Домой / Группы / Виды тока постоянный и переменный. Чем отличается постоянный ток от переменного

Виды тока постоянный и переменный. Чем отличается постоянный ток от переменного

Рано или поздно каждый человек вынужден столкнуться с ситуацией, когда необходимо познакомиться с электричеством ближе, чем на уроках физики в школе. Отправным моментом для этого может стать как поломка электроприборов или розеток, так и просто искренний интерес к электронике со стороны человека. Один из основных вопросов, который необходимо рассмотреть: каким образом обозначены постоянный и переменный ток. Если вы знакомы с понятиями:электрический ток, напряжение и сила тока, вам будет проще понять , о чём идёт речь в этой статье.

Электрическое напряжение делят на два вида:

  1. постоянное (dc)
  2. переменное (ас)

Обозначение постоянного тока (-), у переменного тока обозначение (~). Аббревиатуры ac и dc устоявшиеся, и употребляются наравне с названиями «постоянный» и «переменный». Теперь рассмотрим в чём их отличие. Дело в том, что постоянное напряжение течёт только в одном направлении, из чего и вытекает его название. А переменное, как вы уже поняли, может менять своё направление. В частных случаях направление переменного может оставаться одним и тем же. Но, кроме направления, у него также может меняться и величина. В постоянном ни величина, ни направление, не изменяется. Мгновенным значением переменного тока называют его величину, которая берётся в данный момент времени.

В Европе и России принята частота в 50 Гц, то есть изменяет своё направление 50 раз в секунду, в то время, как в США, частота равна 60 Гц. Поэтому техника, приобретённая в Соединённых штатах и в других государствах, с отличающейся частотой может сгореть. Поэтому при выборе техники и электроприборов следует внимательно смотреть на то, чтобы частота была 50 Гц. Чем больше частота у тока, тем больше его сопротивление. Также можно заметить, что в розетках у нас дома течёт именно переменный.

Помимо этого, у переменного электрического тока существует деление ещё на два вида:

  • однофазный
  • трёхфазный

Для однофазного необходим проводник, который будет проводить напряжение, и обратный проводник. А если рассматривать генератор трёхфазного тока, у него, на всех трёх намотках вырабатывается переменное напряжение частотой в 50 Гц. Трёхфазная система — это не что иное, как три однофазных электрических цепи, сдвинутых по фазе относительно друг друга под углом в 120 градусов. Посредством его использования, можно одновременно обеспечивать энергией три независимые сети, пользуясь при этом только шестью проводами, которые нужны для всех проводников: прямых и обратных, чтобы проводить напряжение.

А если у вас, например, имеется только 4 провода, то и тут проблем не возникнет. Вам нужно будет только соединить обратные проводники. Объединив их, вы получите проводник, который называют нейтральным. Обычно его заземляют. А оставшиеся внешние проводники кратко обозначают как L1, L2 и L3.

Но существует и двухфазный, он представляет из себя комплекс двух однофазных токов, в которых также присутствуют прямой проводник для проведения напряжения и обратный, они сдвинуты по фазе относительно друг друга на 90 градусов.

Применение

Из-за того что постоянный течёт лишь в одну сторону, его использование обычно ограничивается носителями с небольшой энергоёмкостью, например, его можно встретить в обычных батарейках, аккумуляторах для электроприборов с маленьким энергопотреблением, такие как фонарики или телефоны и батареях, использующих солнечную энергию. Но постоянный источник необходим не только для зарядки небольших аккумуляторов, так постоянный ток большой мощности используется для работы электрифицированных железнодорожных путей, при электролизе алюминия или при дуговой электросварке, а также других промышленных процессов .

Для выработки постоянного тока такой силы используют специальные генераторы. Также его можно получить посредству преобразования переменного, для этого используется прибор, в котором применяют электронную лампу, его называют кенотронный выпрямитель, а сам процесс обозначается как выпрямление. Ещё для этого используется двухполупериодный выпрямитель. В нём, в отличие от простого лампового выпрямителя, находятся электронные лампы, которые имеют два анода — двуханодные кенотроны.

Если вы не знаете как определять то, с какого полюса течёт постоянный ток, запоминайте: он всегда течёт от знака «+» к знаку «-«. Первыми источниками постоянного тока были особые химические элементы, их называют гальванические. Уже позже люди изобрели аккумуляторы .

Переменный применяют почти везде , в быту, для работы домашних электроприборов подпитывающихся из домашней розетки, на заводах и фабриках, на стройплощадках и многих других местах. Электрификация железнодорожных путей также может быть и на dc напряжении. Так, напряжение идёт по контактному проводу, а рельсы являются обратным электрическим проводником. По такому принципу работает около половины всех железных дорог в нашей стране и странах СНГ. Но, помимо электровозов, работающих лишь на постоянном и только на переменном, существуют также электровозы, совмещающие в себе способность работы как на одном виде электричества, так и на другом.

Переменный ток используется и в медицине

Так, например,дарсонвализация — это метод воздействия электричеством при большом напряжении, на наружные покровы и слизистые оболочки организма. Посредством этого метода у пациентов улучшается кровоснабжение, улучшается тонус венозных сосудов и обменных процессов организма. Дарсонвализация может быть как местная, на определённом участке, так и общая. Но чаще используют местную терапию.

Таким образом, мы узнали, что есть два вида электрического тока: постоянный и переменный , по-другому их называют ac и dc, поэтому, если вы скажете одну из этих аббревиатур, вас точно поймут. Кроме того, обозначение постоянного и переменного тока в схемах выглядит как (-) и (~), что упрощает их узнавание. Теперь, при починке электроприборов, вы, без сомнений, скажете, что в них используется переменное напряжение, а если вас спросят какой ток находится в батарейках, вы ответите, что постоянный.

Переменный ток – род тока, направление протекания которого непрерывно меняется. Становится возможным, благодаря наличию разницы потенциалов, подчиняющейся закону. В повседневном понимании форма переменного тока напоминает синусоиду. Постоянный способен изменяться по амплитуде, направление прежнее. В противном случае получаем переменный ток. Трактовка радиотехников противоположна школьной. Ученикам говорят — постоянный ток одной амплитуды.

Как образуется переменный ток

Начало переменному току положил Майкл Фарадей, читатели подробнее узнают ниже по тексту. Показано: электрическое и магнитное поля связаны. Ток становится следствием взаимодействия. Современные генераторы работают за счет изменения величины магнитного потока через площадь, охватываемую контуром медной проволоки. Проводник может быть любым. Медь выбрана из критериев максимальной пригодности при минимальной стоимости.

Статический заряд преимущественно образуется трением (не единственный путь), переменный ток возникает в результате незаметных глазу процессов. Величина пропорциональна скорости изменения магнитного потока через площадь, охваченную контуром.

История открытия переменного тока

Впервые переменным токам стали уделять внимание ввиду коммерческой ценности после появления на свет изобретений, созданных Николой Тесла. Материальный конфликт с Эдисоном отметил сильным отпечатком судьбы обоих. Когда американский предприниматель забрал назад обещания перед Николой Тесла, потерял немалую выгоду. Выдающемуся ученому не понравилось вольное обращение, серб выдумал двигатель переменного тока промышленного типа (изобретение сделал намного раньше). Предприятия пользовались исключительно постоянным. Эдисон продвигал указанный вид.

Тесла впервые показал: переменным напряжением можно достичь гораздо больших результатов. В особенности, когда энергию приходится передавать на большие расстояния. Использование трансформаторов без труда позволяет повысить напряжение, резко снижая потери на активном сопротивлении. Приемная сторона параметры вновь возвращает к исходным. Неплохо сэкономите на толщине проводов.

Сегодня показано: передача постоянного тока экономически выгоднее. Тесла изменил ход истории. Придумай ученый преобразователи постоянного тока, мир выглядел бы иначе.

Начало активному использованию переменного тока положил Никола Тесла, создав двухфазный двигатель. Опыты передачи энергии на значительные расстояния расставили факты по своим местам: неудобно переносить производство в район Ниагарского водопада, гораздо проще проложить линию до места назначения.

Школьный вариант трактовки переменного и постоянного тока

Переменный ток демонстрирует ряд свойств, отличающих явление от постоянного. Вначале обратимся к истории открытия явления. Родоначальником переменного тока в обиходе человечества считают Отто фон Герике. Первым заметил: заряды природныедвух знаков. Ток способен протекать в разном направлении. Касательно Тесла, инженер больше интересовался практической частью, авторские лекции упоминают двух экспериментаторов британского происхождения:

  1. Вильям Споттисвуд лишен странички русскоязычной Википедии, национальная часть — замалчивает работы с переменным током. Подобно Георгу Ому, ученый — талантливый математик, остается сожалеть, что с трудом можно узнать, чем именно занимался муж науки.
  2. Джеймс Эдвард Генри Гордон намного ближе практической части вопроса применения электричества. Много экспериментировал с генераторами, разработал прибор собственной конструкции мощностью 350 кВт. Много внимания уделял освещению, снабжению энергией заводов, фабрик.

Считается, первые генераторы переменного тока созданы в 30-е годы XIX века. Майкл Фарадей экспериментально исследовал магнитные поля. Опыты вызывали ревность сэра Хемфри Дэви, критиковавшего ученика за плагиат. Сложно потомкам выяснить правоту, факт остается фактом: переменный ток полвека просуществовал невостребованным. В первой половине XIX-го века выдуман электрический двигатель (авторство Майкла Фарадея). Работал, питаемый постоянным током.

Никола Тесла впервые догадался реализовать теорию Араго о вращающемся магнитном поле. Понадобились две фазы переменного тока (сдвиг 90 градусов). Попутно Тесла отметил: возможны более сложные конфигурации (текст патента). Позднее изобретатель трехфазного двигателя, Доливо-Добровольский, тщетно силился запатентовать детище плодотворного ума.

Продолжительное время переменный ток оставался невостребованным. Эдисон противился внедрению явления в обиход. Промышленник боялся крупных финансовых потерь.

Никола Тесла изучал электрические машины

Почему переменный ток используется чаще постоянного

Ученые доказали недавно: передавать постоянный ток выгоднее. Снижаются потери излучения линии. Никола Тесла перевернул ход развития истории, правда восторжествовала.

Никола Тесла: вопросы безопасности и эффективности

Никола Тесла посетил конкурирующую с эдисоновской компанию, продвигая новое явление. Увлекся, часто ставил эксперименты на себе. В противовес сэру Хемфри Дэви, который укоротил жизнь, вдыхая различные газы, Тесла добился немалого успеха: покорил рубеж 86 лет. Ученый обнаружил: изменение направления течения тока со скоростью выше 700 раз в секунду делает процесс безопасным для человека.

Во время лекций Тесла брал руками лампочку с платиновой нитью накала, демонстрировал свечение прибора, пропуская через собственное тело токи высокой частоты. Утверждал: явление безвредно, даже приносит пользу здоровью. Ток, протекая по поверхности кожи, одновременно очищает. Тесла говорил, экспериментаторы прежних дней (смотрите выше) пропускали удивительные явления по указанным причинам:

  • Несовершенные генераторы механического типа. Вращающееся поле использовалось в прямом смысле: при помощи двигателя раскручивался ротор. Подобный принцип бессилен выдать токи высокой частоты. Сегодня проблематично, невзирая на нынешний уровень развития технологии.
  • В простейшем случае применялись ручные размыкатели. Вовсе нечего говорить о высоких частотах.

Сам Тесла использовал явление заряда и разряда конденсатора. Подразумеваем RC-цепочку. Будучи заряжен до определённого уровня, конденсатор начинает разряжаться через сопротивление. Параметров элементов определяют скорость процесса, протекающего согласно экспоненциальному закону. Тесла лишен возможности использовать методы управления контуров полупроводниковыми ключами. Термионные диоды были известны. Рискнем предположить, Тесла мог использовать изделия, имитируя стабилитроны, оперируя с обратимым пробоем.

Однако вопросы безопасности лишены почетного первого места. Частоту 60 Гц (общепринятая США) предложил Никола Тесла, как оптимальную для функционирования двигателей собственной конструкции. Сильно отличается от безопасного диапазона. Проще сконструировать генератор. Переменный ток в обоих смыслах выигрывает у постоянного.

Через эфир

Поныне безуспешно ведутся споры, касаемо первооткрывателя радио. Прохождение волны через эфир обнаружил Герц, описав законы движения, показав, сродство оптическим. Сегодня известно: переменное поле бороздит пространстве. Явление Попов (1895 год) использовал, передавая первое Земное сообщение «Генрих Герц».

Видим, ученые мужи дружны между собой. Сколько уважения демонстрирует первое сообщение. Дата остается спорной, каждое государство первенство хочет присвоить безраздельно. Переменный ток создает поле, распространяющееся через эфир.

Сегодня общеизвестны диапазоны вещания, окна, стены атмосферы, различных сред (вода, газы). Важное место отводится частоте. Установлено, каждый сигнал можно представить суммой элементарных колебаний-синусоид (согласно теоремам Фурье). Спектральный анализ оперирует простейшими гармониками. Суммарный эффект рассматривается, как равнодействующая элементарных составляющих. Произвольный сигнал раскладывается преобразованием Фурье.

Окна атмосферы определяются аналогичным образом. Увидим частоты, проходящие сквозь толщу хорошо и плохо. Не всегда последнее оказывается негативным эффектом. Микроволновые печи используют частоты 2,4 ГГц, ударно поглощаемые парами воды. Для связи волны бесполезны, зато хороши кулинарными способностями!

Новичков тревожит вопрос распространения волны через эфир. Обсудим подробнее неразрешенную поныне учеными загадку.

Вибратор Герца, эфир, электромагнитная волна

Взаимосвязь электрического, магнитного полей впервые продемонстрировал в 1821 году Майкл Фарадей. Чуть позднее показали: конденсатор пригоден для создания колебаний. Нельзя сказать, чтобы связь двух событий немедленно осознали. Феликс Савари разряжал лейденскую банку через дроссель, сердечником которому служила стальная игла.

Неизвестно доподлинно, чего добивался астроном, результат оказался любопытным. Иногда игла оказывалась намагниченной в одном направлении, иногда — противоположном. Ток генератора одного знака. Ученый правильно сделал вывод: затухающий колебательный процесс. Толком не зная индуктивных, емкостных реактивных сопротивлений.

Теорию процесс подвели позже. Опыты повторены Джозефом Генри, Вильямом Томпсоном, определившим резонансную частоту: где процесс продолжался максимальный период времени. Явление позволило количественно описать зависимости характеристик цепи от элементов составляющих (индуктивность и емкость). В 1861 году Максвелл вывел знаменитые уравнения, одно следствие особенно важно: «Переменное электрическое поле порождает магнитное и наоборот».

Возникает волна, векторы индукции взаимно перпендикулярны. Пространственно повторяют форму породившего процесса. Волна бороздит эфир. Явление использовал Генрих Герц, развернув обкладки конденсатора в пространстве, плоскости стали излучателями. Попов догадался закладывать информацию в электромагнитную волну (модулировать), что используется сегодня повсеместно. Причем в эфире и внутри полупроводниковой техники.

Где используется переменный ток

Переменный ток лежит в основе принципа действия большинства известных сегодня приборов. Проще сказать, где применяется постоянный, читатели сделают выводы:

  1. Постоянный ток применяется в аккумуляторах. Переменный порождает движение – не может храниться современными устройствами. Потом в приборе электричество преобразуется в нужную форму.
  2. КПД коллекторных двигателей постоянного тока выше. По этой причине выгодно применять указанные разновидности.
  3. При помощи постоянного тока действуют магниты. К примеру, домофонов.
  4. Постоянное напряжение применяется электроникой. Потребляемый ток варьируется в некоторых пределах. В промышленности носит название постоянного.
  5. Постоянное напряжение применяется кинескопами для создания потенциала, увеличения эмиссии катода. Случаи назовем аналогами блоков питания полупроводниковой техники, хотя иногда различие значительно.

В остальных случаях переменный ток выказывает весомое преимущество. Трансформаторы — неотъемлемая составляющая техники. Даже в сварке далеко не всегда господствует постоянный ток, но в любом современном оборудовании этого типа имеется инвертор. Так гораздо проще и удобнее получить достойные технические характеристики.

Хотя исторически первыми получены были статические заряды. Вспомним шерсть и янтарь, с которыми работал Фалес Милетский.

Переменным током называется электрический ток, равными периодами изменяющийся по направлению и модулю. Также переменным считается ток, возникающий в однофазных и трехфазных сетях. Для существующих устройств, потребляющих , преобразование переменного производится с помощью специальных выпрямителей.

Возникновение переменного тока

Для того, чтобы в электрической цепи возник ток, используются специальные источники для его выработки, которые создают переменную электродвижущую силу (ЭДС). Электродвижущая сила периодически изменяется по своей величине и направлению. Источники ЭДС - это фактически генераторы переменного тока.

Простейшая схема выработки переменного тока показана на рисунке:

Это устройство состоит из двух основных частей. Неподвижная часть - магнит, образующий между своими полюсами магнитное поле. Плотность магнитных силовых линий одинакова, поэтому магнитное поле - равномерное. Подвижная часть устройства - рамка, имеющая прямоугольную форму. Она изготовлена из медной проволоки, закреплена на продольной оси и с помощью внешней движущей силы вращается в магнитном поле. Выходные концы соединены с медными контактными кольцами. Кольца вращаются одновременно с рамкой и скользят по щеткам.

Чтобы убедиться, что данное устройство действительно образует переменную электродвижущую силу, применим широко известное «правило правой руки».

Правая рука располагается таким образом, что ладонь смотрит в направлении «север» нашего магнита. При этом большой палец отогнут в сторону движения той стороны медной рамки, где должно определиться направление ЭДС. Направление вытянутых пальцев руки покажет нам и направление ЭДС. При определении ЭДС в разных сторонах, значение, в конечном итоге, будет общим. Кроме того при каждом обороте направление ЭДС изменяется. Это происходит в связи с тем, что рабочие стороны рамки во время одного оборота проходят под различными полюсами магнита.

Возникновение электродвижущей силы

Величина электродвижущей силы, которая индуктируется в рамке, меняется со скоростью пересечения силовых линий магнитного поля. В вертикальном расположении - скорость пересечения максимальная. ЭДС в рамке - также максимальная. При прохождении рамкой горизонтального положения стороны не пересекают магнитные силовые линии, индукция ЭДС не производится.

Из всего этого следует, что равномерное вращение рамки обеспечивает индукцию ЭДС, которая равномерно изменяется по величине и направлению. Электродвижущая сила, возникающая в рамке создает, в конечном итоге, переменный ток во внешней цепи.

Мы рассмотрели классическую схему получения переменного тока. В действительности его вырабатывают с помощью генератора переменного тока. Здесь электромагнит, наоборот, вращается и имеет два и более полюсов. Его называют ротором. Роль рамки играет обмотка статора (неподвижная часть), с которой и снимается переменное напряжение. Для промышленного производства выработка производится с помощью генераторов различной мощности, установленных на электростанциях (ГЭС, ГРЭС, АЭС).

В данной расскажем что такое переменный электрический ток и трехфазный переменный переменный ток.

Понятие переменного электрического тока даётся в учебнике физики общеобразовательного учебного заведения — школы. — ток имеющий форму гармонического синусоидального сигнала, основными характеристиками которого являются действующее напряжение и частота, с течением времени изменяется по направлению и величине.

Частота – это количество полных изменений полярности переменного электрического тока за одну секунду. Это означает, что ток, в обычной бытовой розетке частотой 50 Герц за одну секунду меняет своё направление с положительного значения на отрицательное и обратно ровно пятьдесят раз. Одно полное изменение направления (полярности) электрического тока с положительного значения на отрицательное и снова на положительное называют — периодом колебания электрического тока . В течение периода Т переменный электрический ток меняет своё направление дважды.

Для визуального наблюдения синусоидальной формы переменного тока обычно используют . Для исключения поражения электрическим током и защиты осциллографа от сетевого напряжения по входу, используют разделительные трансформаторы. Для измерения периода нет разницы, по каким равнозначным (равноамплитудным) точкам его измерять. Можно по максимальным положительным, или отрицательным вершинам, а можно и по нулевому значению. Это поясняется на рисунке.

Из учебника физики мы знаем, что переменный электрический ток вырабатывается с помощью электрической машины – генератора. Простейшая модель генератора это магнитная рамка, вращающаяся в магнитном поле постоянного магнита.

Представим себе прямоугольную проволочную рамку с несколькими витками, равномерно вращающуюся в однородном магнитном поле. Возникающая в этой рамке э.д.с. индукции меняется по синусоидальному закону. Период колебания Т переменного электрического тока – это один полный оборот магнитной рамки вокруг своей оси.

магнитная рамка

Одними из важных характеристик электрического тока являются две величины переменного электрического тока – максимальное значение и среднее значение.

Максимальное значение напряжения электрического тока Umax — это величина напряжения, соответствующая максимальному значению синусоиды.

Среднее значение напряжения электрического тока Uср — это величина напряжения, равная значению 0,636 от максимального. Математически это выглядит так:

U ср = 2 * U max / π = 0,636 U max

Синусоиду максимального напряжения можно проконтролировать на экране осциллографа. Понять, что такое среднее значение переменного электрического напряжения можно проведя эксперимент по рисунку и описанию ниже.

Используя осциллограф, подключите к его входу синусоидальное напряжение. Ручкой вертикального смещения развёртки переместите «ноль» развёртки на самую нижнюю линию шкалы экрана осциллографа. Растяните и сместите горизонтальную развёртку так, чтобы одна полуволна синусоидального напряжения поместилась в десять (пять) клеток экрана осциллографа. Ручкой вертикальной развёртки (усилением) растяните развёртку так, чтобы максимальная амплитуда полуволны поместилась ровно в десять (пять) клеток экрана осциллографа. Определите амплитуду синусоиды на десяти участках. Суммируйте все десять значений и поделите на десять – найдите его «средний балл». В результате Вы получите значение напряжения, приблизительно равное 6,36 от его максимального значения — 10.

Измерительные приборы – вольтметры, цешки, мультиметры для измерения переменного напряжения имеют в своей схеме выпрямитель и сглаживающий конденсатор. Эта цепочка «округляет» множитель разницы максимального и измеряемого напряжения до числа 0,7. Поэтому, если Вы будете наблюдать на экране осциллографа синусоиду напряжения амплитудой 10 вольт, то вольтметр (цешка, мультиметр) покажет не 10, а около 7 вольт. Вы думаете что в Вашей домашней розетке – 220 вольт? Так и есть, но не совсем так! 220 вольт – это среднее значение напряжения бытовой розетки, усреднённое измерительным прибором — вольтметром. Максимальное же напряжение следует из формулы:

U max = U изм / 0,7 = 220 / 0,7 = 314,3 вольт

Именно поэтому, когда Вас «бъёт» током от электрической розетки 220 вольт, знайте, что это Ваша иллюзия. На самом деле, Вас трясёт напряжение около 315 вольт.

Трехфазный ток

Наряду с простым синусоидальным переменным током в технике широко используется так называемый трехфазный переменный ток . Мало того, трёхфазный электрический ток — это основной вид энергии используемый во всём мире. Трёхфазный ток приобрёл популярность по причине менее затратной передачи энергии на большие расстояния. Если для обычного (однофазного) электрического тока требуется два провода, то для трёхфазного тока, у которого энергия в три раза больше, требуется всего три провода. Физический смысл Вы узнаете в этой статье позже.

Представьте, если вокруг общей оси вращается не одна, а три одинаковые рамки, плоскости которых повернуты друг относительно друга на 120 градусов. Тогда возникающие в них синусоидальные э.д.с. также будут сдвинуты по фазе на 120 градусов (см. на рис).

Такие три согласованных переменных тока называют трехфазным током. Упрощённое расположение проволочных обмоток в генераторе трёхфазного тока иллюстрируется на рисунке.


Подключение обмоток генератора по трём независимым линиям показано на рисунке ниже.

Такое подключение шестью проводами довольно громоздко. Так как для явлений в электрических цепях важны только разности потенциалов, то один проводник может использоваться сразу для двух фаз, без снижения нагрузочной способности по каждой из фаз. Другими словами, в случае подключения обмоток генератора по схеме «звезда» с использованием «нуля», передача энергии от трёх источников производится по четырём проводам (см. рис.), в которых один является общим – нулевым проводом.

По трём проводам может передаваться энергия сразу от трёх (фактически независимых) источников электрического тока соединённых «треугольником».

В промышленных генераторах и преобразующих трансформаторах «треугольником» обычно подключается межфазное напряжение 220 вольт. При этом «нулевой» провод отсутствует.

«Звезда» применяется для передачи напряжения сети с использованием «нуля». При этом на фазе относительно «нуля» действует напряжение 220 вольт. Межфазное напряжение при этом равно 380 вольт.

Частым явлением во времена «нагло ворующей демократии» было сгорание бытовой аппаратуры в квартирах добропорядочных граждан, когда из-за слабой проводки сгорал общий «ноль», тогда в зависимости от того, какое количество бытовых приборов включено в квартирах, горели телевизоры и холодильники у того, кто их меньше всего включал. Вызвано это явлением «перекоса фаз», которое возникало при обрыве нуля. В розетку добропорядочных граждан вместо 220 вольт устремлялось межфазное напряжение 380 вольт. До настоящего времени во многих коммуналках и сооружениях напоминающих жильё наших российских городов и весей это явление до конца не искоренилось.