Домой / Faq / Как выбрать блок питания (зарядное устройство, адаптер). Разница между зарядным устройством и блоком питания

Как выбрать блок питания (зарядное устройство, адаптер). Разница между зарядным устройством и блоком питания

В данном разделе представлены блоки питания (сетевые адаптеры) и зарядные устройства, распределенные по следующим подгруппам:

    НЕСТАБИЛИЗИРОВАННЫЕ блоки питания - самые распространенные трансформаторные блоки питания. Обеспечивают выходное напряжение ПОСТОЯННОГО ТОКА. Такой блок питания содержит сетевой трансформатор и выпрямитель. В нестабилизированных блоках питания выходное напряжение соответствует номинальному только при номинальном сетевом напряжении (220V) и номинальном токе нагрузки.

    Эти блоки пригодны для питания осветительных и нагревательных приборов, электромоторов и любых устройств со встроенным стабилизатором напряжения (например, большинство радиотелефонов и автоответчиков).

    Такие блоки питания как правило имеют значительный уровень пульсаций сетевого напряжения и не пригодны для питания звуковой техники (радиоприемников, плееров, музыкальных синтезаторов). Для этих устройств следует применять стабилизированные блоки питания.

    СТАБИЛИЗИРОВАННЫЕ блоки питания. Обеспечивают СТАБИЛИЗИРОВАННОЕ выходное напряжение ПОСТОЯННОГО ТОКА. Такой блок питания содержит сетевой трансформатор, выпрямитель и стабилизатор. СТАБИЛИЗИРОВАННЫЙ - означает, что выходное напряжение не зависит (или почти не зависит) от изменения сетевого напряжения (в разумных пределах) и от изменения тока нагрузки. В отличие от нестабилизированных блоков питания в стабилизированных выходное напряжение будет одинаковым как на холостом ходу так и при номинальной нагрузке. Кроме того, в таких блоках питания как правило достаточно малы пульсации напряжения переменного тока на выходе.

    Стабилизированный блок питания практически всегда может заменить нестабилизированный (но разумеется не наоборот). Поэтому, если Вы не знаете, какой блок питания постоянного тока нужен для Вашей бытовой аппаратуры - стабилизированный или нестабилизированный, то используйте СТАБИЛИЗИРОВАННЫЙ или ИМПУЛЬСНЫЙ блок питания.

    ИМПУЛЬСНЫЕ блоки питания также обеспечивают на выходе СТАБИЛИЗИРОВАННОЕ напряжение постоянного тока. При этом ИМПУЛЬСНЫЕ блоки питания имеют следующие преимущества по сравнению с трансформаторными:

    • Большой КПД
    • Незначительный нагрев
    • Малый вес и габариты
    • Как правило бОльший допустимый диапазон сетевого напряжения
    • Как правило имеют встроенную защиту от перегрузки и замыканий на выходе
    Преимущества импульсных блоков питания растут с увеличением мощности т.е. для самой маломощной бытовой аппаратуры их применение может быть экономически не оправдано, а блоки питания мощностью от 50Вт уже существенно дешевле в импульсном варианте.

    ИМПУЛЬСНЫЕ блоки питания получают все большее распространение т.к. сейчас затраты на изготовление даже сложной электронной начинки ниже чем на массивный сетевой трансформатор из меди и железа. Стоимость импульсных блоков питания даже малой мощности (около 5Вт) для такой бытовой техники как, например, радиотелефоны и автоответчики, вплотную приближается к стоимости трансформаторных. Следует также учитывать экономию на транспортных расходах при доставке - импульсные блоки питания легче трансформаторных.

    Некоторые люди имет предубеждение против применения импульсных блоков питания. С чем оно может быть связано?

    1. Импульсные блоки питания схемотехнически сложнее трансформаторных. Самостоятельный ремонт их пользователем вряд ли возможен;
    2. Блоки питания самодельщиков и мелких кооперативов 90-х годов прошлого века отличались малой надежностью. Сейчас это не так - по нашему опыту процент отказов (по различным причинам, в т.ч и из-за перегрузок и перепадов сетевого напряжения) у импульсных блоков питания не превышает этого показателя у трансформаторных.
    Уже несколько десятилетий ряд приборов традиционно поставляются с импульсными блоками питания - это в первую очередь все компьютеры, ноутбуки, практически все современные телевизоры...Страшно представить их с классическими трансформаторными блоками питания - их размеры и вес возрасли бы вдвое!

    Современные ИМПУЛЬСНЫЕ блоки питания достаточно надежны. Например, на все блоки питания Robiton® дается гарантия 1 год.

    ПЕРЕМЕННЫЕ - блоки питания с выходным напряжением переменного тока. Применяются для питания осветительных и нагревательных электроприборов, а также для тех бытовых приборов, которые содержат внутренний выпрямитель напряжения (например многие радиотелефоны Siemens, Toshiba, ряд автоответчиков). Значок напряжения переменного тока указывается на корпусе приборов в виде символов: ~ или AC .

    АДАПТЕРЫ 220V-110V AC (автотрансформаторные) - эти изделия хоть и похожи по выходным характеристикам на блоки питания с ПЕРЕМЕННЫМ выходным напряжением, но выполнены по автотрансформаторной схеме. Это дает возможность снизить габариты и вес устройства, и обеспечить относительную стабильность выходного напряжения 110V на холостом ходу. При этом гальваническая развязка выходной цепи от входной не обеспечивается. Данные адаптеры применяются для питания техники из США и некоторых других стран.

  • ЗАРЯДНЫЕ УСТРОЙСТВА - под зарядными устройствами будем понимать устройства, предназначенные исключительно для заряда аккумуляторов различных типов. При этом аккумуляторы могут в процессе заряда располагаться как внутри зарядного устройства так и снаружи. Однако, например, сетевые адаптеры для радиотелефонов, ноутбуков будем относить к БЛОКАМ ПИТАНИЯ т.к. во-первых аккумуляторы при этом подключаются к устройству заряда не напрямую, а через базу радиотелефона или ноутбук, а во-вторых кроме заряда аккумуляторов такой блок питания как правило обеспечивает и работу от сети данного бытового прибора.

    Таким образом, будем относить к ЗАРЯДНЫМ УСТРОЙСТВАМ, например, устройство заряда аккумуляторов для фотоаппарата, если аккумуляторы при этом вынимаются из него и вставляются в зарядное устройство. А сетевой адаптер, подключаемый к фотоаппарату (и при этом также обеспечивающий заряд аккумуляторов, но уже внутри него) отнесем к БЛОКАМ ПИТАНИЯ.

Внимание!

При подборе блока питания для Вашей бытовой аппаратуры (взамен поломанного или утраченного) соблюдайте несколько простых правил:

    Выясните, постоянное (DC) или переменное (AC) напряжение нужно Вашему прибору. Обращайте внимание на надписи на корпусе прибора и на выходное напряжение блока питания (OUTPUT).

    Выясните величину требуемого напряжения, а также, стабилизированное или нестабилизированное питание требуется Вашему прибору.

    Выясните потребляемый прибором ток. Выбирайте блок питания с током не менее , чем потребляет Ваш прибор.

    При подключении блоков питания с постоянным выходным напряжением (DC) и зарядных устройств всегда соблюдайте полярность! Подключение в неправильной полярности может привести к выходу из строя как Вашего бытового прибора так и самого блока питания! Внимательно изучите маркировку полярности на бытовом приборе и блоке питания или в технической документации на них. При отсутствии информации на блоке питания для определения полярности воспользуйтесь тестером.

Информационные знаки, обозначающие полярность питания на круглых разъемах:

Примечание! Во многих случаях незначительная разница (в несколько десятых долей вольта) питающего напряжения не сказывается отрицательно на работе бытовых приборов. В большей степени это касается нестабилизированных блоков питания и блоков с переменным выходным напряжением. Если Вы не можете найти блок питания с "экзотическими" параметрами, то попробуйте применить блок с несколько меньшим напряжением.

Если Вы затрудняетесь самостоятельно подобрать блок питания для Вашего бытового прибора то принесите его и(или) старый неисправный блок питания в наш магазин - продавцы-консультанты будут рады Вам помочь, а также провести проверку на месте.

©Sergey Kitsya (KSV®) 2008г.

Источник питания - из зарядного устройства для сотового телефона
И. НЕЧАЕВ, г. Курск

Малогабаритная носимая аппаратура (радиоприемники, кассетные и дисковые плейеры) обычно рассчитаны на питание от двух-четырех гальванических элементов. Однако служат они недолго, и их приходится довольно часто заменять новыми, поэтому в домашних условиях такую аппаратуру целесообразно питать от сетевого блока. Такой источник (в просторечии его называют адаптером) нетрудно приобрести или изготовить самому, благо в радиолюбительской литературе их описано немало. Но можно поступить и иначе. Практически у трех из каждых четырех жителей нашей страны сегодня есть сотовый телефон (по данным исследовательской компании AC&M-Consulting, на конец октября 2005 г. число абонентов сотовой связи в РФ перевалило за 115 млн). Его зарядное устройство используется по прямому назначению (для зарядки аккумуляторной батареи телефона) всего лишь несколько часов в неделю, а остальное время бездействует. О том, как приспособить его для питания малогабаритной аппаратуры, рассказывается в статье.

Чтобы не тратиться на гальванические элементы, владельцы носимых радиоприемников, плейеров и т. п. аппаратуры используют аккумуляторы, а в стационарных условиях питают эти устройства от сети переменного тока. Если нет готового блока питания с нужным выходным напряжением, не обязательно покупать или собирать самому такой блок, можно использовать для этой цели зарядное устройство от сотового телефона, которое сегодня есть у многих.

Однако напрямую подключать его к радиоприемнику или плейеру нельзя. Дело в том, что большинство зарядных устройств, входящих в комплект сотового телефона, представляют собой неста-билизированный выпрямитель, выходное напряжение которого (4.5...7 В при токе нагрузки 0,1...О,ЗА) превышает требуемое для питания малогабаритного аппарата. Проблема решается просто. Чтобы использовать зарядное устройство в качестве блока питания, необходимо между ним и аппаратом включить переходник-стабилизатор напряжения.
Как говорит само название, основой такого устройства должен быть стабилизатор напряжения. Его удобнее всего собрать на специализированной микросхеме. Большая номенклатура и доступность интегральных стабилизаторов позволяют изготовить самые различные варианты переходников.
Принципиальная схема переходника-стабилизатора напряжения изображена на рис. 1. Микросхему DA1 выбирают

в зависимости от требуемого выходного напряжения и потребляемого нагрузкой тока. Емкость конденсаторов С1 и С2 может находиться в пределах 0,1...10мкФ (номинальное напряжение- 10 В).
Если нагрузка потребляет до 400 мА и такой ток способно отдать зарядное устройство, в качестве DA1 можно применить микросхемы КР142ЕН5А (выходное напряжение - 5 В), КР1158ЕНЗВ, КР1158ЕНЗГ (3,3 В), КР1158ЕН5В, КР1158ЕН5Г (5 В), а также пятивольтные импортные 7805, 78М05 . Подойдут также микросхемы серий LD1117ххх , REG 1117-хх . Их выходной ток - до 800 мА, выходное напряжение - из ряда 2,85; 3,3 и 5 В (у LD1117ххх - еще и 1,2; 1,8 и 2,5 В). Седьмой элемент (буква) в обозначении LD1117ххх указывает на тип корпуса (S - SOT-223, D - S0-8, V - ТО-220), а следующее за ним двузначное число - на номинальное значение выходного напряжения в десятых долях вольта (12 - 1,2 В, 18 - 1,8 В и т. д.). Присоединенное через дефис число в обозначении микросхем REG1117-хх также указывает на напряжение стабилизации. Цоколевка этих микросхем в корпусе SOT-223 показана на рис. 2,а.

Допустимо использование и микросхем стабилизаторов с регулируемым выходным напряжением, например, КР142ЕН12А, LM317T. В этом случае можно получить любое значение выходного напряжения от 1,2 до 5...6 В.
При питании аппаратуры, потребляющей небольшой ток (30. .100 мА), например, малогабаритных УКВ ЧМ радиоприемников, в переходнике можно применить микросхемы КР1157ЕН5А, КР1157ЕН5Б, КР1157ЕН501А, КР1157ЕН501Б, КР1157ЕН502А, КР1157ЕН502Б, КР1158ЕН5А, КР1158ЕН5Б (все с номинальным выходным напряжением 5 В), КР1158ЕНЗА, КР1158ЕНЗБ (3,3 В). Чертеж возможного варианта печатной платы переходника с ис-
пользованием микросхем последней серии показан на рис. 3. Конденсаторы С1 и С2 - малогабаритные оксидные любого типа емкостью 10 мкФ.

Существенно уменьшить габариты переходника можно, применив миниатюрные микросхемы серии LM3480-xx (последние две цифры обозначают выходное напряжение). Они выпускаются в корпусе SOT-23 (см. рис. 2,6). Чертеж печатной платы для этого случая изображен на рис. 4. Конденсаторы С1 и С2 - малогабаритные керамические К10-17 или аналогичные импортные емкостью не менее 0,1 мкФ. Внешний вид переходников, смонтированных на платах, изготовленных в соответствии с рис. 3 и 4, показан на рис. 5.

Следует отметить, что фольга на плате может выполнять функцию тепло-отвода. Поэтому площадь проводника под вывод микросхемы (общий или выход), через который осуществляется отвод тепла, желательно сделать как можно большей.
Собранное устройство помещают в пластмассовую коробку подходящих размеров или в батарейный отсек питаемого аппарата. Для стыковки с зарядным устройством переходник необходимо снабдить соответствующей розеткой (аналогичной той, что установлена в сотовом телефоне). Ее можно разместить на печатной плате со стабилизатором либо закрепить на одной из стенок коробки.
Налаживания переходник не требует, необходимо только проверить его в работе с соединительными проводами, которые будут использоваться для подключения к зарядному устройству и питаемому аппарату. Самовозбуждение устраняют увеличением емкости конденсаторов С1 и С2.

ЛИТЕРАТУРА
1. Бирюков С. Микросхемные стабилизаторы напряжения широкого применения. - Радио, 1999, № 2, с. 69-71.
2. LD1117 Series. Low Drop Fixed and Adjustable Positive Voltage Regulators. - .
3. REG1117, REG1117A. 800mA and 1A Low Dropout (LDO) Positive Regulator 1,8V, 2,5V, 2,85V, 3,3V, 5V and Adjustable. - .
4. LM3480. 100 mA, SOT-23, Quasi Low-Dropout Linear Voltage Regulator. - .

Для радиолюбительских самоделок часто требуются источники питания с различными выходными характеристиками. Например, для сборки простой схемы автоматики освещения мне потребовался маломощный блок питания на 12 В . Покупать его оказалось накладно, стоимость готового источника превысила стоимость схемы автоматики. Самому сделать такой источник можно, и значительно дешевле имеющихся в продаже, но это уже при многократном повторении вносит рутину в творческий процесс. Поэтому, я нашёл относительно простой и достаточно дешёвый способ создать такой источник, это переделка готового зарядного устройства для смартфона .

Однажды у одного китайского продавца мне довелось приобрести десяток зарядных устройств для смартфонов с выходными характеристиками 5 В 1 А, что вполне удовлетворило мои потребности. Причём, эти ЗУ имеют стабилизацию выходного напряжения и в режиме холостого хода потребляют мало энергии, что не маловажно для создания устройств автоматики освещения и т.п. Всё, что мне осталось, поднять выходное напряжение до необходимого мне уровня, о чём и расскажу дальше.

Само ЗУ выглядит так:

Мне десяток таких малышек обошёлся по доллару за штучку.

Интересующие нас внутренности устройства можно посмотреть после аккуратного вскрытия:

Для Вас специально, и для личного архива, снял схему ЗУ, хотя для переделки в её подробности я даже не вникал.

Переделка поэтапно заключается в следующем:

  1. Аккуратно тонким эмалированным проводником делаем виток обмотки (можно несколько) и при включенном ЗУ под нагрузкой (подключаем заряжаемый гаджет) смотрим осциллографом амплитуду импульсов. Таким образом, определяем напряжение, создаваемое одним витком обмотки.
  2. Выпаиваем USB разъём.
  3. Снимаем тестовый виток и доматываем эмалированным проводником (подобным по толщине проводнику вторичной низковольтной обмотки) столько витков, сколько не хватает для получения требуемого выходного напряжения. Припаиваем намотанную обмотку последовательно вторичной заводской. Место спайки выбираем точку контакта с импульсным диодом Z1. Разрезаем дорожку между вторичкой и Z1. Припаиваем к контакту анода Z1 свободный конец домотанной вторички.
  4. Выпаиваем стабилитрон VD2, и вместо него впаиваем такой же, но на нужное напряжение, которое у нас и будет подаваться на выход.
  5. Выпаиваем конденсатор C4 и впаиваем аналогичную ёмкость на большее напряжение (на порядок выше выходного), например, для 12 В я выбрал конденсатор 100 мкФ 25 В.

В общем всё. Схема должна заработать без бубнов с танцами, если при переделке ничего не поломали.

У меня на трёх витках тестовой обмотки получился импульс, приближенный к прямоугольнику размахом 6 вольт, что даёт 2 вольта на виток. До 12 В мне не хватает 7 В или 3,5 витка. Мотаю 4 витка и далее по пунктам выше.

Конструкция получилась достаточно компактной, так что уместилась в родной корпус с небольшими переделками.

По факту у меня на выходе вышло 13,2 В. Возможно попался стабилитрон с такой характеристикой, а возможно я чего-то ещё не знаю про подобного рода переделки. В любом случае можно скорректировать напряжение другим стабилитроном, с меньшим напряжением стабилизации. Если такового не найдётся, не забывайте, что нужный стабилитрон можно получить при последовательном включении двух и более идентичных по току с разными напряжениями. Общее напряжение стабилизации будет суммой всех, входящих в цепочку.

И самое главное - О БЕЗОПАСНОСТИ! При работе с данной схемой во время теста с открытой платой нужно быть особо внимательным! На плате часть проводников находится под высоким сетевым напряжением, опасным для жизни! Не прикасайтесь к схеме ни чем ни к каким местам. Тестовая обмотка должна быть подключена к осциллографу до включения устройства в сеть!

Развитие технологий современного мира частично сняло с людей зависимость от постоянного наличия электрической энергии в виде доступа к всем привычным розеткам. Доступной и уже незаменимой альтернативой этого вида доступа к электричеству стали различные типы аккумуляторных батарей. Но эта альтернатива не смогла полностью превзойти стандартный тип электропитания, ведь аккумуляторы имеют свойство периодически разряжаться и нуждаются в зарядке.

Незаряженное техническое устройство порой становится большой преградой для осуществления задуманных планов. Ведь чего стоит разряженный мобильный телефон? Кусок металла без каких-либо функций. Поэтому, хочется нам этого или нет, мы время от времени нуждаемся в доступе к источнику электроэнергии, зарядных устройствах и в блоках питания, и, пожалуй, нет такого человека, у которого бы не имелся какой-либо гаджет, а в арсенале технических аксессуаров отсутствовали электрическая зарядка или блок питания. Но несмотря на то, что эти приспособления в чем-то сходны, все же они далеко не идентичны. Очень важно уметь отличить эти два устройства, чтобы не свершить ненужную покупку или же просто лучше освоиться в мире электротехники.

Зарядное устройство – что это?

Думаете, этот вопрос смешон, ведь ответ на него знает каждый? Может быть. Но для того, чтобы уметь отличить одно от другого, нужно знать конкретно, какое предназначение и какие принципы работы.

Зарядное устройство – это устройство, которое предназначено для передачи электроэнергии непосредственно от источника электропитания к аккумулирующему средству.

Зарядное устройство состоит с трансформатора или импульсного блока питания, выпрямителя электрического тока, который преобразует электрическую энергию под нужные параметры для аккумулятора, стабилизатора напряжения, который поддерживает исходное напряжение в нужных пределах, при этом существенно изменяя входное напряжение и выходной ток нагрузки.

Разновидности зарядных устройств:

  • Встроенные – дают возможность одновременно работать с девайсом и заряжать аккумулятор.
  • Внешние – зарядка аккумулятора после его вынимания из устройства.

Блок питания – что это?

Блок питания – вторичный генератор электроэнергии, который предназначен для оптимизации напряжения электротока под требуемое устройством, к которому он подключен. Работает он прежде всего в целях электробезопасности, стабилизации, регулировки, контроля напряжения.

Блок питания для компьютера

Что общего между блоком питания и зарядным устройством

  1. Целью их эксплуатации является поддержка электропитания технических устройств, подключенных к электрической сети.
  2. Они оба превращают входной ток под точные параметры, установлены в устройстве.

Чем отличается блок питания от зарядки

  1. Самая очевидная разница – назначение устройств . Зарядка питает аккумуляторы электроэнергией, блок питания же предназначен для поддержания работоспособности конкретного устройства.
  2. Блок питания может работать и без прямого подключения к электрической сети (например, ноутбук). Зарядка не всегда дает такую возможность (например, некоторые разряженные фотоаппараты способны зарядить батарею только с помощью отдельной зарядки в специальном блоке).
  3. Зарядное устройство имеет ограничение тока, блок питания же принимает на себя разную нагрузку, которую регулирует.
  4. Блок питания чаще всего встраивается в отдельное техническое средство, зарядка же в большинстве случаев существует отдельно.
  5. По своему весу и величине блок питания превышает зарядное устройство.
  6. Зарядные устройства бывают универсальными к многим техническим средства и стандартизованными под определенные модели, блоки питания должны соответствовать техническим характеристикам средства, к которому подключены, поэтому более «самостоятельные» в этом плане.
  7. Блок питания является источником для устройства предварительно запрограммированного напряжения, а зарядное устройство является источником стандартизованного тока.
  8. Блок питание привод устройство в работу, зарядка производит электрическое питание аккумулятора.

Итак, как вы заметили, эти два устройства имеют больше различий, чем сходств, как в построении, так и в эксплуатации.

Наверняка, у каждого автолюбителя есть зарядное устройство к аккумулятору. И не в любом устройстве есть встроенный хороший стабилизатор с фильтром на выхое, что проявляется в падении напряжения при больших токах. Я вам предлагаю собрать простую схемку, состоящую из батареи конденсаторов, самого стабилизатора на КРЕН и 2-ух транзисторов. Такой преобразователь даст вам на выходе до 6 Ампер тока. Вообще эту схему можно использовать для блока питания в качестве фильтра и стабилизатора напряжения. Стабилизатор напряжения защитит при больших временных нагрузках от падения напряжения и будет стараться поддерживать определенное значение, а фильтр уберет лишние пульсации, что улучшит характеристики блока питания. Короче, сами смотрите как использовать данную схему, потому что можно и в блок питания поставить дополнительно для улучшения характеристик и в зарядное. Ниже вы видите схему такого устройства, как приставка – стабилизатор к ЗУ авто:

Давайте начнем рассматривать схему по порядку. В самом начале мы видим четыре конденсатора С1, С2, С3, С4, которые большую функцию выполняют по фильтрации пульсаций, а в меньшей степени по стабилизации тока. На самом деле, если поставить конденсатор очень большой емкости, то собирать стабилизатор вовсе не надо – у нас и так получится готовый стабилизатор. Большую емкость конденсаторов можно сравнить с обычным аккумулятором, ведь у аккумулятора уже стабилизированное питание. А в конденсаторах залит электролит, электролит заряжается, а значит они подобны аккумуляторам. То есть например, мы подключили усилитель низких частот и на басах (когда ток достигает пикового значения) басы проседают, становятся хриплыми и не четкими, а если мы подключим батарею конденсаторов, то когда ток увеличится на басе, то конденсатор просто отдаст часть энергии и бас будет четким.

В общем выбирайте сами какой делать стабилизатор. Рассчитать энергию конденсатора для нужного тока можно по формулам, которые можно поискать в интернете. Такой стабилизатор + фильтр получится около 100-150 тыс мкф и это дорого. По данной схеме сумма четырех сглаживающих конденсаторов должна составить 20 тыс микрофарад. Дальше по схеме мы видим стабилизатор напряжения собранный на КРЕНке. Стабилизируемый ток будет зависеть от марки КРЕНки, а марку можно выбрать по таблице. Транзисторы образуют мощный эмиттерный повторитель, в результате чего данная схема способна стабилизировать напряжение до 5-6 Ампер.

Если хотите схему сделать более мощной, то можно добавить еще 2 транзистора, тогда такой стабилизатор сможет стабилизировать ток до 10-11 Ампер. То есть, подключаем еще два транзистора базами паралельно к КРЕН второй ноге, два коллектора к плюсу подводимого напряжения и эмиттерами на выход. Далее ставится конденсатор в качестве фильтра большей емкости (6000мкф) и потом два конденсатора малой емкости керамические на 0,1 которые будут подавлять высокочастотные помехи. Транзисторы обязательно нужно установить на теплоотвод – радиатор. При зарядке аккумулятора постоянно следите за тем, как нагревается радиатор. Если он сильно греется, то можете установить кулер на радиатор, который будет охлаждать его. На теплоотвод устанавливают все транзисторы! Теплоотвод, как правило, из алюминия. Для более лучшей теплопроводности покупаем теплопроводную пасту, мажем тонким слоем радиатор и транзистор, ждем 5 минут и плотно прижимаем, закручивая гайкой.

Стабилизатор подключается к выпрямителю зарядного устройства. Выход стабилизатора подключаем к заряжаемому аккумулятору. Рекомендуется на выходе поставить предохранитель на 5-6 Ампер, для защиты цепи от короткого замыкания. Так же, если вы хотите установить сигнализатор подачи напряжения, т.е. при включении видеть что устройство работает, то паралельно через резистор установите светодиод. При включении устройств в сеть светодиод будет загораться. Изменяя сопротивление резистора сделайте оптимальную яркость светодиода. Все, схема готова и готова к использованию.