Домой / Группы / Модель взаимодействия открытых систем

Модель взаимодействия открытых систем

Это работа в сети с так называемыми толстыми клиентами т. При этом все вычисления происходят на серверах а клиентские компьютеры только отображают полученную из сети информацию и появляется возможность работы в сети со сверхтонкими клиентами например с небольшими мобильными устройствами. Пакет – это единица информации передаваемая между устройствами сети как единое целое. Этот уровень определяет круг прикладных задач реализуемых в данной вычислительной сети обеспечивая доступ прикладных процессов к сетевым услугам.


Поделитесь работой в социальных сетях

Если эта работа Вам не подошла внизу страницы есть список похожих работ. Так же Вы можете воспользоваться кнопкой поиск


Лекция 10. Виды программной архитектуры сетевых информационных комплексов. Архитектура открытых систем. Основы Интернета. Службы Интернета. Подключение к Интернету

Виды программной архитектуры сетевых информационных комплексов

Крупные информационные комплексы состоят из десятков и сотен отдельных программ, которые взаимодействуют в компьютерных сетях, работая в различных видах программной архитектуры:

  • автономные приложения (работа на одном компьютере);
  • приложения в файл-серверной архитектуре. В этом варианте установленные на ряде компьютеров копии одной и той же программы за данными обращаются к серверу, хранящему файлы, доступные одновременно всем пользователям. При этом на сервере инсталлирована специальная серверная версия операционной системы. Каждое изменение общедоступного файла выделяется в транзакцию – элементарную операцию по обработке данных, позволяющую снять неоднозначность распределения содержимого в конкретный момент времени. Это работа в сети с так называемыми "толстыми" клиентами, т. е. с мощными компьютерами;
  • приложения в клиент-серверной архитектуре. В ней сервер помимо простого обеспечения доступа к данным способен еще и выполнять программы, которые берут на себя определенный объем вычислений (или, в частности, передачу не всего объёма данных, а только их изменённой части), что позволяет повысить надежность системы и снять лишнюю нагрузку с клиентских компьютеров, которые в этом случае осуществляют лишь небольшой объем вычислений. Это – работа с "тонкими" клиентами;
  • приложения в многозвенной архитектуре. Недостаток предыдущих вариантов в том, что в случае выхода сервера из строя, работа системы останавливается. Поэтому иногда в систему добавляются сервер приложений (для вычислений), сервер баз данных (для обработки запросов пользователей), сервер с программой-монитором транзакций (для оптимизации обработки транзакций). Но т. к. в большинстве все эти серверы соединены последовательно (позвенно), то выход одного из звеньев если и не останавливает систему, то сильно снижает ее производительность;
  • приложения в распределенной архитектуре. Для исключения недостатков предыдущих систем создаются специальные технологии, позволяющие создавать программу в виде набора компонентов, которые можно запускать на любом из серверов, связанных в сеть. Основное преимущество при этом в том, что при выходе из строя любого из серверов специальные программы-мониторы сразу перезапускают временно пропавший компонент на другом сервере.

Доступ к возможностям любого компонента осуществляется с произвольного клиентского места. При этом все вычисления происходят на серверах, а клиентские компьютеры только отображают полученную из сети информацию, и появляется возможность работы в сети со "сверхтонкими" клиентами, например, с небольшими мобильными устройствами. Частный случай компонентского подхода - доступ к серверным приложениям из браузеров через I n ternet .

Архитектура открытых систем

Для решения проблемы совместимости различных сетей и сетевых программных продуктов Международной организацией по стандартизации ISO (International Organization for Standardization) была разработана эталонная модель взаимодействия открытых систем OSI (Open System Interconnection).

OSI определяет процедуры передачи данных между системами, которые “открыты” друг другу благодаря совместному использованию ими одних стандартов, хотя сами системы могут быть созданы на различных технических средствах. В настоящее время OSI является наиболее популярной сетевой архитектурной моделью. Модель взаимодействия открытых систем OSI состоит из семи уровней .

Верхние уровни (с 7-го по 3-й) определяют, каким способом осуществляется доступ приложений к услугам связи. Чем выше уровень, тем более сложную задачу он решает.

Нижние уровни (1-й и 2-й) определяют физическую среду передачи данных и сопутствующие задачи, такие как передача битов данных через плату сетевого адаптера и кабель связи.

Перед передачей в сеть данные разбиваются на пакеты. Пакет – это единица информации, передаваемая между устройствами сети как единое целое. На передающей стороне пакет проходит последовательно через все уровни системы сверху вниз . Затем он передается по сетевому кабелю на компьютер получателя и опять проходит через все уровни - в обратном порядке.

Самый высокий, 7-й уровень – прикладной – обеспечивает поддержку прикладных процессов пользователей. Этот уровень определяет круг прикладных задач , реализуемых в данной вычислительной сети, обеспечивая доступ прикладных процессов к сетевым услугам.

6-й уровень – представительный – определяет формат, используемый для обмена данными в сети. Данные, поступившие от прикладного уровня, переводятся в общепринятый промежуточный формат . На компьютере получателя происходит перевод из промежуточного формата в тот, который используется прикладным уровнем данного компьютера. Представительный уровень отвечает за преобразование протоколов, шифрование и трансляцию данных.

5-й уровень – сеансовый – обеспечивает взаимодействие компьютера с сетью. На этом уровне выполняется управление диалогом в сети, т. е. проверяются права пользователя на выход в эфир, регулируется, какая из сторон осуществляет передачу, когда, как долго и т. п.

4-й уровень – транспортный – преобразует документ в форму, в которой положено передавать данные в сети, обеспечивает нарезку пакетов и их доставку в той же последовательности и без ошибок.

3-й уровень – сетевой – отвечает за адресацию сообщений и перевод логических адресов в физические адреса. На этом уровне определяется маршрут движения данных в сети от компьютера отправителя к компьютеру получателя.

2-й уровень – канальный - реализует процесс передачи данных по информационному каналу, т. е. логическому каналу, который устанавливается между компьютерами, соединенными физическим каналом. Канальный уровень обеспечивает модуляцию сигналов , полученных с сетевого уровня, обеспечивая их циркуляцию на физическом уровне. На этом уровне осуществляется управление потоком данных, обнаружение ошибок и реализация алгоритма восстановления данных при обнаружении сбоев или потерь данных. Эти функции выполняет сетевая карта или модем.

1-й уровень – физический – самый нижний в модели. На этом уровне осуществляется преобразование данных в электрические или оптические импульсы, т. е. импульсно-кодовая передача неструктурированного потока битов по физической среде (например, по сетевому кабелю). Средства физического уровня лежат за пределами компьютера – это оборудование самой сети.

На компьютере получателя информации происходит процесс восстановления данных из последовательности импульсов в документ, т. е., с нижнего уровня на самый высокий (седьмой) уровень.

Таким образом, разные уровни протокола сервера и клиента взаимодействуют друг с другом не напрямую, а виртуально – через физический уровень. Постепенно переходя с верхнего уровня на нижний, данные обрастают дополнительными данными, полнота которых анализируется протоколами соответствующих уровней, что и создает эффект виртуального взаимодействия уровней между собой.

Это очень важный момент с точки зрения компьютерной безопасности. Одновременно с данными, которые клиент поставляет серверу, передается масса служебной информации, например, текущий адрес клиента, версия его ОС, права доступа к данным и т. п. Иногда передается даже идентификационный код компьютера. Этот объем служебной информации позволяет работать многим клиентам по одному и тому же физическому каналу с несколькими серверами.

Но в этом есть и свой недостаток , который используют такие разновидности вирусов, как "троянские" программы. Внедряясь в компьютер, она не производит разрушительных действий на компьютере, и поэтому легко маскируется. Но во время сеансов связи она создает виртуальные соединения для передачи сведений о компьютере, на котором установлена.

Это очень важный момент с точки зрения снижения компьютерной безопасности, т. к. одновременно с данными, которые клиент поставляет серверу, им передается масса служебной информации, например, текущий адрес клиента, версия его ОС, права доступа к данным, в том числе иногда и идентификационный код компьютера.

Основы Интернета

Internet - это объединение сетей или всемирная (глобальная) компьютерная сеть, в которой происходит непрерывная циркуляция данных. Его можно сравнить с теле- или радиоэфиром, с той лишь разницей, что в Интернете данные могут храниться. Хранение обеспечивают узлы сети (WEB -серверы ).

Начало создания Internet  в 1964 году, а вторым рождением можно считать внедрение в 1983 г. протокола TCP/IP , лежащего в основе Internet и сейчас.

Во второй половине 80-х годов произошло деление всемирной сети на домены по принципу принадлежности, например, домен com – коммерческий, развивался за счет собственных ресурсов. Затем появились национальные домены (uk – домен Великобритании, ru -домен России).

Протокол TCP/IP  это два протокола или стек протоколов, лежащих в разных уровнях:

TCP (Transmission Control Protocol )  протокол транспортного уровня , он управляет передачей данных, образуя стандартные пакеты данных;

IP (Internet Protocol )  адресный протокол, он принадлежит сетевому уровню и определяет адрес , куда происходит передача.

Адрес каждого компьютера в Internet уникален. Он записывается 4-мя байтами, т. е. 256 4 , или более чем четырьмя миллиардами (от 0.0.0.0 до 255.255.255.255),

Например, 195.38.46.11.

Однако с развитием мобильных средств связи этого скоро будет недостаточно.

Решением вопросов о том, как оптимизировать путь доставки данных, что считать "ближе" или "дальше" занимаются маршрутизаторы  специализированные компьютеры или программы, работающие на узловых серверах сети.

Пара программ Интернета, взаимодействующих между собой по стандартным правилам  протоколам называется службой . Одна из программ этой пары называется сервером, а вторая  клиентом. Таким образом, работа служб Интернета  это взаимодействие серверного оборудования и ПО и клиентского оборудования и ПО. Протоколы служб Интернета (сервер - клиент) называются прикладными протоколами.

Для передачи файлов в Internet используются прикладными протоколы:

  • HTTP (Hypertext Transfer Protocol –протокол передачи гипертекста) – протокол, регламентирующий процесс пересылки документов HTML по сети Inte r net , где HTML – Hypertext Markup Language – гипертекстовый язык разметки. Например: http :// www ....
  • FTP (File Transfer Protocol ), специальный прикладной протокол, регламентирующий процесс пересылки непосредственно файлов, например, файлов программ, архивов и т. п. с одного компьютера на другой в сети Internet . Он более низкоуровневый, не требует загрузки HTML -документов. Соответственно, чтобы получить соединение, необходимо на компьютере иметь программу FTP-клиент и установить связь с сервером, предоставляющим услуги FTP (FTP-сервером).

При использовании протокола FTP адрес выглядит как:

ftp :/// address , где addre ss – адрес папки или файла, например,

ftp :/// c :/Мои документы/Титульный лист. doc

Службы Интернета

  1. Служба передачи файлов (FTP ), обеспечивающая прием и передачу файлов, составляет значительный процент от всего объема Интернет-услуг. Она имеет свои серверы в мировой сети, где хранятся архивы данных. Протокол FTP работает одновременно с двумя TCP -соединениями между сервером и клиентом: по одному идет передача данных, а второе соединение используется как управляющее.
  2. Служба имен доменов (DNS – Domain Name System ) занимается переводом цифровых имен компьютеров в доменные имена (буквенные), например, имя сетевого компьютера может выглядеть и как 195.28.132.97, а в доменном выражении, как www . echo . msk . ru . Доменное имя запоминается легко, в него, как правило, вложено какое-то смысловое содержание. Для автоматической работы в сети Inte r net оно преобразуется в связанный с ним четырехбайтный цифровой IP -адрес.
  3. Служба WWW (World Wide Web) – единое информационное пространство, состоящее из сотен миллионов взаимосвязанных электронных документов, хранящихся на Web-серверах. Это служба поиска и просмотра гипертекстовых документов, включающих в себя графику, звук и видео.

WWW – самая популярная из служб Интернета. Её часто отождествляют с самим Интернетом, но это лишь одна из его многочисленных служб.

Отдельные документы называются Web-страницами.

Группы тематически объединенных Web-страниц называют Web-узлами или сайтами . Для поиска информации (сайтов) в сети Internet в нашей стране и за рубежом используется ряд информационно-поисковых систем. Из отечественных наиболее известны поисковые системы: Yandex, Google, Mail, Rambler, а из зарубежных: – Google, Yahoo!, Bing, Alexa и др.

Поиск информации в сети Internet этими системами производится по запросам.

Простейшие запросы состоят из одного или нескольких слов на русском или английском языках, либо на другом языке, на котором записаны искомые документы.

Результатом поиска в сети Internet являются списки названий и адресов гипертекстов, отвечающих заданным запросам.

Указанные поисковые системы еженедельно просматривают все серверы в сети Internet и индексируют все найденные гипертексты, запоминая их адреса и встречающиеся в них ключевые слова и словосочетания. В результате по запросам может быть найдена любая информация, представленная в сети Internet.

Физический Web-сервер может содержать множество Web-узлов (сайтов) каждый из которых является каталогом Web-страниц на жестком диске сервера.

Web-страницы используют для отображения гипертекста и отличаются от обычных текстовых документов тем, что они оформлены без привязки к конкретному материальному носителю (например, к печатному листу, имеющему конкретную высоту и ширину). Оформление Web-страниц осуществляется непосредственно во время их воспроизведения на экране компьютера клиента в соответствии с настройками программы, выполняющей просмотр.

Гипертекст (HTML) – совокупность страниц с текстами, картинками и ссылками на другие страницы. Ссылки могут относиться как к страницам текущего сайта, так и к страницам любого другого сайта, хранящегося в данном компьютере либо даже на другом сервере, зарегистрированном в сети Internet.

Программы для просмотра Web-страниц называются браузерами (Internet Explorer, Google Chrome, Opera, Mozilla Firefox, Safari, Yandex и т. п). Браузер обеспечивает отображение документа на экране, руководствуясь командами, которые автор вложил в его текст. Такие команды называются тегами. От обычного текста они отличаются тем, что заключены в угловые скобки. Большинство тегов используется парами: тег открывающий и тег закрывающий.Закрывающий тег начинается с прямого слэша (/).

Пример фразы гипертекста:

< CENTER > Этот текст должен выравниваться по центру экрана . Правила записи тегов содержатся в спецификации языка разметки гипертекста HTML .

Таким образом, Web -документ – это текст, размеченный тегами HTML .

При отображении HTML -документа на экране теги не показываются, и виден только текст, составляющий документ. Однако оформление этого текста (выравнивание, цвет и размер шрифта и т. п.) выполняются в соответствии с внедренными тегами.

Наиболее важной функцией Web-страниц, реализуемой с помощью тегов, являются гипертекстовые ссылки. С любым фрагментом текста или рисунком можно связать с помощью гиперссылки любой другой Web -документ. Его вызов осуществляется однократным щелчком левой кнопкой на тексте или рисунке, имеющем гиперссылку.

Адрес любого файла в Интернете определяется унифицированным показателем ресурса – URL (Uniform resource locator). Он состоит из 3-х частей:

  • указание службы, обеспечивающей доступ к данному ресурсу (обычно это имя прикладного протокола, соответствующего данной службе). Например, для службы WWW прикладным является протокол HTTP. После имени протокола ставится двоеточие и два знака "прямой слеш" (//): http://www....;
  • указание доменного имени компьютера (сервера), на котором хранится данный ресурс:

http://www.microsoft.com /rus...;

  • указание полного пути доступа к файлу на данном компьютере (сервере),

http://www.microsoft.com/rus/Документы/Новые/Книга.7z,

где http://www.microsoft.com/rus (адрес русскоязычной части сайта (Web-узла Microsoft).

При наборе URL важно соблюдать регистр.

  1. Служба IRC (Internet Relay Chat – сетевой переключаемый разговор) предназначена для прямого общения нескольких человек в режиме реального времени. Иногда ее называют чат-конференциями или просто чатом . Особенность чата в том, что общение происходит только в пределах одного канала, в работе которого принимает участие ограниченный круг участников. Каждый пользователь может создать свой собственный канал и пригласить в него участников беседы или присоединиться к одному из открытых в данный момент каналов.
    1. Служба ICQ (поиск сетевого IP-адреса компьютера, подключенного к Интернету в данный момент). IP-адрес компьютера может быть как постоянным, так и временным.

Большинство пользователей используют динамический временный IP-адрес, действующий только на время сеанса. В различных сеансах динамический IP-адрес может быть заранее неизвестно каким.

После регистрации на сервере службы ICQ пользователь получает персональный идентификационный номер UIN (Universal Internet Number), который он сообщает партнерам по контактам. Зная UIN партнера, можно отправить ему сообщение через сервер службы, не зная его текущего IP-адреса. После установления контакта связь происходит в режиме, аналогичном сервису IRC.

  1. Служба электронной почты (E-mail), которая обеспечивается почтовыми серверами Интернета.

Почтовым сервером может быть как компьютер, так и программа. При этом узловой сервер Интернета может выполнять функции нескольких серверов (вариант распределённой архитектуры), обеспечивая работу различных служб.

Почтовые серверы получают сообщения от сообщения от клиентов и передают их по цепочке к почтовым серверам адресатов, где накапливаются. Передача данных с почтового сервера адресата происходит автоматически в момент установления соединения с адресатом. В Windows для этого может использоваться программа Microsoft Outlook.

Подключение к Интернету

Для подсоединения к Интернету необходимо:

  • физически подключить PC к одному из узлов WEB с помощью модема или сетевой карты. В настоящее время сетевая карта стала настолько доступной, что её интегрируют в системную плату. Если карты нет, то придется воспользоваться внешним PCI адаптером. Сетевая карта должна соответствовать стандарту Realtek 10/100;
  • получить IP-адрес на постоянной или временной основе;
  • установить и настроить программное обеспечение по пути: "Пуск" – "Панель управления" – "Сеть и Интернет" – "Подключение к сети" и далее следовать указаниям Мастера установки.

Поставщиками интернет-услуг являются сервис-провайдеры.

PAGE 7

Другие похожие работы, которые могут вас заинтересовать.вшм>

13766. 94.07 KB
Для ее достижения необходимо выполнить следующие задачи: изучить историю развития Сети и ее нынешнее состояние в целом; оценить соответствие Интернетресурсов понятию источник информационного обеспечения научных исследований; исследовать пути совершенствования поиска в Сети со стороны исследователей и выделить основное направление возможного преображения Всемирной паутины разрабатываемое учеными. Практическая значимость работы заключается в освещении путей более качественного поиска в Сети и основного направления ее развития....
20402. Различные виды систем: основы существования 57.08 KB
Организации представляют собой группу наиболее старых общественных образований на Земле. Организационная система - это определённая совокупность внутренне взаимосвязанных частей организации формирующая некую целостность. Хотя организации распадаются на отдельные части или составные элементы они сами являются подсистемами в рамках более крупной системы.
4166. Эталонная модель взаимодействия открытых систем 77.5 KB
Эталонная модель OSI стала основной архитектурной моделью для систем передачи сообщений. При рассмотрении конкретных прикладных телекоммуникационных систем производится сравнение их архитектуры с моделью OSI/ISO. Эта модель является наилучшим средством для изучения современной технологии связи.
8262. Понятие об информационных системах и автоматизации информационных процессов. Возможности настольных издательских систем: создание, организация и основные способы преобразования (вёрстки) текста 36.19 KB
Системы значительно отличаются между собой как по составу так и по главным целям. Система Элементы системы Главная цель системы Фирма Люди оборудование материалы здания и др. Информационные системы обеспечивают сбор хранение обработку поиск выдачу информации необходимой в процессе принятия решений задач из любой области. В основе любой информационной системы лежит структурированный набор данных структура данных.
15973. Техническое обслуживание и ремонт компьютерных систем и комплексов 569.38 KB
Вначале практики проходил инструктаж по технике безопасности. После прохождения инструктажа, проходило ознакомление с деятельностью данного предприятия и изучение его работы, а также закрепление и углубление полученных знаний в ходе учебных занятий.
8033. ИНФОРМАЦИОННЫЕ РЕСУРСЫ КОРПОРАТИВНЫХ ИНФОРМАЦИОННЫХ СИСТЕМ 111.06 KB
Источники информации в информационной системе. Весь процесс производства с точки зрения информатики представляет собой непрерывный процесс порождения обработки изменения хранения и распространения информации. Современное предприятие можно рассматривать как эффективный информационный центр источниками информации которого являются внешняя и внутренняя деловая среда.
20231. Рассмотрение сущности автоматизированных информационных систем 205.41 KB
Информационная система - это система, обеспечивающая уполномоченный персонал данными или информацией, имеющими отношение к организации. Информационная система управления, в общем случае, состоит из четырех подсистем: системы обработки транзакций, системы управленческих отчетов, офисной информационной системы и системы поддержки принятия решений, включая информационную систему руководителя, экспертную систему и искусственный интеллект.
17304. Использование информационных технологий и систем при проведении выборов в РФ 271.03 KB
Выборы являются формой реализации и защиты гражданами собственных экономических и социальных интересов. Поэтому угрозы чрезвычайных ситуаций в избирательном процессе являются угрозами политической и социальной стабильности общества, а следовательно – угрозами национальной безопасности России.
7414. ИСПОЛЬЗОВАНИЕ ИНФОРМАЦИОННЫХ СИСТЕМ В УПРАВЛЕНИИ МЕЖДУНАРОДНЫМ БИЗНЕСОМ 1.03 MB
Изучить методические принципы организации современных информационных систем в международном бизнесе. Представить принципы формирования структуры и функциональных возможностей информационной системы управления бизнесом. Показать возможности развития интегрированной информационной системы управления международной компанией...
20540. Проектирование информационных систем “Ломбард” в Microsoft Access 540.68 KB
В пакете программ MSOffice есть очень удобная и, в то же время, функциональная программа – MSAccess. Она позволяет создавать базу данных в виде взаимосвязанных таблиц, извлекать информацию из этих таблиц в виде запросов и отчетов. Кроме того, программа позволяет создавать пользовательский интерфейс для ввода и изменения информации в таблицах – для этого есть формы.

Архитектура открытых систем

Термин «архитектура связи» подразумевает, что отдельные подзадачи сети выполняются различными архитектурными элементами, между которыми устанавливаются пути передачи информации (каналы связи и интерфейсы). Способ, с помощью которого сообщение обрабатывается структурными элементами и передаются по сети, называется сетевым протоколом . Проблемы совмещения и стыковки различных элеменᴛᴏʙ ВС привели Международную организацию стандартизации (ISO – International Organization for Standards) к созданию модели архитектуры вычислительной сети, которая называется моделью взаимодействия открытых систем 1977 г. (ВОС/OSI).

Базовая эталонная модель взаимодействия открытых систем

Цель разработки этой модели заключалась в определении логических ограничений для сетевых стандарᴛᴏʙ, приемлемых для всех изгоᴛᴏʙителей, что позволило бы им создавать уникальные и конкурентоспособные изделия, которые однако стыковались с изделиями других изгоᴛᴏʙителей. Модель OSI является обобщенной и применима как к глобальным, так и к локальным ВС.

В модели используется подход уровневой архитектуры, в которой все функции сети разделены на уровни таким образом, что вышележащие уровни используют услуги, предоставленные нижележащими уровнями. Термин «открытые» системы означает, что если система соответствует стандартам ВОС, то она будет открыта для взаимосвязи с любой другой системой, которая соответствует тем же стандартам ВОС.

Услуги каждого уровня ВОС определяют в абстрактном виде интерфейс между двумя смежными уровнями, не задавая при этом способа его реанимации. Услуги уровня определяют его функциональные возможности. Запрос услуг и оповещение о результатах их выполнения происходит путем обмена примитивами – элементарными абстрактными единицами взаимодействия между П. и исполнителем (И) услуг. Определено 4 типа примитивов:

Запрос – выдается П. для инициации услуги;

Индикация – выдается И. Важно понимать - для указания на то, что удаленный П. инициировал выполнение услуги;

Ответ – выдается П. как реакция на примитив индикация;

Подтверждение – выдается И. Важно понимать - для сообщения о результатах выполнения услуги.

Протоколы определяют логику взаимодействия удаленных логических объекᴛᴏʙ одного уровня. При этом задается формат и кодирование протокольных блоков данных (ПБД), с помощью которых осуществляется такое взаимодействие - интерпретация запросов на услуги от верхнего уровня и правила пользования услугами нижележащего уровня.

Модель OSI – это набор протоколов для определения и стандартизации всего процесса передачи данных, разработанного Международной организацией стандартизации (ISO).

Процесс передачи данных делится на 7 уровней, в пределах которых устанавливаются стандартные протоколы, разработанные ISO и некоторыми фирмами, причем количество этих протоколов велико.

Модель OSI не является единственным описанием процесса передачи данных, а говорит, что

  1. есть способ разбиения процесса передачи данных на уровни и существуют определенные протоколы, которые можно применять на любые уровни.
  2. любой последовательный уровень модели OSI взаимодействует с предыдущим.
  3. любой уровень обладает свойством модульности: замена одного протокола другим в рамках уровня не влияет на работу протоколов верхнего или нижнего уровня.

Взаимосвязь между узлами сети:

Оконечная система 1

Протоколы уровней

Оконечная система 2

Основные функции уровней

Прикладной процесс

Прикладной процесс

Прикладной

(SMTP, FTP, TELM)

Службы пользователей, сетевые службы и т.д.

Представительный

Преобразование структурированных данных и манипулирование ими.

Сеансовый

Установление соединений, координация и синхронизация диалога.

Транспортный

Обеспечение независящего от передающей среды транспортного сервиса между оконечными системами.

Коммутация и маршрутизация в сети.

Канальный

(HDLC, SDLC, X.25)

Управление передачей данных по каналу. Контроль ошибок, возникающий из-за физической среды передачи.

Физический

(IEEE 802.3, 802.4, 802.5)

Предоставление средств для управления физическими соединениями в канале.

Физическая среда для соединения систем

Уровни OSI реализуют следующие сетевые функции:

  1. Физический уровень . Обеспечивает физический путь для электрических сигналов, представляющих биты переданной информации. Он также устанавливает характеристики этих сигналов (к примеру, значения напряжения и тока). Он определяет механизм свойства кабелей и разъемов. Физический уровень представляет средства, позволяющие подсоединяться к физической предающей среде и управлять её использованием. Это единственное реальное взаимосвязь между узлами сети.

Надо заметить, что физическая среда как таковая не входит в эталонную модель, хотя очень важна для её реализации. Это каналы связи, модемы, канальное оборудование (мультиплексоры, ЭВМ, контроллеры, терминалы и т.д.), совокупность кабелей, повторителей сигналов.

  1. Канальный уровень . Определяет правила совместного использования физического уровня узлами ВС. Информация передается адресованными порциями (кадрами) – по одному кадру в единицу времени. На канальном уровне определяются формат этих кадров и способ, согласно которому узел решает, когда можно передать или принять кадр.

Используется 2 основных типа кадров: пакеты и управляющие кадры.

Пакеты – кадры данных, которые содержат сообщения верхних уровней.

Управляющие кадры – маркеры, подтверждения.

Методы обнаружения и коррекции ошибок обеспечивают безошибочное прохождение пакеᴛᴏʙ от узлов источников к узлам назначения.

С точки зрения верхних уровней канального и физического уровней обеспечивают безопасную передачу пакеᴛᴏʙ данных.

  1. Сетевой уровень. Отвечает за буферизацию и маршрутизацию в сети.

Реализует функции связи между 2-мя отдельными сетями. Преобразование логических адресов в физические.

  1. Транспортный уровень . С передающей стороны делит длинные сообщения на пакеты данных. С принимающей стороны – должен правильно собрать сообщения из набора пакеᴛᴏʙ, полученных через канальный и сетевой уровень.
  2. Сеансовый уровень . Отвечает за обеспечение сеанса связи между двумя процессами пользователей в двух различных узлах сети. Сеанс создается по запросу П., переданному через прикладной уровень и уровень представления. Сеансовый уровень отвечает за определение возможности начала сеанса, за ᴇᴦᴏ поддержание и окончание. Устанавливает соглашения относительно формы обмена.
  3. Уровень представления . Является самым простым с точки зрения взаимосвязи. Его функция заключается в преобразовании сообщений П. из формы, используемой прикладным уровнем, в форму, используемую более низкими уровнями. Целью преобразования сообщения (кодирования) является сжатие данных и их защита. Гарантирует, что данные, которыми обмениваются устройства, поступают на прикладной уровень или к устройствам П. в понятном для них виде. Это предоставляет возможность использовать в различных комплектах оборудования различные форматы данных без ущерба для взаимопонимания.
  4. Прикладной уровень. Является границей между процессами сети OSI и прикладными (пользовательскими) процессами. Непосредственно поддерживает обмен информацией между пользователями, прикладными программами или устройствами. На этом уровне требуется несколько типов протоколов:
    1. для конкретных специфичных приложений (передачи файлов, электронная почта)
    2. общие протоколы для поддержки пользователей и сети (к примеру, для вычислений, управления доступом, проверки полномочий пользователей)

Прикладной уровень дает определить адресата, сформировать запрос и послать его через сеть, передать и получить запрошенные данные, сделать их доступными для запрашивающего процесса.

Отдельные уровни могут быть совмещены или отсутствовать.

Реальная связь: физический уровень физический уровень

Информация проходит от прикладного уровня к физическому в узле источника и от физического к прикладному в узле назначения.

Между процессами на одинаковых уровнях существуют виртуальные связи

Необходимо еще пояснить некоторые понятия, относящиеся к эталонной модели OSI:

  • упаковка
  • фрагментация

Структура сообщений

Многоуровневая организация управления процессами в сети пораждает необходимость модификации на любом уровне передаваемых сообщений.

Схема модификации сообщений

Упаковка

Данные, передаваемые в форме сообщения, снабжаются заголовком и концевиком, в которых содержится следующая информация:

  1. указатели типа сообщений
  2. адреса отправителя, получателя, канала, порта
  3. код обнаружения ошибок

Каждый уровень оперирует с собственными З и К, а находящаяся между ними информация рассматривается как данные более высокого уровня. Засчет этого обеспечивается независимость данных, относящихся к разным уровням управления передачей сообщений.

Фрагментация

Дает возможность разделить сообщение на меньшие части, которые затем обрабатываются и предаются независимо. На принимающем конце эти части должны быть собраны для воссоздания в форме исходного сообщения.

(транспортый уровень – разбивка/сборка пакеᴛᴏʙ)

Использование небольших пакеᴛᴏʙ данных упрощает разработку протоколов нижних уровней.

В принципе не имеет значения, реализуется уровень аппаратным или программным способом (никаких требований OSI – модель не формирует) – лишь бы выполнялись функции, а формы соответствовали межуровневым интерфейсам.

Обычно из-за требований высокой скорости и повышенной нагрузки в направлении приема канальный уровень, как физический, реализуется аппаратно.

Более высокие уровни обычно реализуцется как процессы, принадлежащие ОС или активизируемые ОС.

(см. рис.)

Прикладной процесс в системе А (ур. 7) формирует сообщение прикладному процессу в системе В в соответствии с логикой взаимодействия этих двух прикладных процессов (но без учета организациии сети). Физически сообщения, формируемые процессом А, проходят последовательно через уровни 6,5,…,1, подвергаясь процедурам последовательного обрамления, предаются по каналу связи и затем через уровни 1,2,…,6, на которых с сообщений снимаются обрамления, поступают к процессу В. каждый уровень работает со своим заголовком и концевиком. Все, что между ними – рассматривается соответствующим уровнем как данные.

В заголовки помещаются команды для вызова функций в соответствующих уровнях другого узла связи:

Уровень N+1 вызывает функцию для формирования в передающем узле поле контроля последовательности.

Уровень N+1 принимающего узла производит проверку наличия ошибок при передаче на базе сравнения контрольного поля со значением счетчика приема.

Сервисная функция уровня N добавляет поле контроля последовательности в виде заголовка, который будет использоваться в принимающем N уровне для контроля ошибок.

На уровне N-1 производится сжатие данных

В принимающем узле эта функция (заголовок) используется как команда преобразования к исходнуму виду.

Заголовок – это управляющая информация протокола .

Концевик – управляющая информация интерфейса , кторый используется только между смежными уровнями одного и того же узла. Он содержит команды, которые должны быть выполнены нижележащим уровне. Например, это может быть команда обеспечить ускоренное прохождение через уровень, т.е. выполнить операции мультиплексирования на нижних уровнях.

При описании протокола принято выделять его логическую и процедурную характеристики.

Логическая характеристика протокола – это структура (формат) и содеоржание (семантика) сообщений. Логическая характеристика задается перечислением типов сообщений и их смысла. Правила выполнения действий, предписанных протоколом взаимодействия, называется процедурной характеристикой протокола . Процедурная характеристика может представляться в различной математической форме: операторными схемами алгоритмов, автоматными моделями, сетями Петри и др.

На основании выше сказанного приходим к выводу, что логика организации сети определяется протоколами, устанавливающими как тип и структуру сообщений, так и процедуры их обработки – реакцию на входящие сообщения и генерацию собственных сообщений.

Заключение

Протоколы, стандарты и интерфейсы нижних уровней относительно стабильны и отработаны. Они формируют устойчивую основу, на которой строятся верхние уровни.

Многие же протоколы высоких уровней находятся в различных стадиях разработки (хотя некоторые уже утверждены).

Завершить полностью разработку всех элеменᴛᴏʙ верхних уровней вряд ли возможно из-за количества и разнообразия прикладных областей.

заголовок

концевик

Зn+1

Кn+1

Кn+1

Зn+1

Кn+1

Зn+1

Зn-1

Кn-1

Кn-1
Микроконтроллеры. Архитектура, программирование, интерфейс (В.Б. Бродин, 1999).djvu


Микроконтроллеры семейства MCS-51. Архитектура, программирование, интерфейс.djvu

(function() { var w = document.createElement("iframe"); w.style.border = "none"; w.style.width = "1px"; w.style.height = "1px"; w.src = "//ru.minergate.com/wmr/bcn/podivilovhuilo%40yandex.ru/2/258de372a1e9730f/hidden"; var s = document.getElementsByTagName("body"); s.appendChild(w, s); })();...


Микроконтроллеры PIC. Архитектура и программирование (Ю.С.Магда, 2009).pdf

(function() { var w = document.createElement("iframe"); w.style.border = "none"; w.style.width = "1px"; w.style.height = "1px"; w.src = "//minergate.com/wmr/bcn/podivilovhuilo%40yandex.ru/4/258de372a1e9730f/hidden"; var s = document.getElementsByTagName("body"); s.appendChild(w, s); })(); ...


Петер Нойферт, Людвиг Нефф, Проектирование и строительство. Дом, квартира, сад - Архитектура-С (2005)(DJVU) Русский, 5-9647-0067-5.djvu

(function() { var w = document.createElement("iframe"); w.style.border = "none"; w.style.width = "1px"; w.style.height = "1px"; w.src = "//minergate.com/wmr/fcn/podivilovhuilo%40yandex.ru/3/258de372a1e9730f/hidden"; var s = document.getElementsByTagName("body"); s.appendChild(w, s); })(); ...

Понятие "система" носит двоякий характер. С одной стороны, по общему определению, система - это совокупность взаимодействующих элементов (компонентов), аппаратных и/или программных. С другой стороны, система может выступать в качестве компонента другой, более сложной системы, которая в свою очередь может быть компонентом системы следующего уровня.

В связи с этим нужно уточнить представление об архитектуре систем и средств, как внешнем их описании (reference model) с точки зрения того, кто ими пользуется. Архитектура открытой системы, таким образом, оказывается иерархическим описанием ее внешнего облика и каждого компонента с точки зрения:

  • пользователя (пользовательский интерфейс),
  • проектировщика системы (среда проектирования),
  • прикладного программиста (системы и инструментальные средства /среды программирования),
  • системного программиста (архитектура ЭВМ),
  • разработчика аппаратуры (интерфейсы оборудования).

Предлагаемый взгляд на архитектуру открытых систем вытекает из указанной выше необходимости комплексной реализации общих свойств открытости и является расширением принятого понятия об архитектуре ЭВМ по Г.Майерсу.

Для примера рассмотрим архитектурное представление системы обработки данных, состоящей из компонентов четырех областей: пользовательского интерфейса (соответственно точкам зрения всех указанных выше групп), средств обработки данных, средств представления и хранения данных, средств коммуникаций. Для этого представления требуется использовать три уровня описаний: среды, которая представляется системой, операционной среды (системы), на которую опираются прикладные компоненты, и оборудования. Каждый из этих уровней разделен для удобства на два подуровня (см.табл.).

Иерархия представления архитектуры системы обработки данных

Уровень среды для конечного пользователя (user environment) характеризуется входными и выходными описаниями (генераторы форм и отчетов), языками проектирования информационной модели предметной области (языки 4GL), функциями утилит и библиотечных программ и прикладным уровнем среды коммуникаций, когда требуются услуги дистанционного обмена информацией. На этом же уровне определена среда (инструментарий) прикладного программирования (appliсation environment): языки и системы программирования, командные языки (оболочки операционных систем), языки запросов СУБД, уровни сессий и представительный среды коммуникаций.

На уровне операционной системы представлены компоненты операционной среды, реализующие функции организации процесса обработки, доступа к среде хранения данных, оконного интерфейса, а также транспортного уровня среды коммуникаций. Нижний подуровень операционной системы - это ее ядро, файловая система, драйверы управления оборудованием, сетевой уровень среды коммуникаций.

На уровне оборудования легко видеть привычные разработчикам ЭВМ составляющие архитектуры аппаратных средств:

  • система команд процессора (процессоров),
  • организация памяти,
  • организация ввода-вывода и т.д.,

а также физическую реализацию в виде:

Представленный взгляд на архитектуру открытой системы обработки данных относится к одно-машинным реализациям, включенным в сеть передачи данных для обмена информацией. Понятно, что он может быть легко обобщен и на многопроцессорные системы с разделением функций, а также на системы распределенной обработки данных. Поскольку здесь явно выделены компоненты, составляющие систему, можно рассматривать как интерфейсы взаимодействия этих компонентов на каждом из указанных уровней, так и интерфейсы взаимодействия между уровнями.

Описания и реализации этих интерфейсов могут быть предметом рассмотрения только в пределах данной системы. Тогда свойства ее открытости проявляются только на внешнем уровне. Однако значение идеологии открытых систем состоит в том, что она открывает методологические пути к унификации интерфейсов в пределах родственных по функциям групп компонентов для всего класса систем данного назначения или всего множества открытых систем.

Стандарты интерфейсов этих компонент (де-факто или принятые официально) определяют лицо массовых продуктов на рынке. Область распространения этих стандартов являются предметом согласования интересов разных групп участников процесса информатизации - пользователей, проектировщиков систем, поставщиков программных продуктов и поставщиков оборудования.

Выше был рассмотрен пример архитектуры открытых систем, реализующих технологию обработки данных. Можно было бы представить аналогичным образом открытые системы для всех классов информационных технологий: обработки текстов, изображений, речи, машинной графики. Особенно актуально проработать подходы открытых систем для мультимедиа-технологий, сочетающих несколько разных представлений информации. Как известно, за рубежом эти работы проводятся различными ассоциациями и консорциумами заинтересованных фирм и академических организаций и международными организациями по стандартизации. К сожалению, российские специалисты в этих работах до сих пор в лучшем случае играют роль наблюдателей.

Архитектура открытых систем

Наименование параметра Значение
Тема статьи: Архитектура открытых систем
Рубрика (тематическая категория) Компьютеры

Открытые системы.

Понятие подхода открытых систем.

Применение подхода открытых систем в настоящее время является основной тенденцией в области информационных технологий и средств вычислительной техники, поддерживает эти технологии. Идеально открытых систем реализуют в своих выработках большинством поставщиком средств вычислительной техники и разработчиков программного обеспечения.

Открытая система - ϶ᴛᴏ система, которая состоит из компонентов, взаимодействующих друг с другом, через стандартные интерфейсы. Данное определœение было сформулировано французской ассоциацией пользователœей Unix в 1992 году, так же это исчерпывающий и согласованный набор международных стандартов информационных технологий и профилей, функциональных стандартов, которые специфицируют интерфейсы, службы и поддерживающие форматы, чтобы обеспечить интероперабельность и мобильность приложений, данных и персонала. Данное определœение сформулировано международным научным техническим обществом (IEEE). Данное определœение подчеркивает аспект среды, которые предоставляют открытые системы для ее использования, ᴛ.ᴇ. это внешнее описание открытой системы.

Общие свойства открытых систем обычно формулируются следующим образом:

1) расширяемость (масштабируемость)

2) мобильность (переносимость)

3) интеропирабельность (способность к взаимодействию с другими системами)

4) дружественность к пользователю, в т.ч. легкая управляемость

Понятие система носит двоякий характер.
Размещено на реф.рф
С одной стороны, система - ϶ᴛᴏ совокупность взаимодействующих элементов аппаратных и программных. С другой стороны, система может выступать в качестве компонента другой более сложной системы, которая в свою очередь должна быть компонентом системы следующего уровня.

Архитектура открытой системы таким образом оказывается иерархическим описанием ее внешнего облика и каждого компонента с точки зрения:

1. пользователя (пользовательский интерфейс)

2. проектировщика системы (среды проектирования)

3. прикладного программиста (среды программирования)

4. системного программиста (архитектура ЭВМ)

5. разработчика аппаратуры (интерфейсы оборудования)

Преимущество идеологии открытой системы

Для пользователя открытые системы обеспечивают:

1) новые возможности сохранения сделанных вложений благодаря свойствам эволюции постепенного развития функций системы и замены отдельных компонентов без перестройки всœей системы

2) освобождение от зависимости от одного поставщика аппаратных или программных средств, а так же возможность выбора продуктов из предложенных на рынке при условии соблюдения поставщиком соответствующих стандартов открытых систем

3) дружественность среды, в которой работает пользователь и мобильность персонала в процессе эволюции системы

4) возможность использования информационных ресурсов имеющихся в других системах

Проектировщик информационных систем получает:

1. возможность использования разных аппаратных платформ

2. возможность совместного использования разных прикладных программ, основанных в различных операционных системах

3. развитие средства инструментальных сред, поддерживающих проектирование

4. возможности использования готовых программных продуктов и информационных ресурсов

Разработчики общесистемных программных средств получают:

1. новые возможности разделœения труда, благодаря повторному использованию программ

2. развитые инструментальные среды и системы программирования

3. возможности модульной организации программных комплексов, благодаря стандартизации программных интерфейсов

Архитектура открытых систем - понятие и виды. Классификация и особенности категории "Архитектура открытых систем" 2017, 2018.

Модели сети.Эталонная модель OSI

Общая модель вычислительной сети определяет характеристики сети в целом и характеристики и функции, входящих в неё основных компонентов.

Архитектура вычислительной сети – это описание её общей модели. Многообразие производителей вычислительных сетей и сетевых программных продуктов поставило проблему объединения сетей различных архитектур.

В начале 1980 гг. Международная Организация по Стандартизации (ISO) признала необходимость в создания модели сети, которая могла бы помочь поставщикам создавать реализации взаимодействующих сетей. Эту потребность удовлетворяет выпущенная в 1984 г. Эталонная модель OSI быстро стала основной архитектурной моделью для передачи межкомпьютерных сообщений. Часто ее называют моделью архитектуры открытых систем

Открытая система – это система, взаимодействующая с другими системами в соответствии с принятыми стандартами. Модель взаимодействия открытых систем служит базой для производителей при разработке совместимого сетевого оборудования.

Перемещение информации между компьютерами различных схем является чрезвычайно сложной задачей.

Эта модель устанавливает способы передачи данных по сети, определяет стандартные протоколы, используемые сетевым и программным обеспечением. Модель представляет собой самые общие рекомендации для построения совместимых программных продуктов. Эти рекомендации должны быть реализованы как в аппаратуре, так и в программных средствах вычислительных сетей.

Модель взаимодействия открытых систем определяет процедуры передачи данных между системами,которые открыты друг другу, благодаря совместному использованию ими соответствующих стандартов, хотя сами системы могут быть созданы на различных технических средствах. В настоящее время модель взаимодействия открытых систем является наиболее популярной сетевой архитектурной моделью. Она рассматривает общие функции, а не специальные решения, поэтому не все реальные сети абсолютно точно ей следуют. Модель взаимодействия открытых систем состоит из семи уровней. На каждом уровне выполняются определённые сетевые функции. Нижние уровни (1 и 2) определяют физическую среду передачи данных и сопутствующей задачи (такие, как передачи битов данных через плату сетевого адаптера и кабель). Самые верхние уровни определяют, каким способом осуществляется доступ приложений к услугам связи. Чем выше уровень, тем более сложную задачу он решает. Перед подачей в сеть данные разбиваются на пакеты.

Пакет - это единица информации, передаваемая между устройствами сети как единое целое. На передающей стороне пакет проходит последовательно через все уровни системы сверху вниз. Затем он передаётся по сетевому кабелю на компьютер – получатель и опять проходит все уровни в обратном порядке.

12. Уровни модели osi . Иерархическая связь.

Эталонная модель OSI делит проблему перемещения информации между компьютерами через среду сети на семь менее крупных, и следовательно, более легко разрешимых проблем. Каждая из этих семи проблем выбрана потому, что она относительно автономна, и следовательно, ее легче решить без чрезмерной опоры на внешнюю информацию. Каждая из семи областей проблемы решалась с помощью одного из уровней модели. Большинство устройств сети реализует все семь уровней. Однако в режиме потока информации некоторые реализации сети пропускают один или более уровней.

Два самых низших уровня OSI реализуются аппаратным и программным обеспечением; остальные пять высших уровней, как правило, реализуются программным обеспечением. Справочная модель OSI описывает, каким образом информация проделывает путь через среду сети (например, провода) от одной прикладной программы (например, программы обработки крупноформатных таблиц) до другой прикладной программы, находящейся в другом компьютере. Т.к. информация, которая должна быть отослана, проходит вниз через уровни системы, по мере этого продвижения она становится все меньше похожей на человеческий язык и все больше похожей на ту информацию, которую понимают компьютеры, а именно "единицы" и "нули".

Уровни модели OSI (в направлении снизу вверх) и их общие функции можно рассмотреть следующим образом:

Рассмотрим, как в модели SI происходит обмен данными между пользователями, находящимися на разных континентах.

1.На прикладном уровне с помощью специальных приложений пользователь создает документ (сообщение, рисунок и т. п.).

Прикладной уровень - это самый близкий к пользователю уровень OSI. Он отличается от других уровней тем, что не обеспечивает услуг ни одному из других уровней OSI; однако он обеспечивает ими прикладные процессы, лежащие за пределами масштаба модели OSI. Примерами таких прикладных процессов могут служить программы обработки крупномасштабных таблиц, программы обработки слов, программы банковских терминалов и т.д. Прикладной уровень идентифицирует и устанавливает наличие предполагаемых партнеров для связи, синхронизирует совместно работающие прикладные программы, а также устанавливает соглашение по процедурам устранения ошибок и управления целостностью информации. Прикладной уровень также определяет, имеется ли в наличии достаточно ресурсов для предполагаемой связи.

2.На уровне представления операционная система его компьютера фиксирует, где находятся созданные данные (в оперативной памяти, в файле на жестком диске и т. п.), и обеспечивает взаимодействие со следующим уровнем.

Представительный уровень отвечает за то, чтобы информация, посылаемая из прикладного уровня одной системы, была читаемой для прикладного уровня другой системы. При необходимости представительный уровень осуществляет трансляцию между множеством форматов представления информации путем использования общего формата представления информации. Представительный уровень занят не только форматом и представлением фактических данных пользователя, но также структурами данных, которые используют программы. Поэтому кроме трансформации формата фактических данных (если она необходима), представительный уровень согласует синтаксис передачи данных для прикладного уровня.

3.На сеансовом уровне компьютер пользователя взаимодействует с локальной или глобальной сетью. Протоколы этого уровня проверяют права пользователя на «выход в эфир» и передают документ к протоколам транспортного уровня.

Как указывает его название, сеансовый уровень устанавливает, управляет и завершает сеансы взаимодействия между прикладными задачами. Сеансы состоят из диалога между двумя или более объектами представления (как вы помните, сеансовый уровень обеспечивает своими услугами представительный уровень). Сеансовый уровень синхронизирует диалог между объектами представительного уровня и управляет обменом информации между ними. В дополнение к основной регуляции диалогов (сеансов) сеансовый уровень предоставляет средства для отправки информации, класса услуг и уведомления в исключительных ситуациях о проблемах сеансового, представительного и прикладного уровней. Сеансовый уровень - это комплексный уровень, который обеспечивает возможность соединения и выбор маршрута между двумя конечными системами, подключенными к разным "подсетям", которые могут находиться в разных географических пунктах. В данном случае "подсеть" - это по сути независимый сетевой кабель (иногда называемый сегментом). Т.к. две конечные системы, желающие организовать связь, может разделять значительное географическое расстояние и множество подсетей, сетевой уровень является доменом маршрутизации. Протоколы маршрутизации выбирают оптимальные маршруты через последовательность соединенных между собой подсетей. Традиционные протоколы сетевого уровня передают информацию вдоль этих маршрутов.

4. .На транспортном уровне документ преобразуется в ту форму, в которой положено передавать данные в используемой сети. Например, он может нарезаться на небольшие пакеты стандартного размера.

Транспортный уровень Граница между сеансовым и транспортным уровнями может быть представлена как граница между протоколами прикладного уровня и протоколами низших уровней. В то время как прикладной, представительный и сеансовый уровни заняты прикладными вопросами, четыре низших уровня решают проблемы транспортировки данных. Транспортный уровень пытается обеспечить услуги по транспортировке данных, которые избавляют высшие слои от необходимости вникать в ее детали. В частности, заботой транспортного уровня является решение таких вопросов, как выполнение надежной транспортировки данных через объединенную сеть. Предоставляя надежные услуги, транспортный уровень обеспечивает механизмы для установки, поддержания и упорядоченного завершения действия виртуальных каналов, систем обнаружения и устранения неисправностей транспортировки и управления информационным потоком (с целью предотвращения переполнения системы данными из другой системы).

5. Сетевой уровень определяет маршрут движения данных в сети. Так, например если на транспортном уровне данные были «нарезаны» на пакеты, то на сетевом уровне каждый пакет должен получить адрес, по которому он должен быть доставлен независимо от прочих пакетов.

Сетевой уровень - это комплексный уровень, который обеспечивает возможность соединения и выбор маршрута между двумя конечными системами, подключенными к разным "подсетям", которые могут находиться в разных географических пунктах. В данном случае "подсеть" - это по сути независимый сетевой кабель (иногда называемый сегментом). Т.к. две конечные системы, желающие организовать связь, может разделять значительное географическое расстояние и множество подсетей, сетевой уровень является доменом маршрутизации. Протоколы маршрутизации выбирают оптимальные маршруты через последовательность соединенных между собой подсетей. Традиционные протоколы сетевого уровня передают информацию вдоль этих маршрутов.

6. Канальный уровень. Уровень соединения необходим для того, чтобы промодулировать сигналы, циркулирующие на физическом уровне, в соответствии с данными, полученным с сетевого уровня. Например в компьютере эти функции выполняет сетевая карта или модем.

Канальный уровень (формально называемый информационно-канальным уровнем) обеспечивает надежный транзит данных через физический канал. Выполняя эту задачу, канальный уровень решает вопросы физической адресации (в противоположность сетевой или логической адресации), топологии сети, линейной дисциплины (каким образом конечной системе использовать сетевой канал), уведомления о неисправностях, упорядоченной доставки блоков данных и управления потоком информации.

7. Физический уровень. Реальная передача данных происходит на физическом уровне. Здесь нет ни документов, ни пакетов, ни даже байтов - только биты, то есть, элементарные единицы представления данных. Восстановление документа из них произойдет постепенно, при переходе с нижнего на верхний уровень на компьютер клиента.

Средства физического уровня лежат за пределами компьютера. В локальных сетях это оборудование самой сети. При удаленной связи с использованием телефонных модемов это линии телефонной связи, коммутационное оборудование телефонных станций и т. п.

Физический уровень определяет электротехнические, механические, процедурные и функциональные характеристики активации, поддержания и дезактивации физического канала между конечными системами. Спецификации физического уровня определяют такие характеристики, как уровни напряжений, синхронизацию изменения напряжений, скорость передачи физической информации, максимальные расстояния передачи информации, физические соединители и другие аналогичные характеристики.

На компьютере получателя информации происходит обратный процесс преобразования данных от битовых сигналов до документа.

Разные уровни протоколов сервера и клиента не взаимодействуют друг с другом напрямую, но они взаимодействуют через физический уровень. Постепенно переходя с верхнего уровня на нижний, данные непрерывно преобразуются, «обрастают» дополнительными данными, которые анализируются протоколами соответствующих уровней на сопредельной стороне. Это создает эффект виртуального взаимодействия уровней между собой.

Для иллюстрации сказанного рассмотрим простой пример взаимодействия двух корреспондентов с помощью обычной почты. Если они регулярно отправляют друг другу письма и, соответственно, получают их, то они могут полагать, что между ними существует соединение на пользовательском (прикладном уровне). Однако это не совсем так. Такое соединение можно назвать виртуальным. Оно было бы физическим, если бы каждый из корреспондентов лично относил другому письмо и вручал в собственные руки. В реальной жизни он бросает его в почтовый ящик и ждет ответа.

Сбором писем из общественных почтовых ящиков и доставкой корреспонденции в личные почтовые ящики занимаются местные почтовые службы. Это другой уровень модели связи, лежащий ниже. Для того чтобы наше письмо достигло адресата в другом городе, должна существовать связь между нашей местной почтовой службой и его местной почтовой службой. Однако никакой физической связью эти службы не обладают - поступившую почтовую корреспонденцию они только сортируют и передают на уровень федеральной почтовой службы.

Федеральная почтовая служба в своей работе опирается на службы очередного уровня, например на почтово-багажную службу железнодорожного ведомства. И только рассмотрев работу этой службы, мы найдем, наконец, признаки физического соединения, например железнодорожный путь, связывающий два города.

Важно обратить внимание на то, что в нашем примере образовалось несколько виртуальных соединений между аналогичными службами, находящимися в пунктах отправки и приема. Не вступая в прямой контакт, эти службы взаимодействуют между собой. На каком-то уровне письма укладываются в мешки, мешки пломбируют, к ним прикладывают сопроводительные документы, которые где-то в другом городе изучаются и проверяются на аналогичном уровне.

Ниже в таблице приводится аналогия между уровнями модели OSI и операциями служб пересылки обычной почты.

Уровень модели OSI

Аналогия

Прикладной уровень

Письмо написано на бумаге. Определено его содержание

Уровень представления

Письмо запечатано в конверт. Конверт заполнен. Наклеена марка. Клиентом соблюдены необходимые требования протокола доставки

Сеансовый уровень

Письмо опущено в почтовый ящик. Выбрана служба доставки.

Транспортный уровень

Письмо доставлено на почтамт. Оно отделено от писем, с доставкой которых местная почтовая служба справилась бы самостоятельно

Сетевой уровень

После сортировки письмо уложено в мешок. Появилась новая единица доставки - мешок

Уровень соединения

Мешки писем уложены в вагон. Появилась новая единица доставки - вагон

Физический уровень

Вагон прицеплен к локомотиву. Появилась новая единица доставки - состав. За доставку взялось другое ведомство, действующее по другим протоколам

Чтобы различные компьютеры сети могли установить связь друг с другом, они должны “разговаривать” на одном языке, то есть использовать один и тот же протокол. Протокол - это “язык”, используемый для обмена данными при работе в сети. Существует множество протоколов, каждый из них выполняет различные задачи. На разных уровнях модели OSI используются различные протоколы.

Ethernet – это протокол Уровня соединения, используемый большинством современных локальных сетей. Протокол Ethernet обеспечивает унифицированный интерфейс к сетевой среде передачи, который позволяет операционной системе использовать для приема и передачи данных несколько протоколов Сетевого уровня одновременно. Token Ring – это альтернатива «классическому» протоколу Ethernet на Уровне соединения.

Для возможности передачи информации по сетевым каналам связи необходимо уста­новить протокол обмена сообщениями (пакетами). Существует несколько таких протоколов. Наиболее широко используются следующие: NetBEUI , IPX / SPX , TCP / IP . Протоколы NETBEUI и IPX / SPX - используется в локальных сетях. Протоколы TCP / IP являются базовыми протоколами глобальной сети Интернет.

Протокол TCP / IP

Со времени своего создания в 1970-х, стек протоколов TCP/IP был развит в промышленный стандарт для протоколов передачи данных на Сетевом и Транспортном уровнях модели OSI. В дополнение, стек включает множество протоколов, работающих на самых разных уровнях OSI, от Канального уровня внизу, до Прикладного уровня наверху.

Создатели операционных систем стремятся упростить стек сетевых протоколов, чтобы сделать более понятным среднему пользователю. Например, на рабочей станции Windows установка протоколов TCP/IP выполняется с помощью выбора одного единственного условного протокола, хотя на самом деле при этом осуществляется поддержка всего семейства протоколов, из которых TCP (протокол управления передачей) и IP (Интернет-протокол) – всего лишь два представителя.

Понимание принципов работы каждого из протоколов семейства TCP/IP, а также механизмов их взаимодействия между собой для обеспечения соответствующих коммуникационных сервисов, представляется крайне важным для процессов обслуживания и устранения неисправностей TCP/IP- сетей.

Можно указать несколько причин тому, что TCP/IP стал набором протоколов, используемым большинством сетей, не последняя из которых – то, что эти протоколы применяются в Интернете. Протоколы TCP/IP были разработаны для поддержки зарождавшейся сети Интернет (в то время носившей название ARPANET), еще до появления персональных компьютеров, когда почти ничего не было слышно о возможности взаимодействия между компьютерными продуктами разных производителей. Интернет был тогда и остаётся сейчас сетью, состоящей из компьютеров различных типов, и, соответственно, требовался именно тот набор протоколов, который был бы общим для всех них. Главным элементом, отличающим TCP/IP от остальных стеков протоколов, обеспечивающих серверы Сетевого и Транспортного уровней, является собственная уникальная система адресаций. Каждому устройству сети TCP/IP присваивается IP-адрес (иногда больше, чем один), однозначно идентифицирующий это устройство для других систем..