Домой / Музыка / Программирование ардуино для детей. Обучение не заканчивается. Домашнее задание - цифровой термометр

Программирование ардуино для детей. Обучение не заканчивается. Домашнее задание - цифровой термометр

Мы рассмотрели ранее. Сегодня же мы проделаем вместе с вами первые шаги с Arduino – начнем с установки программного обеспечения и закончим написанием и запуском первой программы.

Мы полагаем, что саму плату Arduino вы уже себе приобрели:). Если кто-то проспал предыдущий пост, то напомним, что Arduino можно приобрести (сама плата Arduino UNO) или (стартовый комплект Arduino). Имея в руках Arduino, мы можем перейти к изучению.

Программное обеспечение «Arduino IDE»

Для начала нам нужно скачать с сайта программное обеспечение «Arduino IDE» на русском языке. С помощью IDE мы будем программировать микроконтроллер в нашей Arduino.

В случае с Windows достаточно скачать нужный архив и распаковать его в папку (желательно в корне диска «С»). После распаковки «Arduino IDE» мы уже можем подключить плату Arduino к персональному компьютеру.

Подключение Arduino к компьютеру и установка драйверов

Arduino подключаем к компьютеру с помощью (такой же, как для принтера). При подключении операционная система попытается сама установить соответствующие драйверы, но скорее всего ей это не удастся и нужно будет установить эти драйвера вручную.

Ручная установка драйверов выглядит примерно так:

Первый запуск Arduino IDE

Запустите «Arduino IDE», кликнув два раза на файл arduino.exe. Вы увидите такое окно:

Именно в этом окне мы и будем создавать и отправлять в микроконтроллер все программы. Однако, прежде чем мы напишем первую программу, мы должны установить еще две вещи.

В меню «Инструменты — Плата» выберите версию Arduino, которая у вас уже есть (например, Arduino UNO):

а в «Инструменты — Порт» выберите порт, к которому подключена плата Arduino (это тот порт, который нужно было запомнить во время установки драйверов).

На этом все, теперь мы можем уже перейти к программированию

Первая программа Arduino

В самой «Arduino IDE» есть масса примеров программ, работа которых хорошо описана с помощью комментариев. Для начала выберем один из таких примеров.

Из меню «Файл – Примеры – Basics» выберите «Blink»

Это очень простая программа, отвечающая за мигание , расположенного на плате Arduino, который подключен к выводу 13:

Давайте рассмотрим по порядку всю программу:

// Все что стоит после (//…) или между (/* … */) являются комментариями в коде /* Функция setup () выполняется только один раз, в начале программы. Она чаще всего используется для загрузки различных параметров. */ void setup() { pinMode(13, OUTPUT); // Установить вывод 13 в качестве выхода } //Функция loop () — это цикл, который выполняется все время пока включено питание. void loop() { digitalWrite(13, HIGH); // подать высокий уровень (+5В) на вывод 13 delay(1000); // ждать секунду (1000 мсек = 1 сек) digitalWrite(13, LOW); // подать низкий уровень (0В) на вывод 13 delay(1000); // ждать секунду // После достижения конца цикла loop () все начнется с самого начала }

Для загрузки программы в Arduino достаточно нажать на кнопку со стрелкой.

После загрузки программы, в нижней части окна появится надпись: «Загрузка завершена, после чего светодиод начнет мигать с интервалом в 1 сек.

В самом низу окна «Arduino IDE» будут отображаться различные сообщения компилятора. В данном случае отображается информация о размере нашей программы (скетч) и максимально доступной памяти микроконтроллера. В случае появления каких-то ошибок они будут отображаться в этом месте.

Самая простая схема на Arduino

Нам удалось заставить моргать светодиод, расположенный на плате Arduino. Теперь построим максимально простую аналогичную схему: заставим мигать светодиод, подключенный через резистор (около 220 Ом) к одному из выводов Arduino.

Наша программа «Blink» из примера управляет сигналом на контакте 13, к которому подключен светодиод на плате. Однако ничто не мешает нам подключить к этому выводу (13) и «земле» (GND) любой другой внешний светодиод. Имея мы можем быстро собрать такую схему:

Конечно, контакт 13, здесь только как пример. Мы так же можем в программе изменить номер контакта (например, на 6) и к этому контакту подключить дополнительный светодиод.

Чтобы нам не менять номер контакта в нескольких местах (в нашем примере программы он встречается 3 раза), мы можем его присвоить переменной, к которой мы будем ссылаться:

Int led = 13; // назначаем переменной led номер контакта 13 void setup() { pinMode(led, OUTPUT); // подставить переменную led вместо номера контакта 13 } void loop() { digitalWrite(led, HIGH); // подставить переменную led вместо номера контакта 13 delay(1000); digitalWrite(led, LOW); // подставить переменную led вместо номера контакта 13 delay(1000); }

В коротких программах это не имеет большого значения, но в более сложных проектах, в которых мы используем десяток входов и выходов и неоднократно на них ссылаемся, использование переменных очень облегчает работу.

Все самое интересное в микроконтроллерах обретает смысл только тогда, когда кроме выходов мы начнем использовать и входы. В следующем примере подключим к Arduino, с помощью которого мы будем регулировать частоту мигания светодиода.

Потенциометр здесь использован в роли . То есть, напряжение на его крайних выводах (+5В и «земля») делится на две части, из которых одна часть подается (центральный вывод потенциометра) на вход A0 (аналоговый вход Arduino). Вращая потенциометр, мы меняем величину напряжения, которое подается на аналоговый вход.

Напряжение, поступающее на аналоговый вход, определяется Arduino как число в диапазоне от 0 (0В) до 1023 (для 5В). Таким образом, если мы, например, подадим на аналоговый вход 2,5В, это будет истолкована Arduino как 512. Надеемся, что до этого момента все ясно

Все остальное объясним уже в самой программе:

Int led = 13; // это уже для нас понятно int potPin = 0; // назначаем переменной номер аналогового входа int pot; // переменная, в которой мы будем сохранять значение потенциометра int bk; // переменная, в которой мы будем сохранять значение скорости мигания светодиода void setup() { pinMode(led, OUTPUT); } void loop() { pot = analogRead(potPin); // считываем A0 и сохраняем в переменной pot /* Использованная ниже функция map() служит для преобразования одного диапазона чисел в другой. В нашем случае, перерасчет числа из диапазона от 0 до 1023 (значение, полученное с A0) на диапазон чисел от 50 до 3000 (интервал между включением и выключением светодиода). Пересчитанный диапазон чисел будет сохранен в переменной «bk». */ bk = map(pot, 0, 1023, 50, 3000); digitalWrite(led, HIGH); delay(bk); // пауза зависит от положения потенциометра digitalWrite(led, LOW); delay(bk); // пауза зависит от положения потенциометра }

Код начинает потихоньку усложнять, но мы надеемся, что все понятно. Введя в схему небольшую модификацию, мы можем добиться изменения частоты мигания светодиода, например, от интенсивности света в комнате Для этого вместо потенциометра необходимо использовать делитель напряжения, сделанный из фоторезистора и резистора.

Проще говоря, это резистор, сопротивление которого изменяется в зависимости от интенсивности падающего на него света.

Как видно на рисунке выше, фоторезистор подключен между +5В и контактом A0, а затем A0 через резистор на массу. Это точно такое же подключение, как и в случае с потенциометром. Здесь просто вместо двух крайних выводов потенциометра у нас ножка от фоторезистора и резистор, а вместо среднего вывода потенциометра, мы соединили друг с другом оставшиеся свободные выводы фоторезистора и резистора.

Программу в принципе менять не нужно, потому что наша схема практически не изменился. После монтажа достаточно подать питание и можно наслаждаться светодиодом, скорость мигания которого зависит от степени освещенности фоторезистора.

На этом закончим данную статью, в который мы попытались ввести вас в основы программирования Arduino. В последующих статьях мы будем уже рассматривать конкретные проекты.

Ardublock - это графический язык программирования для Ардуино, предназначенный для начинающих. Эта среда достаточно проста в использовании, ее легко установить, она практически полностью переведена на русский язык. Визуально сконструированную программу,напоминающую блоки...

Прерывания - очень важный механизм Arduino, позволяющий внешним устройствам взаимодействовать с контроллером при возникновении разных событий. Установив обработчик аппаратных прерываний в скетче, мы сможем реагировать на включение или выключение кнопки, нажатие клавиатуры,...

Serial.print() и Serial.println() – это основные функции Arduino для передачи информации от платы ардуино к компьютеру через последовательный порт. На самых популярных платах Arduino Uno, Mega, Nano нет встроенного дисплея, поэтому...

Можно ли заниматься ардуино проектами без самой платы Arduino? Оказывается, вполне. Благодаря многочисленным онлайн сервисам и программам, которые имеют свое название: эмулятор или симулятор Arduino. Самыми популярными представителями таких программ являются...

Serial begin - крайне важная инструкция Arduino, она позволяет установить контроллеру соединение с внешними устройствами. Чаще всего таким «внешним устройством» оказывается компьютер, к которому мы подключаем Arduino. Поэтому Serial begin интенсивней...

Глобальная переменная в Arduino – это переменная, область видимости которой распространяется на всю программу, ее видно во всех модулях и функциях. В этой статье мы рассмотрим несколько примеров использования глобальных переменных,...

Массивы Arduino – это элемент языка, активно используемый программистами для работы с наборами однотипных данных. Массивы есть практически во всех языках программирования, не исключением является и Arduino, синтаксис которого сильно похож...

Подробно Arduino язык программирования для начинающих представлен в таблице далее. Микроконтроллер Arduino программируется на специальном языке программирования, основанном на C/C ++. Язык программирования Arduino является разновидностью C++, другими словами, не существует отдельного языка программирования для Arduino. Скачать книгу PDF можно в конце страницы.

В Arduino IDE все написанные скетчи компилируются в программу на языке C/C++ с минимальными изменениями. Компилятор Arduino IDE значительно упрощает написание программ для этой платформы и создание устройств на Ардуино становится намного доступней людям, не имеющих больших познаний в языке C/C++. Дадим далее небольшую справку с описанием основных функций языка Arduino с примерами.

Подробный справочник языка Ардуино

Язык можно разделить на четыре раздела: операторы, данные, функции и библиотеки.

Язык Arduino Пример Описание

Операторы

setup() void setup ()
{
pinMode (3, INPUT );
}
Функция используется для инициализации переменных, определения режимов работы выводов на плате и т.д. Функция запускается только один раз, после каждой подачи питания на микроконтроллер.
loop() void loop ()
{
digitalWrite (3, HIGH );
delay(1000);
digitalWrite (3, LOW );
delay(1000);
}
Функция loop крутится в цикле, позволяя программе совершать вычисления и реагировать на них. Функции setup() и loop() должны присутствовать в каждом скетче, даже если эти операторы в программе не используются.

Управляющие операторы

if
if (x >
if (x < 100) digitalWrite (3, LOW );
Оператор if используется в сочетании с операторами сравнения (==, !=, <, >) и проверяет, достигнута ли истинность условия. Например, если значение переменной x больше 100, то включается светодиод на выходе 13, если меньше — светодиодвыключается.
if..else
if (x > 100) digitalWrite (3, HIGH );
else digitalWrite (3, LOW );
Оператор else позволяет cделать проверку отличную от указанной в if, чтобы осуществлять несколько взаимо исключающих проверок. Если ни одна из проверок не получила результат ИСТИНА, то выполняется блок операторов в else.
switch…case
switch (x)
{


case 3: break ;

}
Подобно if, оператор switch управляет программой, позволяя задавать действия, которые будут выполняться при разных условиях. Break является командой выхода из оператора, default выполняется, если не выбрана ни одна альтернатива.
for void setup ()
{
pinMode (3, OUTPUT );
}
void loop ()
{
for (int i=0; i <= 255; i++){
analogWrite (3, i);
delay(10);
}
}
Конструкция for используется для повторения операторов, заключенных в фигурные скобки. Например, плавное затемнение светодиода. Заголовок цикла for состоит из трех частей: for (initialization; condition; increment) — initialization выполняется один раз, далее проверяется условие condition, если условие верно, то выполняется приращение increment. Цикл повторяется пока не станет ложным условие condition.
while void loop ()
{
while (x < 10)
{
x = x + 1;
Serial.println (x);
delay (200);
}
}
Оператор while используется, как цикл, который будет выполняться, пока условие в круглых скобках является истиной. В примере оператор цикла while будет повторять код в скобках бесконечно до тех пор, пока x будет меньше 10.
do…while void loop ()
{
do
{
x = x + 1;
delay (100);
Serial.println (x);
}
while (x < 10);
delay (900);
}
Оператор цикла do…while работает так же, как и цикл while. Однако, при истинности выражения в круглых скобках происходит продолжение работы цикла, а не выход из цикла. В приведенном примере, при x больше 10 операция сложения будет продолжаться, но с паузой 1000 мс.
break
continue
switch (x)
{
case 1: digitalWrite (3, HIGH );
case 2: digitalWrite (3, LOW );
case 3: break ;
case 4: continue ;
default : digitalWrite (4, HIGH );
}
Break используется для принудительного выхода из циклов switch, do, for и while, не дожидаясь завершения цикла.
Оператор continue пропускает оставшиеся операторы в текущем шаге цикла.

Синтаксис

;
(точка с запятой)

digitalWrite (3, HIGH );
Точка с запятой используется для обозначения конца оператора. Забытая в конце строки точка с запятой приводит к ошибке при компиляции.
{}
(фигурные скобки)
void setup ()
{
pinMode (3, INPUT );
}
Открывающая скобка “{” должна сопровождаться закрывающей скобкой “}”. Непарные скобки могут приводить к скрытым и непонятным ошибкам при компиляции скетча.
//
(комментарий)
x = 5; // комментарий

Этот симулятор лучше всего работает в браузере Chrome
Давайте рассмотрим Arduino по внимательней.

Arduino это не большой компьютер, к которому могут подключаться внешние цепи. В Arduino Uno используется Atmega 328P
Это самый большой чип на плате. Этот чип выполняет программы, которые хранятся в его памяти. Вы можете загрузить программу через usb с помощью Arduino IDE. Usb порт также обеспечивает питание arduino.

Есть отдельный разъём питания. На плате есть два вывода обозначенные 5v и 3.3v, которые нужны для того, чтобы запитывать различные устройства. Так же вы найдете контакты, помеченные как GND, это выводы земли (земля это 0В). Платформа Arduino, так же, имеет 14 цифровых выводов (пинов), помеченных цифрами от 0 до 13, которые подключаются к внешним узлам и имеют два состояния высокое или низкое (включено или выключено). Эти контакты могут работать как выходы или как входы, т.е. они могут либо передавать какие-то данные и управлять внешними устройствами, либо получать данные с устройств. Следующие выводы на плате обозначены А0-А5. Это аналоговые входы, которые могут принимать данные с различных датчиков. Это особенно удобно, когда вам надо измерить некий диапазон, например температуру. У аналоговых входов есть дополнительные функции, которые можно задействовать отдельно.

Как использовать макетную плату.

Макетная плата нужна для того чтобы временно соединить детали, проверить, как работает устройство, до того как вы спаяете все вместе.
Все нижеследующие примеры собраны на макетной плате, чтобы можно было быстро вносить изменения в схему и повторно использовать детали не заморачиваясь с пайкой.

В макетной плате есть ряды отверстий, в которые вы можете вставлять детали и провода. Некоторые из этих отверстий электрически соединены друг с другом.

Два верхних и нижних ряда соединены по - рядно вдоль всей платы. Эти ряды используются, чтобы подавать питание на схему. Это может быть 5в или 3.3в, но в любом случае, первое, что вам надо сделать - это подключить 5в и GND на макетную плату, как показано на рисунке. Иногда эти соединения рядов могут прерываться посередине платы, тогда, если вам понадобится, вы можете их соединить, как показано на рисунке.








Остальные отверстия, расположенные в середине платы, группируются по пять отверстий. Они используется для соединения деталей схемы.


Первое, что мы подключим к нашему микроконтроллеру, это светодиод. Схема электрических соединений показана на картинке.

Для чего нужен резистор в схеме? В данном случае он ограничивает ток, который проходит через светодиод. Каждый светодиод рассчитан на определённый ток, и если этот ток будет больше, то светодиод выйдет из строя. Узнать, какого номинала должен быть резистор можно с помощью закона ома. Для тех кто не знает или забыл, закон ома говорит, что существует линейная зависимость тока от напряжения. Т.е, чем больше мы приложим напряжение к резистору, тем больше потечет через него ток.
V=I*R
Где V -напряжение на резистор
I - ток через резистор
R - сопротивление, которое надо найти.
Во-первых, мы должны узнать напряжение на резистор. Большинство светодиодов 3мм или 5мм, которые вы будете использовать, имеют рабочее напряжение 3в. Значит, на резисторе нам надо погасить 5-3=2в.

Затем мы вычислим ток, проходящий через резистор.
Большинство 3 и 5мм светодиодов светятся полной яркостью при токе 20мА. Ток больше этого может вывести их из строя, а ток меньшей силы снизит их яркость, не причинив никакого вреда.

Итак, мы хотим включить светодиод в цепь 5в,чтобы на нем был ток 20мА. Так как все детали включены в одну цепь на резистор тоже будет ток 20мА.
Мы получаем
2В = 20 мА * R
2В = 0.02A * R
R = 100 Ом

100 Ом это минимальное сопротивление, лучше использовать немного больше, потому, что светодиоды имеют некоторый разброс характеристик.
В данном примере используется резистор 220 Ом. Только потому, что у автора их очень много:wink: .

Вставьте светодиод в отверстия посередине платы таким образом, чтобы его длинный вывод был соединён с одним из выводов резистора. Второй конец резистора соедините с 5V, а второй вывод светодиода соедините с GND. Светодиод должен загореться.

Обратите внимание, что есть разница, как соединять светодиод. Ток течёт от более длинного вывода к более короткому. На схеме это можно представить, что ток течёт в ту сторону, куда направлен треугольник. Попробуйте перевернуть светодиод и вы увидите, что он не будет светиться.

А вот как вы будете соединять резистор, разницы совсем нет. Можете его перевернуть или попробовать подсоединить к другому выводу светодиода, это не повлияет на работу схемы. Он все так же будет ограничивать ток через светодиод.

Анатомия Arduino Sketch.

Программы для Arduino называют sketch. Они состоят из двух основных функций. Функция setup и функция loop
внутри этой функции вы будете задавать все основные настройки. Какие выводы будут работать на вход или выход, какие библиотеки подключать, инициализировать переменные. Функция Setup() запускается только один раз в течение скетча, когда стартует выполнение программы.
это основная функция, которая выполняется после setup() . Фактически это сама программа. Это функция будет выполняться бесконечно, пока вы не выключите питание.

Arduino мигает светодиодом



В этом примере мы соединим схему со светодиодом к одному из цифровых выводов Arduino и будем включать и выключать его с помощью программы, а так же вы узнаете несколько полезных функций.

Эта функция используется в setup () части программы и служит для инициализации выводов, которые вы будете использовать, как вход (INPUT) или выход (OUTPUT) . Вы не сможете считать или записать данные с пина, пока не установите его соответственно в pinMode . Эта функция имеет два аргумента: pinNumber - это номер пина, который вы будете использовать.

Mode -задает, как пин будет работать. На вход (INPUT) или выход (OUTPUT) . Чтобы зажечь светодиод мы должны подать сигнал ИЗ Arduino. Для этого мы настраиваем пин на выход.
- эта функция служит для того, чтобы задать состояние (state) пина (pinNumber) . Есть два основных состояния (вообще их 3), одно это HIGH , на пине будет 5в, другое это Low и на пине будет 0в. Значит, чтобы зажечь светодиод нам надо на пине, соединенном со светодиодом выставить высокий уровень HIGH .

Задержка. Служит для задержки работы программы на заданный в мсек период.
Ниже приведен код, который заставляет мигать светодиод.
//LED Blink int ledPin = 7;//пин Arduino к которому подключен светодиод void setup() { pinMode(ledPin, OUTPUT);// установка пина как ВЫХОД } void loop() { digitalWrite(ledPin, HIGH);//зажечь светодиод delay(1000);// задержка 1000 мсек (1 сек) digitalWrite(ledPin, LOW);//Выключить светодиод delay(1000);//ждать 1 сек }

Небольшие пояснения по коду.
Строки, которые начинаются с "//" это комментарии Arduino их игнорирует.
Все команды заканчиваются точкой с запятой, если вы их забудете, то получите сообщение об ошибке.

ledPin - это переменная. Переменные используются в программах для хранения значений. В данном примере переменной ledPin присваивается значение 7, это номер пина Arduino. Когда Arduino в программе встретит строку с переменной ledPin , он будет использовать то значение, которое мы указали ранее.
Так запись pinMode(ledPin, OUTPUT) аналогична записи pinMode(7, OUTPUT) .
Но в первом случае вам достаточно поменять переменную и она поменяется в каждой строке, где используется, а во втором случае вам, чтобы поменять переменную, придётся ручками в каждой команде вносить изменения.

В первой строке указывает на тип переменной. При программировании Arduino важно всегда объявлять тип переменных. Пока вам достаточно знать, что INT объявляет отрицательные и положительные числа.
Ниже представлено моделирование скетча. Нажмите старт, чтобы посмотреть работу схемы.

Как и ожидалось, светодиод гаснет и загорается через одну секунду. Попробуйте поменять задержку, чтобы посмотреть, как она работает.

Управление несколькими светодиодами.

В этом примере вы узнаете, как управлять несколькими светодиодами. Для этого установите ещё 3 светодиода на плату и соедините их с резисторами и выводами Arduino, как показано ниже.

Для того, чтобы включать и выключать светодиоды по очереди надо написать программу подобную этой:
//Multi LED Blink int led1Pin = 4; int led2Pin = 5; int led3Pin = 6; int led4Pin = 7; void setup() { //установка пинов как ВЫХОД pinMode(led1Pin, OUTPUT); pinMode(led2Pin, OUTPUT); pinMode(led3Pin, OUTPUT); pinMode(led4Pin, OUTPUT); } void loop() { digitalWrite(led1Pin, HIGH);//зажечь светодиод delay(1000);//задержка 1 сек digitalWrite(led1Pin, LOW);//потушить светодиод delay(1000);//задержка 1 сек //do the same for the other 3 LEDs digitalWrite(led2Pin, HIGH);//зажечь светодиод delay(1000);// задержка 1 сек digitalWrite(led2Pin, LOW);//потушить светодиод delay(1000);//задержка 1 сек digitalWrite(led3Pin, HIGH);//зажечь светодиод delay(1000);// задержка 1 сек digitalWrite(led3Pin, LOW);//потушить светодиод delay(1000);//задержка 1 сек digitalWrite(led4Pin, HIGH);//зажечь светодиод delay(1000);// задержка 1 сек digitalWrite(led4Pin, LOW);//потушить светодиод delay(1000);//задержка 1 сек }

Эта программа будет отлично работать, но это не самое рациональное решение. Код надо изменить. Для того, чтобы программа работала раз за разом мы применим конструкцию, которая называется .
Циклы удобны, когда надо повторить одно и тоже действие несколько раз. В коде, проведенном выше мы повторяем строки

DigitalWrite (led4Pin, HIGH); delay (1000); digitalWrite (led4Pin, LOW); delay (1000);
полный код скетча во вложении (скачиваний: 1187)

Регулировка яркости светодиодов

Иногда вам надо будет менять яркость светодиодов в программе. Это можно сделать с помощью команды analogWrite() . Эта команда так быстро включает и выключает светодиод, что глаз не видит это мерцание. Если светодиод половину времени будет включён, а половину выключен, то визуально будет казаться, что он светится в половину своей яркости. Это называется широтно-импульсная модуляция (ШИМ или PWM по-английски). Шим применяется довольно часто, так как с ее помощью можно управлять "аналоговым" компонентом с помощью цифрового кода. Не все выводы Arduino подходят для этих целей. Только те выводы, около которых нарисовано такое обозначение "~ ". Вы увидите его рядом с выводами 3,5,6,9,10,11.
Соедините один из ваших светодиодов с одним из выводов ШИМ(у автора это вывод 9). Теперь запуститьскетч мигания светодиода, но прежде измените команду digitalWrite() на analogWrite() . analogWrite() имеет два аргумента: первый это номер вывода, а второй- значение ШИМ (0-255), применительно к светодиодам это будет их яркость свечения, а для электродвигателей скорость вращения. Ниже представлен код примера для разной яркости светодиода.
//Меняем яркость светодиода int ledPin = 9;//к этому выводу подсоединен светодиод void setup() { pinMode(ledPin, OUTPUT);// инициализация пина на вывод } void loop() { analogWrite(ledPin, 255);//полная яркость (255/255 = 1) delay(1000);// пауза 1 сек digitalWrite(ledPin, LOW);//выключить светодиод delay(1000);//пауза 1 сек analogWrite(ledPin, 191);//яркость на 3/4 (191/255 ~= 0.75) delay(1000);//пауза 1 сек digitalWrite(ledPin, LOW);//выключить светодиод delay(1000);//пауза 1 сек analogWrite(ledPin, 127);//половина яркости (127/255 ~= 0.5) delay(1000);// пауза 1 сек digitalWrite(ledPin, LOW);//выключить светодиод delay(1000);//пауза 1 сек analogWrite(ledPin, 63);//четверть яркости (63/255 ~= 0.25) delay(1000);// пауза 1 сек digitalWrite(ledPin, LOW);//выключить светодиод delay(1000);//пауза 1 сек }

Попробуйте поменять значение ШИМ в команде analogWrite () ,чтобы увидеть, как это влияет на яркость.
Далее вы узнаете, как регулировать яркость плавно от полной до нулевой. Можно,конечно, скопировать кусок кода 255 раз
analogWrite(ledPin, brightness); delay(5);//short delay brightness = brightness + 1;
Но, сами понимаете - это будет не практично. Для этого лучше всего использовать цикл FOR, который использовали ранее.
В следующем примере используются два цикла, один для уменьшения яркости от 255 до 0
for (int brightness=0;brightness=0;brightness--){ analogWrite(ledPin,brightness); delay(5); }
delay(5) используется, чтобы замедлить скорость нарастания и уменьшения яркости 5*256=1280 мсек= 1.28 сек.)
В первой строке используется "brightness- " ,для того чтобы значение яркости уменьшалось на 1, каждый раз, когда цикл повторяется. Обратите внимание, что цикл будет работать до тех пор, пока brightness >=0 .Заменив знак > на знак >= мы включили 0 в диапазон яркости. Ниже смоделирован этот скетч. //плавно меняем яркость int ledPin = 9;//к этому пину подключен светодиод void setup() { pinMode(ledPin, OUTPUT);// инициализация пина на выход } void loop() { //плавно увеличиваем яркость (0 to 255) for (int brightness=0;brightness=0;brightness--){ analogWrite(ledPin,brightness); delay(5); } delay(1000);//ждем 1 сек //плавно уменьшаем яркость (255 to 0) for (int brightness=255;brightness>=0;brightness--){ analogWrite(ledPin,brightness); delay(5); } delay(1000);//ждем 1 сек } }
Это видно не очень хорошо, но идея понятна.

RGB-светодиод и Arduino

RGB-светодиод на самом деле это три светодиода разного цвета в одном корпусе.

Включая разные светодиоды с различной яркостью можно комбинировать и получать разные цвета. Для Arduino, где количество градаций яркости равно 256 вы получите 256^3=16581375 возможных цветов. Реально их, конечно, будет меньше.
Светодиод, который мы будем использоваться общим катодом. Т.е. все три светодиода конструктивно соединены катодами к одному выводу. Этот вывод мы подсоединим к выводу GND. Остальные выводы, через ограничительные резисторы, надо подсоединить к выводам ШИМ. Автор использовал выводы 9-11.Таким образом можно будет управлять каждым светодиодом отдельно. В первом скетче показано, как включить каждый светодиод отдельно.



//RGB LED - test //pin connections int red = 9; int green = 10; int blue = 11; void setup(){ pinMode(red, OUTPUT); pinMode(blue, OUTPUT); pinMode(green, OUTPUT); } void loop(){ //включение/выключение красного светодиод digitalWrite(red, HIGH); delay(500); digitalWrite(red, LOW); delay(500); //включение/выключение зеленого светодиода digitalWrite(green, HIGH); delay(500); digitalWrite(green, LOW); delay(500); //включение/выключение синего светодиода digitalWrite(blue, HIGH); delay(500); digitalWrite(blue, LOW); delay(500); }

В следующем примере используются команды analogWrite() и , чтобы получать различные случайные значения яркости для светодиодов. Вы увидите разные цвета, меняющиеся случайным образом.
//RGB LED - random colors //pin connections int red = 9; int green = 10; int blue = 11; void setup(){ pinMode(red, OUTPUT); pinMode(blue, OUTPUT); pinMode(green, OUTPUT); } void loop(){ //pick a random color analogWrite(red, random(256)); analogWrite(blue, random(256)); analogWrite(green, random(256)); delay(1000);//wait one second }

Random(256) -возвращает случайное число в диапазоне от 0 до 255.
В прикрепленном файле скетч, который продемонстрирует плавные переходы цветов от красного к зеленому, затем к синему, красному, зеленому и т.д. (скачиваний: 326)
Пример скетча работает, но есть много повторяющегося кода. Можно упростить код, написав собственную вспомогательную функцию, которая будет плавно менять один цвет на другой.
Вот как она будет выглядеть: (скачиваний: 365)
Давайте рассмотрим определение функции по частям. Функция называется fader и имеет два аргумента. Каждый аргумент отделяется запятой и имеет тип объявленный в первой строке определения функции: void fader (int color1, int color2) . Вы видите, что оба аргумента объявлены как int , и им присвоены имена color1 и color2 в качестве условных переменных для определения функции. Void означает, что функция не возвращает никаких значений, она просто выполняет команды. Если надо было бы написать функцию, которая возвращала результат умножения это выглядело бы так:
int multiplier(int number1, int number2){ int product = number1*number2; return product; }
Обратите внимание, как мы объявили Тип int в качестве типа возвращаемого значения вместо
void .
Внутри функции идут команды, которые вы уже использовали в предыдущем скетче, только номера выводов заменили на color1 и color2 . Вызывается функция fader , ее аргументы вычисляются как color1 = red и color2 = green . В архиве полный скетч с использованием функций (скачиваний: 272)

Кнопка

В следующем скетче будет использоваться кнопка с нормально разомкнутыми контактами, без фиксации.


Это значит, что пока кнопка не нажата, ток через неё не идёт, а после отпускания, кнопка возвращается в исходное положение.
В схеме, помимо кнопки используется резистор. В данном случае он не ограничивает ток, а "подтягивает" кнопку к 0в (GND). Т.е. пока кнопка не нажата на выводе Arduino, к которому она подключена, будет низкий уровень. Резистор, используемый в схеме 10 кОм.


//определяем нажатие кнопки int buttonPin = 7; void setup(){ pinMode(buttonPin, INPUT);//инициализируем пин на вход Serial.begin(9600);//инициализируем последовательный порт } void loop(){ if (digitalRead(buttonPin)==HIGH){//если кнопка нажата Serial.println("pressed"); // выводим надпись "pressed" } else { Serial.println("unpressed");// иначе "unpressed" } }
В этом скетче несколько новых команд.
-эта команда принимает значение High (высокий уровень) и low (низкий уровень), того вывода, который мы проверяем. Предварительно в setup() этот вывод надо настроить на вход.
; //где buttonPin это номер вывода, куда подсоединяется кнопка.
Последовательный порт позволяет отправлять Arduino сообщения на компьютер, в то время, как сам контроллер выполняет программу. Это полезно для отладки программы, отправки сообщений на другие устройства или приложения. Чтобы включить передачу данных через последовательный порт (другое название UART или USART), надо инициализировать его в setup()

Serial.begin() имеет всего один аргумент-это скорость передачи данных между Arduino и компьютером.
скетче используется команда для вывода сообщения на экран в Arduino IDE (Tools >> Serial Monitor).
- конструкция позволяют контролировать ход выполнения программы, объеденив несколько проверок в одном месте.
If(если) digitalRead возвращает значение HIGH, то на мониторе выводится слово "нажата". Else(иначе) на мониторе выводится слово " отжата" . Теперь можно попробовать включать и выключать светодиод по нажатию кнопки.
//button press detection with LED output int buttonPin = 7; int ledPin = 8; void setup(){ pinMode(buttonPin, INPUT);//this time we will set button pin as INPUT pinMode(ledPin, OUTPUT); Serial.begin(9600); } void loop(){ if (digitalRead(buttonPin)==HIGH){ digitalWrite(ledPin,HIGH); Serial.println("pressed"); } else { digitalWrite(ledPin,LOW); Serial.println("unpressed"); } }

Аналоговый вход.

analogRead позволяет считать данные с одного из аналоговых выводов Arduino и выводит значение в диапазоне от 0 (0В) до 1023 (5В). Если напряжение на аналоговом входе будет равно 2.5В, то будет напечатано 2.5 / 5 * 1023 = 512
analogRead имеет только один аргумент- Это номер аналогового входа (А0-А5). В следующем скетче приводится код считывания напряжения с потенциометра. Для этого подключите переменный резистор, крайними выводами на пины 5V и GND, а средний вывод на вход А0.

Запустите следующий код и посмотрите в serial monitor, как меняются значения в зависимости от поворота ручки резистора.
//analog input int potPin = A0;//к этому пину подсоединяется центральный вывод потенциометра void setup(){ //аналоговый пин по умолчанию включен на вход, поэтому инициализация не нужна Serial.begin(9600); } void loop(){ int potVal = analogRead(potPin);//potVal is a number between 0 and 1023 Serial.println(potVal); }
Следующий скетч объединяет скетч нажатия кнопки и скетч управления яркостью светодиода. Светодиод будет включаться от кнопки, и управлять яркостью свечения будет потенциометр.
//button press detection with LED output and variable intensity int buttonPin = 7; int ledPin = 9; int potPin = A0; void setup(){ pinMode(buttonPin, INPUT); pinMode(ledPin, OUTPUT); Serial.begin(9600); } void loop(){ if (digitalRead(buttonPin)==HIGH){//if button pressed int analogVal = analogRead(potPin); int scaledVal = map(analogVal, 0, 1023, 0, 255); analogWrite(ledPin, scaledVal);//turn on led with intensity set by pot Serial.println("pressed"); } else { digitalWrite(ledPin, LOW);//turn off if button is not pressed Serial.println("unpressed"); } }

Цикл статей и обучающих схем с радиолюбительскими экспериментами на Arduino для начинающих. Это такая радиолюбительская игрушка-конструктор, из которой без паяльника, травления печатных плат и тому подобного любой чайник в электронике может собрать полноценное работающее устройство, подходящее как для профессионального прототипирования так и для любительских опытов при изучении электроники.


Плата Arduino для предназначена в первую очередь для обучения начинающих радиолюбителей основам программирования микроконтроллеров и созданию микроконтроллерных устройств своими руками без серьезной теоретической подготовки. Среда разработки Arduino позволяет, скомпилировать и загрузить в память платы готовый программный код. Причем загрузка кода предельно проста.

Arduino с чего начать новичку

В первую очередь для работы с платой Ардуино начинающему электронщику нужно скачать программу для разработки Arduino, она состоит из встроенного текстового редактора, в котором мы работаем с программным кодом, области сообщений, окна вывода текста(консоли), панели инструментов с кнопками часто применяемых команд и нескольких меню. Для загрузки своих программ и связи это программа через типовой шнур USB подключается к плате Arduino.


Код, написанный в среде Arduino, называют скетч . Он пишется в текстовом редакторе, имеющем специальные инструменты вставки/вырезки, замены/поиска текста. Во время сохранения и экспорта в области сообщений (смотри рисунок в первом уроке для начинающих, чуть ниже) появляются пояснения, также могут отображаться ошибки. Консоль показывает сообщения Arduino, включающие полные отчеты об ошибках и другую полезную информацию. Кнопки инструментальной панели позволяют проверить и записать скейтч, открыть, создать и сохранить его, открыть мониторинг последовательной шины и многое др.

Итак, переходим к первому уроку Arduino схемы начинающих электронщиков.

Контроллер Arduino UNO для удобства начинающих уже имеет сопротивление и LED-светодиод, подсоединенный к 13 выводу разъема, поэтому никаких внешних радиоэлементов в первом опыте нам не нужно.


Загрузив код, Ардуино позволяет нашей программе поучаствовать в инициализации системы. Для этого мы указываем микроконтроллеру команды, которые он выполнит в момент первоначальной загрузки и далее напрочь забудет об них (т.е. эти команды выполнятся Ардуинкой только один раз при старте). И именно с этой целью в нашем коде мы выделяем блок, в котором храняться эти команды. void setup() , а точнее в том пространстве внутри фигурных скобок этой функции, смотри программный скейтч.

Не забывайте про фигурные скобки! Потеря хотя бы одной из них сделает весь скейтч полностью нерабочим. Но и лишние скобки тоже не ставьте, т.к также возникнет ошибка.

Код скачать:
Скейтч с комментариями и пояснениями в файле 001-1_mig-led.ino

Функция void loop() это то место, куда мы помещаем команды, которые будут выполняться все то время, пока включена плата Arduino. Начав выполнение с первой команды, Ардуинка дойдет до самого конца и сразу же перейдет в начало, чтобы повторить ту же самую последовательность. И так бесконечное число раз, до тех пор, пока на плату поступает питание. По своей сути, void loop – это главная функция, точка входа в Arduino.


Функция delay (1000) задерживает обработку программы на 1000 милисекунд. Все это идет в вечном цикле loop() .

Главный вывод после восприятия нашей первой програмки на Ардуино: С помощью функций void loop и void setup мы передаем микроконтроллеру наши инструкции. Все то, что находится внутри блока setup выполнится всего один раз. Содержимое модуля loop будет повторятся в цикле до тех пор, пока останется включенным Arduino.

В предыдущей программе между включением и выключением светодиода была секундная задержка. В используемом выше простейшем коде начинающего ардуинщика был один большой минус. Для выдержки паузы между включением и отключением светодиода в одну секунду мы применили функцию delay() и поэтому в этот момент контроллер не способен выполнять другие команды в главной функции loop() . Корректировка кода в функции loop(), представленная ниже решает эту проблему.

Вместо установки значения в HIGH, а затем в LOW, мы получим значение ledPin и проинвертируем его. Допустим если оно было HIGH, то станет LOW и т.п.

Второй вариант кода Ардуино для управления светодиодом здесь:

Затем можно заменить функцию delay() . Вместо нее, лучше использовать функцию millis() . Она возвращает количество миллисекунд, прошедшее с момента старта программы. Функция переполнится приблизительно через 50 суток работы программного кода.

Похожей функцией является micros() , которая возвращает количество микросекунд, прошедшее с момента запуска программного кода. Функция вернется в ноль через 70 минут работы программы.

Конечно, это добавит немного строк кода в наш скетч, но это, сделает вас несомненно более опытным программистом и увеличит потенциал вашего Arduino. Для этого нужно всего лишь научиться применять функцию millis.

Следует четко понимать, что простейшая функция delay приостанавливает выполнение всей программы Ардуино, делая ее неспособной выполнять какие-либо задачи в этот период времени. Вместо того, чтобы приостанавливать всю нашу программ, можно подсчитывать, сколько времени прошло до завершения действия. Это, прекрасно, реализуется с помощью функции millis(). Чтобы все было легко в понимании, мы рассмотрим следующий вариант мигания светодиодом без временной задержки.

Начало этой программы такое же как и у любого другого стандартного скетча Arduino.


В данном примере используется два цифровых ввода-вывода Arduino. Светодиод подсоединяется к 8 пину, который сконфигурирован как OUTPUT. К 9 через подключена кнопка, которая настроена как INPUT. Когда нажимаем на кнопку пин 9 устанавливается в HIGH, и программа переключает вывод 8 в HIGH, тем самым включая светодиод. Отпускание кнопки сбрасывает девятый вывод в состояние LOW. Затем код переключает вывод 8 в LOW, отключая световой индикатор.

Для управления пятью светодиодами будем применять различные манипуляции с портами Arduino. Для этого напрямую запишем данные в порты Arduino, это позволит задать значения для светодиодов при помощи одной лишь функции.

Arduino UNO обладает тремя портами: B (цифровые входа/выхода с 8 по 13); C (аналоговые входа); D (цифровые входа/выхода с 0 по 7)

Каждый порт осуществляет управление тремя регистрами. Первый DDR задает чем будет являться pin входом или выходом. При помощи второго регистра PORT можно задать pin в состояние HIGH или LOW. При помощи третьего можно считать информацию о состояние ножек Arduino, в случае если они работает на вход.

Для работы схемы задействуем порт B. Для этого установим все ножки порта как цифровые выхода. У порта B всего 6 ножек. Биты регистра DDRB должны быть заданы в "1" , если пин будет использоваться как выход (OUTPUT), и в "0" , если пин планируем применять как вход (INPUT). Биты портов нумеруются с 0 по 7, но не всегда имеют все 8 пинов

Допустим: DDRB = B00111110; // установить ножки порта В с 1 по 5 как выхода, а 0 как вход.

В нашем схеме бегущих огней мы задействуем пять выходов: DDRB = B00011111 ; // установить пины порта В с 0 по 4 как выходы.

Для записи данных в порт В нужно задействовать регистр PORTB. Зажечь первый светодиод можно с помощью управляющей команды: PORTB = B00000001; , первый и четвертый LED: PORTB = B00001001 и т.п

Существует два оператора двоичного сдвига: влево и вправо. Оператор сдвига влево заставляет все биты данных переместиться влево, соответственно оператор сдвига вправо, перемещает их вправо.

Пример:

varA = 1; // 00000001
varA = 1 varA = 1 varA = 1

Теперь вернемся к исходному коду нашей программе. Нам требуется ввести две переменные: upDown будет включать в себя значения куда двигаться - вверх или вниз, а вторая cylon укажет какие Led зажигать.

Конструктивно такой светодиод имеет один общий вывод и три вывода для каждого цвета. Ниже показана схема подключения RGB-светодиода к плате Arduino с общим катодом. Все резисторы используемые в схеме для подключения должны быть одного номинала от 220-270 Ом.


Для подключения с общим катодом схема подключения трехцветного led будет почти аналогична, за исключением того, что общий вывод будет подключен не к земле (gnd на устройстве), а к выводу +5 вольт. Выводы Красный, зеленый и синий в обоих случаях подключаются к цифровым выходам контроллера 9, 10 и 11.

К девятому пину Arduino UNO подключим внешний светодиод через сопротивление 220 Ом. Для плавного управления яркостью последнего применим функцию analogWrite() . Она обеспечивает вывод ШИМ-сигнала на ножку контроллера. Причем команду pinMode() вызывать не требуется. Т.к analogWrite(pin,value) включает два параметра: pin - номер ножки для вывода, value - значение от 0 до 255.

Код:
/*
Учебный пример начинающего ардуинщика, раскрывает возможности команды analogWrite() для реализации Fade-эффекта светодиода
*/
int brightness = 0; // яркость LED
int fadeAmount = 5; // шаг изменения яркости
unsigned long currentTime;
unsigned long loopTime;

Void setup() {
pinMode(9, OUTPUT); // устанавливаем 9 пин как выход
currentTime = millis();
loopTime = currentTime;
}

Void loop() {
currentTime = millis();
if(currentTime >= (loopTime + 20)){
analogWrite(9, brightness); // устанавливаем значение на 9 выводе

Brightness = brightness + fadeAmount; // прибавляем шаг изменения яркости, которая установится в следующем цикле

// если достигли мин. или макс. значения, то идем в обратную сторону (реверс):
if (brightness == 0 || brightness == 255) {
fadeAmount = -fadeAmount ;
}
loopTime = currentTime;
}
}

Работа Arduino с энкодером

Энкодером предназначен для преобразования угла поворота в электрический сигнал. С него мы получаем два сигнала (А и В), которые противоположны по фазе. В этом учебном примере мы будем применять энкодер SparkFun COM-09117, имеющий двенадцать положений на один оборот (каждое положение ровно 30°). На приведенном ниже рисунке хорошо видно, как зависят выход А и В друг от друга при движении энкодера по часовой или против часовой стрелки.

Если сигнал А переходит от положительного уровня к нулевому, мы считываем значение выхода В. Если выход В в этот момент времени находится в положительном состоянии, значит энкодер двигается по направлению часовой стрелке, если В выдает нулевой уровень, то энкодер двигается в противоположном направлении. Считывая оба выхода, мы при помощи микроконтроллера способны вычислить направление вращения, а при помощи подсчета импульсов с А выхода энкодера - угол поворота.

При необходимости можно при помощи расчета частоты, определить насколько быстро происходит вращение энкодера.

Применяя энкодер в нашем учебном примере мы будем регулировать яркостью светодиода при помощи ШИМ выхода. Для считывания данных с энкодера мы будем использовать метод, базирующийся на программных таймерах, которые мы уже рассмотрели.

Учитывая тот факт, что в самом быстром случае, мы можем повернуть ручку энкодера на 180° за 1/10 секунды, то это будет 6 импульсов за 1/10 секунды или 60 импульсов в одну секунду.

В реальности быстрее вращать не возможно. Так как нам необходимо отслеживать все полупериоды, то частота должна быть около 120 Герц. Для полной уверенности, возьмем 200 Гц.

Так как, в данном случае, у нас используется механический энкодер, то возможен дребезг контактов, а низкая частота прекрасно отфильтровывает подобный дребезг.


По сигналам программного таймера необходимо постоянно осуществлять сравнение текущего значения выхода А энкодера с предыдущим значением. Если состояние меняется от положительного к нулю, то мы опрашиваем состояние выхода В. В зависимости от результата опроса состояния мы увеличиваем или снижаем счетчик значения яркости LED светодиода. Код программы с временным интервалом около 5 мс (200 Гц), представлен ниже:

Код начинающего ардуинщика:
/*
** Энкодер
** Для управлением яркостью светодиода применяется энкодер фирмы Sparkfun
*/

Int brightness = 120; // яркость светодиода, начинаем с половины
int fadeAmount = 10; // шаг изменения яркости
unsigned long currentTime;
unsigned long loopTime;
const int pin_A = 12; // pin 12
const int pin_B = 11; // pin 11
unsigned char encoder_A;
unsigned char encoder_B;
unsigned char encoder_A_prev=0;
void setup() {
// declare pin 9 to be an output:
pinMode(9, OUTPUT); // устанавливаем 9 вывод как выход
pinMode(pin_A, INPUT);
pinMode(pin_B, INPUT);
currentTime = millis();
loopTime = currentTime;
}
void loop() {
currentTime = millis();
if(currentTime >= (loopTime + 5)){ // проверяем состояния каждые 5мс (частота 200 Гц)
encoder_A = digitalRead(pin_A); // считываем состояние выхода А энкодера
encoder_B = digitalRead(pin_B); // выхода В энкодера
if((!encoder_A) && (encoder_A_prev)){ // если состояние меняется с положительного к нулевому
if(encoder_B) {
// выход В в положительном состояние, значит вращение осуществляется по часовой стрелке
// увеличиваем яркость свечения, не более чем до 255
if(brightness + fadeAmount }
else {
// выход В в нулевом состояние, значит вращение идет против часовой стрелки
// снижаем яркость, но не ниже нуля
if(brightness - fadeAmount >= 0) brightness -= fadeAmount;
}

}
encoder_A_prev = encoder_A; // сохраняем значение А для последующего цикла

AnalogWrite(9, brightness); // устанавливаем яркость на девятый пин

LoopTime = currentTime;
}
}

В этом примере для начинающих мы рассмотрим работу с пьезоизлучателем для генерирования звуков. Для этого возьмем пьезодатчик позволяющий генерировать звуковые волны в диапазоне частот 20 Гц - 20 кГц.

Это такая радиолюбительская конструкция где по всему объему расположены светодиоды. С помощью этой схемы можно генерировать различные световые и анимационные эффекты. Сложные схемы способны даже отображать различные объемные слова. Другими словами это элементарный объемным монитор

Сервопривод является основным элементом при конструировании различных радиоуправляемых моделей, а управление им с помощью контроллера просто и удобно.


Программа для управления проста и наглядна. Начинается она с подключения файла, содержащего все необходимые команды для управления сервоприводом. Далее, мы создаем объект servo, например servoMain. Следующая функция setup(), в которой мы прописываем, что сервопривод подсоединен к девятому выводу контроллера.

Код:
/*
Arduino Servo
*/
#include
Servo servoMain; // Обьект Servo

Void setup()
{
servoMain.attach(9); // Servo подключен к девятому выводу
}

Void loop()
{
servoMain.write(45); // Повернуть сервопривод влево на 45 °
delay(2000); // Ожидание 2000 милисекунд (2 секунды)
servoMain.write(0); // Повернуть серво влево на 0 °
delay(1000); // Пауза 1 с.

delay(1500); // Ожидание 1.5 с.
servoMain.write(135); // Повернуть серво вправо на 135 °
delay(3000); // Пауза 3 с.
servoMain.write(180); // Повернуть серво вправо на 180 °
delay(1000); // Ожидание 1 с.
servoMain.write(90); // Повернуть серво на 90 °. Центральная позиция
delay(5000); // Пауза 5 с.
}

В главной функции loop() , мы задаем команды для серводвигателя, выдерживая паузы между ними.

Схема Arduino счетчика на 7-сегментном индикаторе

Этот простой проект на Arduino для начинающих, заключается в создании схемы счетчика на обычном 7-сегментном индикаторе с общим катодом. Программный код, приведенный ниже, позволяет при нажатии на кнопку запускать счет от 0 до 9.

Семисегментный индикатор – представляет собой комбинацию 8 светодиодов (последний отвечает за точку) с общим катодом, которые можно включать в нужной последовательности так, чтобы они создавали цифры. Следует обратить внимание, что в данной схеме, смотри рисунок ниже, выводы 3 и 8 отведены под катод.


Справа показана таблица соответствия выводов Arduino и выводов светодиодного индикатора.

Код этого проекта:

byte numbers = {
B11111100, B01100000, B11011010, B11110010, B01100110,
B10110110, B10111110, B11100000, B11111110, B11100110
};
void setup() {
for(int i = 2; i pinMode(i, OUTPUT);
}
pinMode(9, INPUT);
}
int counter = 0;
bool go_by_switch = true;
int last_input_value = LOW;
void loop() {
if(go_by_switch) {
int switch_input_value = digitalRead(9);
if(last_input_value == LOW && switch_input_value == HIGH) {

}
last_input_value = switch_input_value;
} else {
delay(500);
counter = (counter + 1) % 10;
}
writeNumber(counter);
}

Void writeNumber(int number) {
if(number 9) {
return;
}
byte mask = numbers;
byte currentPinMask = B10000000;
for(int i = 2; i if(mask & currentPinMask) digitalWrite(i,HIGH);
else digitalWrite(i,LOW);
currentPinMask = currentPinMask >> 1;
}
}

Существенно расширить потенциал плат Ардуино можно и с помощью дополнительных модулей, которые можно подключить к PIN выводам практически любого устройства. Рассмотри наиболее популярные и интересные модули расширения или как их еще называют - шилды.