (соединения) жесткого диска и компьютера.

А почему не сказал? А потому что эта тема - достойна объема никак не меньшего целой статьи. Поэтому сегодня разберем во всех подробностях наиболее популярные на данный момент интерфейсы жесткого диска. Сразу оговорюсь, что статья или пост (кому как удобнее) в этот раз будет иметь внушительные размеры, но куда деваться, без этого к сожалению никак, потому как если написать кратко, получится совсем уж непонятно.

Понятие интерфейса жесткого диска компьютера

Для начала давайте дадим определение понятию "интерфейс". Говоря простым языком (а именно им я и буду по-возможности выражаться, ибо блог то на обычных людей рассчитан, таких как мы с Вами), интерфейс - способ взаимодействия устройств друг с другом и не только устройств. Например, многие из вас наверняка слышали про так называемый "дружественный" интерфейс какой-либо программы. Что это значит? Это значит, что взаимодействие человека и программы более легкое, не требующее со стороны пользователя большИх усилий, по сравнению с интерфейсом "не дружественным". В нашем же случае, интерфейс - это просто способ взаимодействия конкретно жесткого диска и материнской платы компьютера. Он представляет собой набор специальных линий и специального протокола (набора правил передачи данных). То есть чисто физически - это шлейф (кабель, провод), с двух сторон которого находятся входы, а на жестком диске и материнской плате есть специальные порты (места, куда присоединяется кабель). Таким образом, понятие интерфейс - включает в себя соединительный кабель и порты, находящиеся на соединяемых им устройствах.

Ну а теперь самый "сок" сегодняшней статьи, поехали!

Виды взаимодействия жестких дисков и материнской платы компьютера (виды интерфейсов)

Итак, первым на очереди у нас будет самый "древний" (80-е года) из всех, в современных HDD его уже не встретить, это интерфейс IDE (он же ATA, PATA).

IDE - в переводе с английского "Integrated Drive Electronics", что буквально означает - "встроенный контроллер". Это уже потом IDE стали называть интерфейсом для передачи данных, поскольку контроллер (находящийся в устройстве, обычно в жестких дисках и оптических приводах) и материнскую плату нужно было чем-то соединять. Его (IDE) еще называют ATA (Advanced Technology Attachment), получается что то вроде "Усовершенствованная технология подсоединения". Дело в том, что ATA - параллельный интерфейс передачи данных , за что вскоре (буквально сразу после выхода SATA, о котором речь пойдет чуть ниже) он был переименован в PATA (Parallel ATA).

Что тут сказать, IDE хоть и был очень медленный (пропускная способность канала передачи данных составляла от 100 до 133 мегабайта в секунду в разных версиях IDE - и то чисто теоретически, на практике гораздо меньше), однако позволял присоединять одновременно сразу два устройства к материнской плате, используя при этом один шлейф.

Причем в случае подключения сразу двух устройств, пропускная способность линии делилась пополам. Однако, это далеко не единственный недостаток IDE. Сам провод, как видно из рисунка, достаточно широкий и при подключении займет львиную долю свободного пространства в системном блоке, что негативно скажется на охлаждении всей системы в целом. В общем IDE уже устарел морально и физически, по этой причине разъем IDE уже не встретить на многих современных материнских платах, хотя до недавнего времени их еще ставили (в количестве 1 шт.) на бюджетные платы и на некоторые платы среднего ценового сегмента.

Следующим, не менее популярным, чем IDE в свое время, интерфейсом является SATA (Serial ATA) , характерной особенностью которого является последовательная передача данных. Стоит отметить, что на момент написания статьи - является самым массовым для применения в ПК.

Существуют 3 основных варианта (ревизии) SATA, отличающиеся друг от друга пропускной способностью: rev. 1 (SATA I) - 150 Мб/с, rev. 2 (SATA II) - 300 Мб/с, rev. 3 (SATA III) - 600 Мб/с. Но это только в теории. На практике же, скорость записи/чтения жестких дисков обычно не превышает 100-150 Мб/с, а оставшаяся скорость пока не востребована и влияет разве что на скорость взаимодействия контроллера и кэш-памяти HDD (повышает скорость доступа к диску).

Из нововведений можно отметить - обратную совместимость всех версий SATA (диск с разъемом SATA rev. 2 можно подключить к мат. плате с разъемом SATA rev. 3 и т.п.), улучшенный внешний вид и удобство подключения/отключения кабеля, увеличенная по сравнению с IDE длина кабеля (1 метр максимально, против 46 см на IDE интерфейсе), поддержка функции NCQ начиная уже с первой ревизии. Спешу обрадовать обладателей старых устройств, не поддерживающих SATA - существуют переходники с PATA на SATA , это реальный выход из ситуации, позволяющий избежать траты денег на покупку новой материнской платы или нового жесткого диска.

Так же, в отличии от PATA, интерфейсом SATA предусмотрена "горячая замена" жестких дисков, это значит, что при включенном питании системного блока компьютера, можно присоединять/отсоединять жесткие диски. Правда для ее реализации необходимо будет немного покопаться в настройках BIOS и включить режим AHCI.

Следующий на очереди - eSATA (External SATA) - был создан в 2004 году, слово "external" говорит о том, что он используется для подключения внешних жестких дисков. Поддерживает "горячую замену " дисков. Длина интерфейсного кабеля увеличена по сравнению с SATA - максимальная длина составляет теперь аж два метра. eSATA физически не совместим с SATA, но обладает той же пропускной способностью.

Но eSATA - далеко не единственный способ подключить внешние устройства к компьютеру. Например FireWire - последовательный высокоскоростной интерфейс для подключения внешних устройств, в том числе HDD.

Поддерживает "горячу замену" винчестеров. По пропускной способности сравним с USB 2.0, а с появлением USB 3.0 - даже проигрывает в скорости. Однако у него все же есть преимущество - FireWire способен обеспечить изохронную передачу данных, что способствует его применению в цифровом видео, так как он позволяет передавать данные в режиме реального времени. Несомненно, FireWire популярен, но не настолько, как например USB или eSATA. Для подключения жестких дисков он используется довольно редко, в большинстве случаев с помощью FireWire подключают различные мультимедийные устройства.

USB (Universal Serial Bus) , пожалуй самый распространенный интерфейс, используемый для подключения внешних жестких дисков, флешек и твердотельных накопителей (SSD). Как и в предыдущем случае - есть поддержка "горячей замены", довольно большая максимальная длина соединительного кабеля - до 5 метров в случае использования USB 2.0, и до 3 метров - если используется USB 3.0. Наверное можно сделать и бОльшую длину кабеля, но в этом случае стабильная работа устройств будет под вопросом.

Скорость передачи данных USB 2.0 составляет порядка 40 Мб/с, что в общем-то является низким показателем. Да, конечно, для обыкновенной повседневной работы с файлами пропускной способности канала в 40 Мб/с хватит за глаза, но как только речь пойдет о работе с большими файлами, поневоле начнешь смотреть в сторону чего-то более скоростного. Но оказывается выход есть, и имя ему - USB 3.0, пропускная способность которого, по сравнению с предшественником, возросла в 10 раз и составляет порядка 380 Мб/с, то есть практически как у SATA II, даже чуть больше.

Есть две разновидности контактов кабеля USB, это тип "A" и тип "B", расположенные на противоположных концах кабеля. Тип "A" - контроллер (материнская плата), тип "B" - подключаемое устройство.

USB 3.0 (тип "A") совместим с USB 2.0 (тип "A"). Типы "B" не совместимы между собой, как видно из рисунка.

Thunderbolt (Light Peak). В 2010 году компанией Intel был продемонстрирован первый компьютер с данным интерфейсом, а чуть позже в поддержку Thunderbolt к Intel присоединилась не менее известная компания Apple. Thunderbolt достаточно крут (ну а как иначе то, Apple знает во что стоит вкладывать деньги), стоит ли говорить о поддержке им таких фич, как: пресловутая "горячая замена", одновременное соединение сразу с несколькими устройствами, действительно "огромная" скорость передачи данных (в 20 раз быстрее USB 2.0).

Максимальная длина кабеля составляет только 3 метра (видимо больше и не надо). Тем не менее, несмотря на все перечисленные преимущества, Thunderbolt пока что не является "массовым" и применяется преимущественно в дорогих устройствах.

Идем дальше. На очереди у нас пара из очень похожих друг на друга интерфейсов - это SAS и SCSI. Похожесть их заключается в том, что они оба применяются преимущественно в серверах, где требуется высокая производительность и как можно меньшее время доступа к жесткому диску. Однако, существует и обратная сторона медали - все преимущества данных интерфейсов компенсируются ценой устройств, поддерживающих их. Жесткие диски, поддерживающие SCSI или SAS стоят на порядок дороже.

SCSI (Small Computer System Interface) - параллельный интерфейс для подключения различных внешних устройств (не только жестких дисков).

Был разработан и стандартизирован даже несколько раньше, чем первая версия SATA. В свежих версия SCSI есть поддержка "горячей замены".

SAS (Serial Attached SCSI) пришедший на смену SCSI, должен был решить ряд недостатков последнего. И надо сказать - ему это удалось. Дело в том, что из-за своей "параллельности" SCSI использовал общую шину, поэтому с контроллером одновременно могло работать только лишь одно из устройств, SAS - лишен этого недостатка.

Кроме того, он обратно совместим с SATA, что несомненно является большим плюсом. К сожалению стоимость винчестеров с интерфейсом SAS близка к стоимости SCSI-винчестеров, но от этого никак не избавиться, за скорость приходится платить.

Если вы еще не устали, предлагаю рассмотреть еще один интересный способ подключения HDD - NAS (Network Attached Storage). В настоящее время сетевые системы хранения данных (NAS) имеют большую популярность. По сути, это отдельный компьютер, этакий мини-сервер, отвечающий за хранение данных. Он подключается к другому компьютеру через сетевой кабель и управляется с другого компьютера через обычный браузер. Это все нужно в тех случаях, когда требуется большое дисковое пространство, которым пользуются сразу несколько людей (в семье, на работе). Данные от сетевого хранилища передаются к компьютерам пользователей либо по обычному кабелю (Ethernet), либо при помощи Wi-Fi. На мой взгляд, очень удобная штука.

Думаю, это все на сегодня. Надеюсь вам понравился материал, предлагаю подписаться на обновления блога, чтобы ничего не пропустить (форма в верхнем правом углу) и встретимся с вами уже в следующих статьях блога.

SATA (Serial — ATA , Serial Advanced Technology Attachment ) – разновидность интерфейса компьютерной шины, предназначенный для подключения к шине устройств, оптических приводов, и других.

Был разработан и представлен в 2003 году, как замена ныне устаревшему интерфейсу ATA (AT Attachment ), также известный как IDE . Позже, ATA был переименован в PATA (Parallel ATA , для лучшей узнаваемости и избегания путаницы.

Была создана организация под названием SATA —IO (Sata International Organization ), которая отвечает за развитие, поддержку, и публикацию новых спецификаций как для SATA , так и для SAS (Serial Attached SCSI ).



Преимущества нового интерфейса в сравнении со старым были как физические :уменьшенные габариты разъёмов, шлейфов и меньшее количество контактных ножек (7 против 40 ); так и технические : нативная поддержка «горячей замены » (замена не активного устройства), более быстрая передача данных на более высоких скоростях , увеличенная эффективность очереди команд вводавывода (I O ). Позже, с приходом режима , появилась поддержка технологии .

Теоретически, последовательный порт медленнее параллельного, но повышения скорости удалось добиться благодаря высокой частоте функционирования . Частоту удалось поднять благодаря отсутствию необходимости синхронизации данных, а также большей защищённости кабеля от помех (толще проводник, меньше помех).

В 2008 году, более 90% новых настольных компьютеров использовали для подключения периферии SATA разъём. PATA всё ещё можно приобрести, но продаются они лишь для сохранения совместимости со старыми дисками и материнскими платами.

Ревизии SATA :

SATA 1. x

Первая ревизияинтерфейса предусматривает частоту функционирования 1.5 Ггц , что обеспечивает полосу пропускания 1.5 Гбит/с . Около 20% отнимается на нужды системы кодирования типа 8 b 10 b , где в каждые 10 бит вкладывается ещё 2 бита служебной информации. Таким образом, максимальная скорость равняется 1.2 Гбит/с (150 Мб/с ). Это совсем немного быстрее самой быстрой PATA /133 , но намного лучшее быстродействие достигается в режиме AHCI , где работает поддержка NCQ (Native Command Queuing ). Это значительно улучшает производительность в много-поточных задачах, но не все контроллёры поддерживают AHCI на первой версии SATA .

SATA 2. x

Частота функционирования была увеличена до 3.0 Ггц , что увеличило пропускную способность до 3.0 Гбит/с . Эффективная пропускная способность равняется 2.4Гбит/с (300Мб/ c ), то есть в 2 раза выше чем у SATA 1 . Совместимость между первой и второй ревизией сохранилась. Интерфейсные кабели тоже были сохранены прежние и полностью совместимы между собой.

SATA 3.0

В июле 2008 года, SATA — IO представила спецификации SATA 3.0 , с пропускной способностью 6 Гбит / с . Полный 3.0 стандарт был выпущен в Мае 2009 года.

Эффективная пропускная способность составила 600Мб/с , а частота функционирования 6.0Ггц (то есть поднята только частота). Совместимость сохранилась как в методе передачи данных, так и в разъёмах и проводах; улучшено управление питанием.

Основной сферой применения, где требовалась такая пропускная способность – SSD (твёрдотельные) накопители. Для жёстких дисков, такая пропускная способность не требовалась. Выигрыш для них был в более высокой скорости передачи данных из кэш (DRAM — cache ) памяти диска.

SATA 3.1

Изменения:

  • · Появился mSATA , подобный (и совместимый) разъём для твёрдотельных накопителей и устройств ноутбуков, совмещённый с питающей линией малой мощности.
  • · Оптические приводы, поддерживающие стандарт, больше не потребляют энергии (совсем) в режиме простоя .
  • · Добавлена аппаратная команда очереди , улучшающая производительность и долговечность SSD .
  • · Аппаратные функции идентификации , определяющие возможности устройства.
  • · Расширенный менеджмент питания , позволяющий устройствам подключенным через SATA 3.1 потреблять меньше энергии .

A dvanced H ost C ontroller I nterface


Открытый хост-интерфейс, предложенный Intel , ставший стандартом. Является более предпочтительным интерфейсом для устройств SATA . Позволяет использовать такие команды SATA как Hot plug (горячая замена), NCQ (Native Command Queuing ). Если в настройках материнской платы не выставлен режим AHCI , то используется «эмуляция IDE » и не поддерживаются новые функции SATA . Версии Windows (практически все) установленные в режиме IDE , не смогут запуститься, если запустить систему с установками AHCI . Для этого потребуются специальные драйвера AHCI , установленные в системе.

e SATA


Портативная разновидность интерфейса Sata , скорость передачи которого выше чем у 2.0 и IEEE 1394 .

Основные изменения в сравнении с SATA :

  • · Разъёмы экранированы и более стойкие для многоразового подключения.
  • · Изменена компенсация потерь сигналов, что позволило увеличить максимальную длину кабеля до 2-х метров.
  • · Требует подключения 2-х разъёмов, один питания , второй интерфейсный .

eSATAp


– усовершенствованный разъём e — Sata , но с питанием от разъёма. Благодаря этому, e — Sata становится полноценным портативным и универсальным интерфейсом. С выходом USB 3.0 , оказался обделён вниманием, так как USB предлагает более простую реализацию .

mSATA


PCI e подобный интерфейс, представленный в Сентябре 2009 года. Предназначен для миниатюрных устройств (твёрдотельных накопителей, портативных жёстких дисков). Также планируется использование в таких портативных устройствах как ноутбуки, и других . Устройства с данным интерфейсом, могут иметь очень миниатюрные размеры , сходные с картами расширения для ноутбуков (к примеру).

Существуют переходники Pata Sata , Sata Pata .



Они позволяют подключать устройства с разными интерфейсами, которые эмулируются специальным контроллёром на переходнике. Абсолютное большинство переходников требуют дополнительного питания с блока питания (обычно типа «molex » или 5V разъём для дисководов).

SATA (Serial ATA) - последовательный интерфейс обмена данными с накопителями информации, как правило, с жёсткими дисками.
SATA является развитием интерфейса ATA (IDE), который после появления SATA был переименован в PATA (Parallel ATA).

Первоначально стандарт SATA предусматривал работу шины на частоте 1,5 ГГц, обеспечивающей пропускную способность приблизительно в 1,2 Гбит/с (150 МБ/с).
20%-я потеря производительности объясняется использованием системы кодирования 8B/10B, при которой на каждые 8 бит полезной информации приходится 2 служебных бита.

Пропускная способность SATA I (SATA/150) незначительно выше пропускной способности шины Ultra ATA (UDMA/133).
Главным преимуществом SATA перед PATA является использование последовательной шины вместо параллельной.

Стандарт SATA II (SATA/300) работает на частоте 3 ГГц, обеспечивает пропускную способность до 2,4 Гбит/с (300 МБ/с).

Разъёмы SATA на материнской плате

Теоретически SATA I и SATA II устройства должны быть совместимы (как SATA/300 контроллер и SATA/150 устройство, так и SATA/150 контроллер и SATA/300 устройство) за счёт поддержки согласования скоростей (в меньшую сторону), однако для некоторых устройств и контроллеров требуется ручное выставление режима работы (например, на НЖМД фирмы Seagate, поддерживающих SATA/300 для принудительного включения режима SATA/150 предусмотрен специальный джампер).

В настоящий момент стандарт SATA-2.5, дополняющий предыдущие и объединяющий предыдущие стандарты в один документ, уже нет разделения на SATA I и SATA II.
Он предусматривает возможность увеличения скорости работы до 600 Мбит/с (6 ГГц).

Если быть предельно точным, то это плановое ступенчатое продвижение на рынок трех поколений интерфейса Serial ATA - второе должно обеспечить скорость до 300 Мбит/с, а третье, соответственно, - до 600 Мб/с.


Разъём данных SATA

SATA использует 7-контактный разъём вместо 40-контактного разъёма у PATA.
Стандарт SATA предусматривает «горячую замену» (Hot-plug) устройств и функцию очереди команд (NCQ).
Для передачи сигнала используется технология LVDS.

SATA-кабель имеет меньшую площадь, за счёт чего уменьшается сопротивление воздуху, обдувающему комплектующие компьютера и улучшается охлаждение системы.
За счёт своей формы он более устойчив к многократному подключению.


Разъём питания SATA

15-ти контактный питающий шнур SATA так же разработан с учётом многократных подключений.
Разъём питания SATA подаёт 3 напряжения питания: +12 В, +5 В и +3,3 В, однако современные устройства могут работать без напряжения +3,3 В, что даёт возможность использовать пассивный переходник со стандартного разъёма питания IDE на SATA.

Ряд SATA устройств поставляется с двумя разъёмами питания: SATA и 4-х контактный Molex.
Использование одновременно обоих типов питающих разъёмов может привести к повреждению устройства.


Распиновка

G - заземление (Ground )
R - зарезервировано
D1+ , D1- - канал передачи данных от контроллера к устройству
D2+ , D2- - канал передачи данных от устройства к контроллеру
Провода каждой пары (D1+, D1- и D2+, D2-) являются экранированными витыми парами.

Стандарт SATA отказался от традиционного для PATA подключения по два устройства на шлейф; каждому устройству полагается отдельный кабель, что снижает задержки при одновременной работе двух устройств на одном кабеле, уменьшает возможные проблемы при сборке (проблема конфликта Slave/Master устройств для SATA отсутствует).


Логотип eSATA

eSATA (External SATA) - интерфейс подключения внешних устройств.

Характеристики eSATA:

Требует для подключения два кабеля: шину данных и силовой кабель;
. Максимальная длина кабеля данных - 2 м;
. Средняя практическая скорость передачи данных выше, чем у USB или IEEE 1394;
. Существенно меньше нагружается центральный процессор;
. Назначение: внешнее и внутреннее подключение устройств;
. Обладает встроенными средствами контроля ошибок - ЕСС, так что целостность данных гарантируется;
. Поддерживает режим «горячего включения» (Hot-plug).

Существует еще стандарт SAS (Serial Attached SCSI), который обеспечивает подключение по шине SATA устройств, управляемых набором команд SCSI.
Обладая обратной совместимостью с SATA, он теоретически даёт возможность подключать по этому интерфейсу любые устройства, управляемые набором команд SCSI - не только винчестер, но и сканеры, принтеры и др.

По сравнению с SATA, SAS обеспечивает более развитую топологию, позволяя осуществлять параллельное подключение одного устройства по двум или более шинам.
Так же поддерживаются расширители шины, позволяющие подключить несколько SAS устройств к одному порту.