Домой / Игры / Страж файлового дерева: развертываем распределенную файловую систему DFS. Современные распределенные файловые системы для Linux: Основные сведения

Страж файлового дерева: развертываем распределенную файловую систему DFS. Современные распределенные файловые системы для Linux: Основные сведения

NFS - это самый известный механизм совместного доступа к файлам для Linux и других Unix-систем, потому что он присутствует во многих Unix-подобных системах и очень прост в настройке. NFS поддерживается ядром Linux, и утилиты, связанные с NFS, присутствуют в каждом дистрибутиве. Но в мире Linux существуют и более современные механизмы для совместного использования файлов и каталогов. Каждый из них имеет определенные преимущества в настройке или в использовании.

Распределенная файловая система OpenAFS - это Open Source-аналог известной коммерческой распределенной файловой системы AFS. Поддержка для распределенных файловых систем InterMezzo и Coda уже присутствует в новых ядрах Linux из серии 2.4. Новые механизмы совместного использования файлов, основанные на Web (например, WebDAV), тоже могут использоваться в качестве файловых систем.

В этой статье дается краткий обзор преимуществ распределенных файловых систем, обсуждаются самые распространенные проблемы и их решения, и описываются самые интересные из распределенных файловых систем, доступных для Linux сегодня.

Введение в распределенные файловые системы.

Сейчас сетевые файловые системы называют «распределенными». Этот термин отражает тот факт, что многие из этих файловых систем имеют гораздо больше возможностей, чем простая передача данных по сети. Носители данных, связанные с этими файловыми системами, не обязательно могут быть расположены на одном компьютере - они могут быть распределены между многими компьютерами.

Распределенные файловые системы OpenAFS и Coda имеют собственные механизмы управления разделами, которые упрощают возможности хранения общедоступной информации. Они так же поддерживают дублирование - способность делать копии разделов и сохранять их на других файловых серверах. Если один файловый сервер становится недоступным, то все равно к данным, хранящимся на его разделах, можно получить доступ с помощью имеющихся резервных копий этих разделов.

Самое главное различие между подходом Windows / MacOS (совместное использование каталогов и дисков) и подходом Linux, MacOS X и других Unix-подобных многопользовательских операционных систем - в том, как эти операционные системы используют и организовывают разделы. Windows / MacOS экспортируют разделы как отдельные каталоги или диски, и удаленные системы, которые хотят обратиться к общедоступным устройствам, должны обязательно подключить их к себе.

Когда самый высокий уровень организации в файловой системе - это раздел диска (например, как в файловых системах Windows), рабочие станции клиентов для получения доступа к этим данным должны обязательно подключиться к разделу и назначить ему отдельную букву в своей локальной раскладке (например, диск E, F, G, и т.д). Буквы могут быть назначены сетевым разделам в пользовательских и групповых профилях Windows (для стандартизации). Но, к сожалению, не на всех компьютерах расположение букв может быть одинаковым. Например, на компьютере с большим количеством жестких дисков и разделов нужные буквы могут быть заняты, и поэтому придется давать сетевым разделам другие обозначения.

Напротив, файловая система Unix - это иерархическая файловая система, к которой дополнительные разделы добавляются с помощью монтирования их к существующей директории. Это позволяет эффективно добавить любой источник данных в любую существующую файловую систему. Если вы монтируете новый источник информации к каталогу, являющемуся частью распределенной файловой системы, он сразу же становится доступным всем клиентам этой распределенной системы.

Современные распределенные файловые системы типа OpenAFS или Coda включают в себя специальные сервисы для управления разделами. Это позволяет вам смонтировать разделы различных файловых серверов в центральную иерархию директорий, поддерживаемую файловыми системами. OpenAFS использует центральный каталог, называемый «/afs», а Coda использует «/coda». Эти иерархии директорий доступны всем клиентам распределенной файловой системы, и выглядят одинаково на любой из клиентских рабочих станций. Это дает возможность пользователям работать со своими файлами одинаково на любом компьютере. Если ваш настольный компьютер не работает, вы совершенно спокойно можете использовать любой другой - все ваши файлы находятся в безопасности на сервере.

Распределенные файловые системы, предоставляющие одни и те же данные многим различным компьютерным системам, дают пользователям возможность использовать любую операционную систему, лучше всего подходящую для их задач. Пользователи Macintosh могут пользоваться всеми преимуществами графических инструментальных средств, доступных в Mac OS, и одновременно хранить свои данные на централизованных файловых серверах. Пользователи Windows так же могут иметь доступ к устойчивой глобальной файловой системе. Распределенные файловые системы особенно привлекательны при попытке координации работы между группами, расположенными в различных городах, государствах, или даже в разных странах. Преимущество - общие данные всегда доступны по сети, независимо от вашего местонахождения.

Проблемы администрации распределенных файловых систем.

Использование распределенных файловых систем дает системным администраторам не только новые возможности, но и новые проблемы. Но распределенные системы способны упростить многие из стандартных административных задач. В сетевой среде пользователи должны иметь возможность зайти в сеть под своим именем с любого компьютера. Это значит, что механизм входа в сеть (или аутентификации) тоже должен быть сетевым. Поэтому в среде распределенной файловой системы файлы групп и паролей, расположенные на индивидуальных компьютерах, вторичны по отношению к сетевым механизмам аутентификации (таким, как Kerberos или NIS, которые предоставляют пользователям возможность работать на любом компьютере). Но стандартные локальные механизмы проверки пароля все же должны существовать, чтобы администраторы могли выполнять на локальных компьютерах необходимые задачи.

Сохранение общих данных на централизованных файловых серверах (а не на индивидуальных компьютерах) упрощает такие административные задачи, как резервирование и восстановление файлов и каталогов. Это так же централизует такие стандартные административные задачи, как контроль за использованием файловой системы, и представляет новые возможности управления хранением данных - например, балансирование загрузки. Распределенные файловые системы типа OpenAFS и Coda обеспечивают встроенные логические системы управления разделами, которые дают администраторам возможность переместить интенсивно используемые данные на более мощные или менее используемые компьютеры. Если распределенная файловая система поддерживает дублирование, копии интенсивно используемых данных могут распределяться между многими файловыми серверами. Это может уменьшить нагрузку на сеть, и облегчить работу серверов. Распределенные файловые системы используют логические разделы вместо физических дисковых разделов, и это позволяет легко добавить в сеть новую свободную память прямо во время работы. (Для добавления нового диска в локальный компьютер пришлось бы потратить некоторое время).

Использование распределенных файловых систем так же облегчает возможность совместного доступа к программному и аппаратному обеспечению. Но перед этим нужно удостовериться, что лицензии к используемым программам разрешают установку программного обеспечения в распределенной файловой системе. Сервера печати - одна из первоначальных причин появления среды «клиент-сервер». Распределенные файловые системы так же упрощают совместный доступ к специализированным аппаратным средствам, соединяясь по сети с компьютером, на котором установлены нужные аппаратные средства, и при этом все еще имея доступ к вашим данным.

Использование централизованной распределенной файловой системы может обеспечивать существенные преимущества в стоимости и быстродействии выполнения работы для клиентских систем. Распределенные файловые системы существенно уменьшают аппаратные затраты, минимизируя количество памяти на любом десктопе или ноутбуке. Использование распределенной файловой системы в качестве архива для пользовательских данных обычно означает более быструю загрузку клиентских машин, потому что большое количество данных больше не хранится локально и поэтому не нуждается в проверке после перезапуска клиента. Комбинация распределенной файловой системы и использования журналируемых файловых систем на клиентских компьютерах может дать значительное увеличение скорости запуска системы.

Поддержка автономной работы с данными.

Использование распределенной файловой системы увеличивает зависимость компьютерных систем от сети. Эта зависимость от данных, к которым люди могут обращаться только по сети, вызывает некоторые интересные проблемы для пользователей лаптопов/мобильных компьютеров, которые нуждаются в доступе к своим данным даже тогда, когда доступ к сети невозможен. Это называется «автономная работа» - система должна функционировать, если ресурсы, которые обычно присутствуют в сети (например, пользовательские данные), по каким-то причинам не доступны. Даже Windows обеспечивает графический интерфейс для возможности маркировки файлов, с которыми вы хотите работать, когда вы отключены от сети, и для синхронизации этих файлов, когда вы соединяетесь повторно.

Распределенные файловые системы Coda и InterMezzo, которые являются в настоящее время доступными для Linux, тоже обеспечивают интегрированную поддержку для автономной работы. Так же сейчас ведется работа над обеспечением этой возможности для файловых систем NFS. Coda и InterMezzo уже поддерживаются ядром Linux - поддержка Intermezzo встроена в ядро, начиная с версии 2.4.5, а Coda вообще была интегрирована в ядро 2.4 с самого начала.

Coda - распределенная файловая система с происхождением из OpenAFS, которая разрабатывается в университете Carnegie Mellon с 1987 года. InterMezzo - относительно новая распределенная файловая система, упор в разработке которой сделан на высокой доступности, гибком дублировании каталогов, поддержке автономных операций, и постоянном кэшировании. Создатели InterMezzo были вдохновлены CMU Coda, но этот проект не основан на исходном тексте Coda. Начальный создатель InterMezzo, Питер Браам, был главой проекта Coda в CMU в течение нескольких лет, и после этого он сам начал разрабатывать InterMezzo и несколько других проектов.

Расширение файловых систем с помощью Web.

До создания распределенных файловых систем совместное использование файлов через сеть ограничивалось простыми передачами файлов с помощью использования протокола передачи файлов - FTP (File Transfer Protocol). Появление Всемирной паутины в значительной степени упростила процесс работы с FTP - теперь не нужно знать команды, потому что протокол FTP интегрирован в большинство броузеров. Способность легко передавать файлы через Web также вела к расширению Паутины и существенному улучшению основного протокола передачи гипертекста - HTTP (HyperText Transfer Protocol), который сейчас является основанием для многих систем распределенного использования файлов.

Самая известная из них - это WebDAV, которая расшифровывается как «Web-система распределенной авторизации и контроля версий» (Web-enabled Distributed Authoring and Versioning). WebDAV - это набор расширений к протоколу HTTP, обеспечивающий совместную среду для пользователей, которая позволяет им скачивать, упорядочивать и редактировать файлы, хранящиеся на Web-серверах.

Поддержка WebDAV встроена во многие популярные Web-серверы, например - Apache, где это основывается на опознавательных механизмах сервера. (От простых файлов.htaccess до интегрированных NIS, LDAP, или даже механизма аутентификации Windows). Использование WebDAV для доступа и модификации файлов через Web встроено в операционные системы Mac OS X, в новые версии Microsoft Internet Explorer, а так же доступно и в Linux при использовании таких приложений, как менеджер файлов Nautilus. Хотя это и не файловая система в традиционном смысле, но вы можете даже смонтировать WebDAV в Линуксе, используя загружаемый модуль ядра под названием davfs.

WebDAV обеспечивает такие стандартные для распределенных систем возможности, как блокировка файлов, создание, переименование, копирование, удаление файлов, а так же поддерживает такие продвинутые возможности, как meta-данные файла (более подробная информация о файле - заголовок, тема, создатель, и т.д). В ближайшем будущем WebDAV будет включать интегрированную поддержку управления версиями, которая упростит работу многих пользователей над общими файлами, отслеживая изменения, авторов этих изменений, и другие аспекты общего использования документа. Эти возможности контроля над версиями обеспечиваются в соответствии с протоколом DeltaV, который активно разрабатывается Рабочей группой DeltaV - подразделением Проектировочной группы Интернета (IETF - Internet Engineering Task Force). Некоторые проекты, например, Subversion (WebDAV и DeltaV-основанная замена стандарту CVS), уже доступны в альфа-версии. Subversion обеспечивает систему контроля над версиями и сохранение архива файла на основе базы данных, имеющей API языка C, и моделирует версионную файловую систему, легко доступную через Web.

Вывод.

Многие IT-специалисты, ответственные за вычислительные системы предприятий, уже используют сетевые файловые системы (NFS), или адаптеры файловых систем (Samba, Netatalk, или Novell) для объединения своих сетей. Более новые и более функциональные распределенные файловые системы - такие, как OpenAFS, Coda, InterMezzo и WebDAV - могут стать альтернативой, потому что они имеют более высокое быстродействие, улучшенную защиту, и дополнительные возможности управления разделами и создания резервных копий.

Как мы увидим в дальнейших статьях из этой серии, современные распределенные файловые системы могут быть легко интегрированы в существующую сеть. Распределенные файловые системы могут обеспечить дополнительную гибкость сети, ускорить и упростить процесс совместной работы над файлами, уменьшить затраты и упростить жизнь администраторам. Современные распределенные файловые системы дают новую жизнь слогану Sun Microsystems «The Network is the computer», расширяя файловую систему по компьютерной сети.

Этот адрес электронной почты защищён от спам-ботов. У вас должен быть включен JavaScript для просмотра.

Распределенная файловая система (Distributed File System, DFS) настраивается в операционной системе Windows 2000 Server (Панель управления Администрирование – Распределенная файловая система DFS ) и позволяет объединить файловые ресурсы, находящиеся на различных компьютерах, в одно пространство имен. Таким образом, вместо сети, состоящей из большого количества машин, пользователь видит структуру логических имен, связанных с общими ресурсами.

Преимущества DFS:

· возможность логического представления общих ресурсов, находящихся на различных серверах сети;

· удобное администрирование томов – общий ресурс, входящий в состав тома DFS, может быть отключен без какого-либо влияния на оставшуюся часть пространства имен;

· наличие графического инструмента администрирования;

· возможность организации отказоустойчивых схем хранения информации – одному логическому имени могут соответствовать несколько копий ресурса (реплик), наличие которых прозрачно для пользователя;

· сбалансированная нагрузка на общие ресурсы сети за счет связывания одного имени ресурса с разными репликами этого ресурса;

· прозрачность соответствия логического представления данных и их физического местоположения – пользователи не знают об изменениях физического местоположения ресурса;

· интегрирование с моделью безопасности Windows 2000 – используются единые учетные записи пользователей;

· интеллектуальное кэширование данных на стороне клиента;

· возможность взаимодействия с другими сетевыми файловыми системами.

Необходимость в развертывании распределенной файловой системы может возникать при наличии в сети нескольких файловых серверов или при необходимости предоставить многим пользователям постоянный доступ к нескольким общим ресурсам.

Начальной точкой для логических имен дерева DFS служит корень распределенной файловой системы, для создания которого необходимо указать некоторый общий ресурс, находящийся на сервере. Все остальные имена DFS будут находиться на следующем иерархическом уровне. Общие ресурсы компьютерной сети в дереве DFS представляются с помощью логических имен, имеющих следующее место в полном имени ресурса в сети: \\Имя_Сервера\Логическое_Имя_DFS\ Путь\Файл.



Распределенная файловая система DFS обеспечивает подключение к одному логическому имени до 32 альтернативных общих ресурсов (реплик). Если реплики находятся в разделе NTFS 5.0 в распределенной файловой системе, созданной на серверах Windows 2000 и интегрированной с Active Directory, то для них можно настроить автоматическую синхронизацию – согласование данных (репликацию). В других случаях согласование реплик необходимо выполнять вручную .

Элементы системной интеграции

В распределенных вычислительных системах или общедоступных компьютерных сетях, например в Интернете, существует множество объектов, представляющих интерес – таких, как базы данных, принтеры, серверы службы факсов, приложения, пользователи. Пользователям желательно уметь находить и использовать эти объекты. Администраторам необходимо управлять использованием этих объектов.

Служба каталогов

Каталогом называется информационный ресурс, используемый для хранения сведений о представляющих интерес объектах. В файловых системах в каталоге хранятся сведения о файлах.

Служба каталогов отличается от каталога тем, что является одновременно ресурсом данных и той службой, с помощью которой пользователи могут к этим данным обращаться и ими пользоваться.

Служба каталогов может решать следующие задачи:

· Обеспечивать уровень безопасности, определенный администраторами для защиты данных от несанкционированного доступа.

· Распределять каталог по различным компьютерам сети.

· Выполнять репликацию каталога, чтобы обеспечить доступ к нему большему числу пользователей и повысить защищенность сети от сбоев.

· Разбивать каталог на несколько разделов для обеспечения возможности хранения большого количества объектов.

Служба каталогов является как средством администратора, так и средством конечного пользователя. По мере роста числа объектов в сети повышается значение службы каталогов. Служба каталогов – это та ось, вокруг которой вращается большая распределенная система.

Active Directory – это служба каталогов, включенная в операционную систему Windows 2000/2003 Server. Она является наглядным примером системной интеграции – расширяет возможности существовавших ранее служб каталогов на базе Windows и добавляет совершенно новые возможности.

Служба каталогов Active Directory обеспечивает безопасность, распределенность, возможность разбиения на разделы и возможность репликации. Она рассчитана на установку в системе любого размера – от одиночного сервера с несколькими сотнями объектов до системы из тысяч серверов с миллионами объектов. Служба каталогов Active Directory предоставляет много новых возможностей, облегчающих поиск и управление большими объемами данных и позволяющих экономить время как администраторам, так и конечным пользователям.

Служба каталогов Active Directory образует пространство имен, в котором имя объекта в каталоге разрешается в сам объект.

Объект – это отдельный именованный набор атрибутов, представляющий нечто конкретное – например, пользователя, принтер, приложение.

Атрибуты содержат данные, описывающие ту сущность, которая идентифицируется объектом каталога. Атрибуты пользователя, например, могут содержать его имя, фамилию и адрес электронной почты.

Класс объектов определяет тип информации, содержащейся в Active Directory для экземпляров (объектов) данного класса. Следовательно, каждый объект принадлежит, по крайней мере, к одному объектному классу, представляющему собой некоторое семейство объектов с определенными общими характеристиками.

Схема службы каталогов Active Directory реализована как набор экземпляров классов объектов, которые хранятся в каталоге. Следовательно, схема – совокупность (матрица) всех атрибутов и классов.

Контейнер подобен объекту в том, что у него есть атрибуты и он является частью пространства имен службы каталогов Active Directory. Но он, в отличие от объекта, не представляет собой нечто конкретное. Он лишь «оболочка» для группы объектов и других контейнеров.

Термин дерево используется для описания иерархии объектов и контейнеров. Вершины дерева обычно являются объектами. Узлы дерева (точки, где дерево ветвится) являются контейнерами. Дерево показывает связь между объектами или путь от одного объекта к другому. Простой каталог является контейнером. Компьютерная сеть или домен также являются контейнерами. Непрерывным поддеревом называется любой неразрывный путь в дереве, включая все составляющие каждого включенного в этот путь контейнера (рис. 3.5).

Рис 3.5. Непрерывное поддерево каталога файлов

Имя идентифицирует любой объект службы каталогов Active Directory. Имена бывают двух типов: различающееся имя и относительное различающееся имя.

Различающееся имя (DN – distinguished name) определяет домен, содержащий объект, а также полный путь по иерархии контейнеров, ведущий к данному объекту. Типичное DN может иметь вид:

/O=Internet/DC=COM/DC=Microsoft/CN=Users/CN=James Smith

Это DN определяет объект-пользователь «James Smith» в домене Microsoft.com. Здесь CN обозначает общее имя. (рис. 3.6)

Рис. 3.6. Графическое представление различающегося имени

Относительное различающееся имя (RDN – Relative Distinguished Name) объекта – это часть его имени, которая представляет собой атрибут самого объекта. В предыдущем примере RDN объекта-пользователя «James Smith» будет CN=James Smith. RDN его родительского объекта будет CN=Users.

Служба каталогов Active Directory обеспечивает эффективную работу сложной корпоративной среды, предоставляя следующие возможности.

· Единая регистрация в сети . Пользователи могут регистрироваться в сети с одним именем и паролем и получать при этом доступ ко всем сетевым ресурсам (серверам, принтерам, приложениям, файлам и т. д.) независимо от их расположения в сети.

· Безопасность информации . Средства аутентификации и управления доступом к ресурсам, встроенные в службу Active Directory, обеспечивают централизованную защиту сети. Права доступа можно определять не только для каждого объекта каталога, но и каждого свойства (атрибута) объекта.

· Централизованное управление . Администраторы могут централизованно управлять всеми корпоративными ресурсами. Рутинные задачи администрирования не нужно повторять для многочисленных объектов сети.

· Администрирование с использованием групповых политик. При загрузке компьютера или регистрации пользователя в системе выполняются требования групповых политик; их настройки хранятся в объектах групповых политик (GPO) и «привязываются» к сайтам, доменам или организационным единицам. Групповые политики определяют, например, права доступа к различным объектам каталога или ресурсам, а также множество других «правил» работы в системе.

· Гибкость изменений . Служба каталогов гибко следует за изменениями структуры компании или организации. При этом реорганизация каталога не усложняется, а может и упроститься. Кроме того, службу каталога можно связать с Интернетом для взаимодействия с деловыми партнерами и поддержки электронной коммерции.

· Интеграция с DNS . Служба Active Directory тесно связана с DNS. Этим достигается единство в именовании ресурсов локальной сети и глобальной сети Интернет, в результате чего упрощается подключение пользовательской сети к Интернету. Служба каталогов Active Directory использует систему DNS в качестве службы определения местоположения. Имена доменов Windows 2000/2003 являются именами доменов DNS.

· Расширяемость каталога . Администраторы могут добавлять в схему каталога новые классы объектов или добавлять новые атрибуты к существующим классам.

· Масштабируемость . Служба Active Directory может охватывать как один домен, так и множество доменов, один контроллер домена или множество контроллеров домена – т. е. она отвечает требованиям сетей любого масштаба. Несколько доменов можно объединить в дерево доменов, а несколько деревьев доменов можно связать в лес.

· Репликация информации . В службе Active Directory используется репликация служебной информации в схеме со многими ведущими (multi-master), что позволяет модифицировать каталог на любом контроллере домена. Наличие в домене нескольких контроллеров обеспечивает отказоустойчивость и возможность распределения сетевой нагрузки.

· Гибкость запросов к каталогу . Пользователи и администраторы сети могут быстро находить объекты в сети, используя свойства объекта (например, имя пользователя или адрес его электронной почты, тип принтера или его местоположение и т. п.). Это, в частности, можно сделать при помощи команды Пуск – Поиск папку Мое сетевое окружение или оснастку Active Directory пользователи и компьютеры .Оптимальность процедуры поиска достигается благодаря использованию глобального каталога.

· Стандартные интерфейсы . Для разработчиков приложений служба каталогов предоставляют доступ ко всем возможностям (средствам) каталога и поддерживают принятые стандарты и интерфейсы программирования (API). Служба каталогов тесно связана с операционной системой, что позволяет избежать дублирования в прикладных программах функциональных возможностей системы, например, средств безопасности.

Основные компоненты любой службы каталога – база данных, содержащая нужную информацию, и один или несколько протоколов, обеспечивающих доставку данных пользователям. Active Directory обеспечивает хранение любой общедоступной информации. Как и другие службы каталогов, Active Directory обеспечивает некоторый механизм хранения информации и протоколы для доступа к ней.

Можно сказать, что служба Active Directory «стоит на трех китах»:

· Стандарт Х.500

· Служба DNS (Domain Name Service)

· Протокол LDAP (Lightweight Directory Access Protocol)

В Active Directory частично реализована модель данных, описываемая стандартом Х.500. Традиционная в сетях TCP/IP служба DNS используется, в частности, для поиска контроллеров домена, а благодаря протоколу LDAP клиенты могут по имени находить в каталоге Active Directory нужные объекты и получать доступ к их атрибутам.

Для понимания структуры Active Directory рассмотрим сначала отличия Windows 2000 от предыдущих версий серверных операционных систем Windows. Компьютеры на базе Windows 2000 по-прежнему объединяются в домены. Домены – это известное решение для администрирования групп, предоставляющее каждому пользователю учетную запись в конкретном домене. Однако, в отличие от Windows NT Server 4.0, где доменам давались простые строковые имена (имена NetBIOS), в среде Windows 2000 Server каждый домен должен иметь имя, отвечающее соглашениям именования доменов Domain Name System (DNS). Так, домен, имеющий имя NetBIOS MainOffice при обновлении может получить новое имя типа mainoffice.company.com.

В каждом домене один или несколько компьютеров должны выполнять функции контроллеров домена. В среде Windows 2000 Server каждый контроллер домена содержит полную копию базы данных Active Directory этого домена.

В Active Directory используются так называемое ядро Extended Storage Engine (ESE) и два различных протокола, обеспечивающих связь между клиентами и базой данных.

Для поиска контроллера домена клиент обращается к протоколу, описанному в DNS – «стандартной» службе каталогов, применяемой в настоящее время для сетей TCP/IP.

Для доступа к данным в Active Directory клиент использует протокол Lightweight Directory Access Protocol (LDAP) (рис. 3.7).

Рис 3.7. Доступ к данным с использованием LDAP

После того как с помощью DNS нужный контроллер домена обнаружен, для доступа к данным Active Directory используется протокол LDAP. Протокол LDAP работает поверх TCP/IP и – как следует из названия протокола – определяет способы доступа к каталогу со стороны клиентов.

Помимо механизма доступа данный протокол реализует соглашения по именованию информации в каталоге, в явном виде описывая структуру этой информации. Для клиента все данные, хранящиеся в базе LDAP, представляются в виде иерархического дерева. Каждый узел дерева (объект или элемент) может быть либо контейнером, либо листом. Различие между ними вполне очевидно: контейнеры могут содержать другие элементы, а листья – нет.

Каждый элемент (контейнер или лист) представляет собой некоторый объектный класс, определяющий атрибуты (называемые также свойствами) данного элемента. Поскольку атрибуты есть и у контейнеров, и у листьев, информация, хранящаяся в дереве каталога, распределена по всем узлам.

Тип информации (объектные классы и типы атрибутов), содержащейся в конкретной базе данных Active Directory, задается схемой, определенной для этого каталога. В Active Directory схема каждого каталога представлена элементами, хранящимися непосредственно в самом каталоге. Компания Microsoft определяет стандартную схему, однако пользователи и разработчики программных средств могут добавлять новые классы и типы атрибутов. Изменение схемы каталога – полезная возможность, которой нужно пользоваться очень осторожно, поскольку такие изменения могут иметь весьма значительные последствия.

Две главные цели.

Сетевая прозрачность.
Самая важная цель - обеспечить те же самые возможности доступа к файлам, распределенным по сети ЭВМ, которые обеспечиваются в системах разделения времени на централизованных ЭВМ.

Высокая доступность.
Другая важная цель - обеспечение высокой доступности. Ошибки систем или осуществление операций копирования и сопровождения не должны приводить к недоступности файлов.

Понятие файлового сервиса и файлового сервера .

Файловый сервис - это то, что файловая система предоставляет своим клиентам, т.е. интерфейс с файловой системой.
Файловый сервер - это процесс, который реализует файловый сервис.

Пользователь не должен знать, сколько файловых серверов имеется и где они расположены.

Так, как файловый сервер обычно является обычным пользовательским процессом, то в системе могут быть различные файловые серверы, предоставляющие различный сервис (например, UNIX файл сервис и MS-DOS файл сервис).

5.1 Архитектура распределенных файловых систем

Распределенная система обычно имеет два существенно отличающихся компонента - непосредственно файловый сервис и сервис директорий.

5.1.1 Интерфейс файлового сервера

Для любой файловой системы первый фундаментальный вопрос - что такое файл. Во многих системах, таких как UNIX и MS-DOS, файл - не интерпретируемая последовательность байтов. На многих централизованных ЭВМ (IBM/370) файл представляется последовательность записей, которую можно специфицировать ее номером или содержимым некоторого поля (ключом). Так, как большинство распределенных систем базируются на использовании среды UNIX и MS-DOS, то они используют первый вариант понятия файла.

Файл может иметь атрибуты (информация о файле, не являющаяся его частью). Типичные атрибуты - владелец, размер, дата создания и права доступа.

Важный аспект файловой модели - могут ли файлы модифицироваться после создания. Обычно могут, но есть системы с неизменяемыми файлами. Такие файлы освобождают разработчиков от многих проблем при кэшировании и размножении.

Защита обеспечивается теми же механизмами, что и в однопроцессорных ЭВМ - мандатами и списками прав доступа. Мандат - своего рода билет, выданный пользователю для каждого файла с указанием прав доступа. Список прав доступа задает для каждого файла список пользователей с их правами. Простейшая схема с правами доступа - UNIX схема, в которой различают три типа доступа (чтение, запись, выполнение), и три типа пользователей (владелец, члены его группы, и прочие).

Файловый сервис может базироваться на одной из двух моделей - модели загрузки/разгрузки и модели удаленного доступа . В первом случае файл передается между клиентом (памятью или дисками) и сервером целиком, а во втором файл сервис обеспечивает множество операций (открытие, закрытие, чтение и запись части файла, сдвиг указателя, проверку и изменение атрибутов, и т.п.). Первый подход требует большого объема памяти у клиента, затрат на перемещение ненужных частей файла. При втором подходе файловая система функционирует на сервере, клиент может не иметь дисков и большого объема памяти.

5.1.2 Интерфейс сервера директорий

Обеспечивает операции создания и удаления директорий, именования и переименования файлов, перемещение файлов из одной директории в другую.

Определяет алфавит и синтаксис имен. Для спецификации типа информации в файле используется часть имени (расширение) либо явный атрибут.

Все распределенные системы позволяют директориям содержать поддиректории - такая файловая система называется иерархической . Некоторые системы позволяют создавать указатели или ссылки на произвольные директории, которые можно помещать в директорию. При этом можно строить не только деревья, но и произвольные графы (разница между ними очень важна для распределенных систем, поскольку в случае графа удаление связи может привести к появлению недостижимых поддеревьев. Обнаруживать такие поддеревья в распределенных системах очень трудно).

Ключевое решение при конструировании распределенной файловой системы - должны или не должны машины (или процессы) одинаково видеть иерархию директорий. Тесно связано с этим решением наличие единой корневой директории (можно иметь такую директорию с поддиректориями для каждого сервера).

Прозрачность именования .
Две формы прозрачности именования различают - прозрачность расположения (/server/d1/f1) и прозрачность миграции (когда изменение расположения файла не требует изменения имени).

    Имеются три подхода к именованию:

  • машина + путь;
  • монтирование удаленных файловых систем в локальную иерархию файлов;
  • единственное пространство имен, которое выглядит одинаково на всех машинах.
Последний подход необходим для достижения того, чтобы распределенная система выглядела как единый компьютер, однако он сложен и требует тщательного проектирования.

Двухуровневое именование .
Большинство систем используют ту или иную форму двухуровневого именования. Файлы (и другие объекты) имеют символические имена для пользователей, но могут также иметь внутренние двоичные имена для использования самой системой. Например, в операции открыть файл пользователь задает символическое имя, а в ответ получает двоичное имя, которое и использует во всех других операциях с данным файлом. Способы формирования двоичных имен различаются в разных системах:

  • если имеется несколько не ссылающихся друг на друга серверов (директории не содержат ссылок на объекты других серверов), то двоичное имя может быть то же самое, что и в ОС UNIX;
  • имя может указывать на сервер и файл;
  • в качестве двоичных имен при просмотре символьных имен возвращаются мандаты, содержащие помимо прав доступа либо физический номер машины с сервером, либо сетевой адрес сервера, а также номер файла.
В ответ на символьное имя некоторые системы могут возвращать несколько двоичных имен (для файла и его дублей), что позволяет повысить надежность работы с файлом.

5.1.3 Семантика разделения файлов

UNIX-семантика
Естественная семантика однопроцессорной ЭВМ - если за операцией записи следует чтение, то результат определяется последней из предшествующих операций записи. В распределенной системе такой семантики достичь легко только в том случае, когда имеется один файл-сервер, а клиенты не имеют кэшей. При наличии кэшей семантика нарушается. Надо либо сразу все изменения в кэшах отражать в файлах, либо менять семантику разделения файлов.

Неизменяемые файлы - очень радикальный подход к изменению семантики разделения файлов.
Только две операции - создать и читать. Можно заменить новым файлом старый - т.е. можно менять директории. Если один процесс читает файл, а другой его подменяет, то можно позволить первому процессу доработать со старым файлом в то время, как другие процессы могут уже работать с новым. Семантика сессий Изменения открытого файла видны только тому процессу (или машине), который производит эти изменения, а лишь после закрытия файла становятся видны другим процессам (или машинам). Что происходит, если два процесса одновременно работали с одним файлом - либо результат будет определяться процессом, последним закрывшим файл, либо можно только утверждать, что один из двух вариантов файла станет текущим.

Транзакции
Процесс выдает операцию НАЧАЛО ТРАНЗАКЦИИ, сообщая тем самым, что последующие операции должны выполняться без вмешательства других процессов. Затем выдает последовательность чтений и записей, заканчивающуюся операцией КОНЕЦ ТРАНЗАКЦИИ. Если несколько транзакций стартуют в одно и то же время, то система гарантирует, что результат будет таким, каким бы он был в случае последовательного выполнения транзакций (в неопределенном порядке). Пример - банковские операции.

5.2 Реализация распределенных файловых систем

Выше были рассмотрены аспекты распределенных файловых систем, которые видны пользователю. Ниже рассматриваются реализационные аспекты.

5.2.1 Использование файлов

Приступая к реализации очень важно понимать, как система будет использоваться. Приведем результаты некоторых исследований использования файлов (статических и динамических) в университетах. Очень важно оценивать представительность исследуемых данных.

  • большинство файлов имеют размер менее 10К (следует перекачивать целиком).
  • чтение встречается гораздо чаще записи (кэширование).
  • чтение и запись последовательны, произвольный доступ редок (упреждающее кэширование, чтение с запасом, выталкивание после записи следует группировать).
  • большинство файлов имеют короткое время жизни (создавать файл в клиенте и держать его там до уничтожения).
  • мало файлов разделяются (кэширование в клиенте и семантика сессий).
  • существуют различные классы файлов с разными свойствами (следует иметь в системе разные механизмы для разных классов).

5.2.2 Структура системы

Есть ли разница между клиентами и серверами ? Имеются системы, где все машины имеют одно и то же ПО и любая машина может предоставлять файловый сервис. Есть системы, в которых серверы являются обычными пользовательскими процессами и могут быть сконфигурированы для работы на одной машине с клиентами или на разных. Есть системы, в которых клиенты и серверы являются фундаментально разными машинами с точки зрения аппаратуры или ПО (требуют различных ОС, например).

Второй вопрос - должны ли быть файловый сервер и сервер директорий отдельными серверами или быть объединенными в один сервер. Разделение позволяет иметь разные серверы директорий (UNIX, MS-DOS) и один файловый сервер. Объединение позволяет сократить коммуникационные издержки.

В случае разделения серверов и при наличии разных серверов директорий для различных поддеревьев возникает следующая проблема. Если первый вызванный сервер будет поочередно обращаться ко всем следующим, то возникают большие коммуникационные расходы. Если же первый сервер передает остаток имени второму, а тот третьему, и т.д., то это не позволяет использовать RPC.

Возможный выход - использование кэша подсказок. Однако в этом случае при получении от сервера директорий устаревшего двоичного имени клиент должен быть готов получить отказ от файлового сервера и повторно обращаться к серверу директорий (клиент может не быть конечным пользователем!).

Последний важный вопрос - должны ли серверы хранить информацию о клиентах.

Серверы с состоянием . Достоинства.

  • Короче сообщения (двоичные имена используют таблицу открытых файлов).
  • выше эффективность (информация об открытых файлах может храниться в оперативной памяти).
  • блоки информации могут читаться с упреждением.
  • убедиться в достоверности запроса легче, если есть состояние (например, хранить номер последнего запроса).
  • возможна операция захвата файла.

Серверы без состояния . Достоинства.

  • устойчивость к ошибкам.
  • не требуется операций ОТКРЫТЬ/ЗАКРЫТЬ.
  • не требуется память для таблиц.
  • нет ограничений на число открытых файлов.
  • нет проблем при крахе клиента.

5.2.3 Кэширование

В системе клиент-сервер с памятью и дисками есть четыре потенциальных места для хранения файлов или их частей.

Во-первых, хранение файлов на дисках сервера. Нет проблемы когерентности, так как одна копия файла существует. Главная проблема - эффективность, поскольку для обмена с файлом требуется передача информации в обе стороны и обмен с диском.

Кэширование в памяти сервера. Две проблемы - помещать в кэш файлы целиком или блоки диска, и как осуществлять выталкивание из кэша.

Коммуникационные издержки остаются.

Избавиться от коммуникаций позволяет кэширование в машине клиента.

Кэширование на диске клиента может не дать преимуществ перед кэшированием в памяти сервера, а сложность повышается значительно.

Поэтому рассмотрим подробнее организацию кэширования в памяти клиента.

  • кэширование в каждом процессе. (Хорошо, если c файлом активно работает один процесс - многократно открывает и закрывает файл, читает и пишет, например в случае процесса базы данных).
  • кэширование в ядре. (Накладные расходы на обращение к ядру).
  • кэш-менеджер в виде отдельного процесса. (Ядро освобождается от функций файловой системы, но на пользовательском уровне трудно эффективно использовать память, особенно в случае виртуальной памяти. Возможна фиксация страниц, чтобы избежать обменов с диском).
Оценить выбор того или иного способа можно только при учете характера приложений и данных о быстродействии процессоров, памятей, дисков и сети.
    Когерентность кэшей.
Алгоритм со сквозной записью .
Необходимость проверки, не устарела ли информация в кэше. Запись вызывает коммуникационные расходы (MS-DOS).

Алгоритм с отложенной записью .
Через регулярные промежутки времени все модифицированные блоки пишутся в файл. Эффективность выше, но семантика непонятная пользователю (UNIX).

Алгоритм записи в файл при закрытии файла .
Реализует семантику сессий. Не намного хуже случая, когда два процесса на одной ЭВМ открывают файл, читают его, модифицируют в своей памяти и пишут назад в файл.

Алгоритм централизованного управления .
Можно выдержать семантику UNIX, но не эффективно, ненадежно, и плохо масштабируется.

5.2.4 Размножение

Система может предоставлять такой сервис, как поддержание для указанных файлов нескольких копий на различных серверах. Главные цели:
  1. Повысить надежность.
  2. Повысить доступность (крах одного сервера не вызывает недоступность размноженных файлов.
  3. Распределить нагрузку на несколько серверов.
  4. Явное размножение (непрозрачно). В ответ на открытие файла пользователю выдаются несколько двоичных имен, которые он должен использовать для явного дублирования операций с файлами.
  5. Ленивое размножение. Одна копия создается на одном сервере, а затем он сам автоматически создает (в свободное время) дополнительные копии и обеспечивает их поддержание.
  6. Симметричное размножение. Все операции одновременно вызываются в нескольких серверах и одновременно выполняются.
Протоколы коррекции.
Просто посылка сообщений с операцией коррекции каждой копии является не очень хорошим решением, поскольку в случае аварий некоторые копии могут остаться не скорректированными. Имеются два алгоритма, которые решают эту проблему.
  1. Метод размножения главной копии. Один сервер объявляется главным, а остальные - подчиненными. Все изменения файла посылаются главному серверу. Он сначала корректирует свою локальную копию, а затем рассылает подчиненным серверам указания о коррекции. Чтение файла может выполнять любой сервер. Для защиты от краха главного сервера до завершения всех коррекций, до выполнения коррекции главной копии главный сервер запоминает в стабильной памяти задание на коррекцию. Слабость - выход из строя главного сервера не позволяет выполнять коррекции.
  2. Метод голосования. Идея - запрашивать чтение и запись файла у многих серверов (запись - у всех!). Запрос может получить одобрение у половины серверов плюс один. При этом должно быть согласие относительно номера текущей версии файла. Этот номер увеличивается на единицу с каждой коррекцией файла. Можно использовать различные значения для кворума чтения (Nr) и кворума записи (Nw). При этом должно выполняться соотношение Nr+Nw>N. Поскольку чтение является более частой операцией, то естественно взять Nr=1. Однако в этом случае для кворума записи потребуются все серверы.

5.2.5 Пример: Sun Microsystems Network File System (NFS)

Изначально реализована Sun Microsystem в 1985 году для использования на своих рабочих станций на базе UNIX. В настоящее время поддерживается также другими фирмами для UNIX и других ОС (включая MS-DOS). Интересны следующие аспекты NFS - архитектура, протоколы и реализация. Архитектура NFS. Позволяет иметь произвольное множество клиентов и серверов на произвольных ЭВМ локальной или широкомасштабной сети.

Каждый сервер экспортирует некоторое число своих директорий для доступа к ним удаленных клиентов. При этом экспортируются директории со всеми своими поддиректориями, т.е. фактически поддеревья. Список экспортируемых директорий хранится в специальном файле, что позволяет при загрузке сервера автоматически их экспортировать.

Клиент получает доступ к экспортированным директориям путем их монтирования. Если клиент не имеет дисков, то может монтировать директории в свою корневую директорию.

Если несколько клиентов одновременно смонтировали одну и ту же директорию, то они могут разделять файлы в общей директории без каких либо дополнительных усилий. Простота - достоинство NFS. Протоколы NFS. Поскольку одна из целей NFS - поддержка гетерогенных систем, клиенты и серверы могут работать на разных ЭВМ с различной архитектурой и различными ОС. Поэтому необходимо иметь строгие протоколы их взаимодействия. NFS имеет два таких протокола.
Первый протокол поддерживает монтирование . Клиент может послать серверу составное имя директории (имя пути) и попросить разрешения на ее монтирование. Куда будет монтировать директорию клиент для сервера значения не имеет и поэтому не сообщается ему. Если путь задан корректно и директория определена как экпортируемая, то сервер возвращает клиенту дескриптор директории. Дескриптор содержит поля, уникально идентифицирующие тип ЭВМ, диск, номер i-вершины (понятие ОС UNIX) для данной директории, а также информацию о правах доступа к ней. Этот дескриптор используется клиентом в последующих операциях с директорией.

Многие клиенты монтируют требуемые удаленные директории автоматически при запуске (используя командную процедуру shell-интерпретатора ОС UNIX).

Версия ОС UNIX, разработанная Sun (Solaris), имеет свой специальный режим автоматического монтирования. С каждой локальной директорией можно связать множество удаленных директорий. Когда открывается файл, отсутствующий в локальной директории, ОС посылает запросы всем серверам (владеющим указанными директориями). Кто ответит первым, директория того и будет смонтирована. Такой подход обеспечивает и надежность, и эффективность (кто свободнее, тот раньше и ответит). При этом подразумевается, что все альтернативные директории идентичны. Поскольку NFS не поддерживает размножение файлов или директорий, то такой режим автоматического монтирования в основном используется для директорий с кодами программ или других редко изменяемых файлов.

Второй протокол - для доступа к директориям и файлам. Клиенты посылают сообщения, чтобы манипулировать директориями, читать и писать файлы. Можно получить атрибуты файла. Поддерживается большинство системных вызовов ОС UNIX, исключая OPEN и CLOSE. Для получения дескриптора файла по его символическому имени используется операция LOOKUP, отличающаяся от открытия файла тем, что никаких внутренних таблиц не создается. Таким образом, серверы в NFS не имеют состояния (stateless). Поэтому для захвата файла используется специальный механизм.

NFS использует механизм защиты UNIX. В первых версиях все запросы содержали идентификатор пользователя и его группы (для проверки прав доступа). Несколько лет эксплуатации системы показали слабость такого подхода. Теперь используется криптографический механизм с открытыми ключами для проверки законности каждого запроса и ответа. Данные не шифруются.

Все ключи, используемые для контроля доступа, поддерживаются специальным сервисом (и серверами) - сетевым информационным сервисом (NIS). Храня пары (ключ, значение), сервис обеспечивает выдачу значения кода при правильном подтверждении ключей. Кроме того, он обеспечивает отображение имен машин на их сетевые адреса, и другие отображения. NIS-серверы используют схему главный -подчиненные для реализации размножения (ленивое размножение). Реализация NFS (XDR - External Data Represantation)

Задача уровня виртуальной файловой системы - поддерживать для каждого открытого файла строку в таблице (v-вершину), аналогичную i-вершине UNIX. Эта строка позволяет различать локальные файлы от удаленных. Для удаленных файлов вся необходимая информация хранится в специальной r-вершине в NFS-клиенте, на которую ссылается v-вершина. У сервера нет никаких таблиц.

Передачи информации между клиентом и сервером NFS производятся блоками размером 8К (для эффективности).

Два кэша - кэш данных и кэш атрибутов файлов (обращения к ним очень часты, разработчики NFS исходили из оценки 90%). Реализована семантика отложенной записи - предмет критики NFS.

Имеется также кэш подсказок для ускорения получения v-вершины по символическому имени. При использовании устаревшей подсказки NFS-клиент будет обращаться к NFS-серверу и корректировать свой кэш (пользователь об этом ничего не должен знать).

Лаборатория Параллельных Информационных Технологий, НИВЦ МГУ

Поскольку в сетях широко распространены общие файлы, администраторы все чаще сталкиваются с проблемами при предоставлении доступа пользователям к необходимым им данным. В операционной системе Windows 2000 распределенная файловая система (Distributed File System, DFS) предоставляет администраторам механизм для создания логических представлений каталогов и файлов независимо от того, где эти файлы физически находятся в сети. Кроме того, благодаря использованию DFS обеспечивается отказоустойчивость сетевых ресурсов хранения.

На этой странице

Введение

Поскольку в сетях широко распространены общие файлы, администраторы все чаще сталкиваются с проблемами при предоставлении доступа пользователям к необходимым им данным. В операционной системе Windows 2000 распределенная файловая система предоставляет администраторам механизм для создания логических представлений каталогов и файлов независимо от того, где эти файлы физически находятся в сети. Кроме того, благодаря использованию DFS обеспечивается отказоустойчивость сетевых ресурсов хранения. В этом руководстве описано, как использовать мастер создания нового корня DFS (New DFS Root Wizard), а также другие средства для работы с DFS.

Предварительные условия

В примерах, приведенных в этом документе, подразумевается, что уже сконфигурирована и используется служба каталогов Active Directory, и у Вас имеются права администратора домена и сервера, на котором будет конфигурироваться DFS. Для этой цели Вы можете воспользоваться базовой инфраструктурой, описанной в Пошаговом руководстве по развертыванию базовой инфраструктуры Windows 2000 Server (Step-by-Step Guide to a Common Infrastructure for Windows 2000 Server Deployment) http://www.microsoft.com/windows2000/techinfo/planning/server/serversteps.asp (EN).

Использование оснастки Распределенная файловая система DFS

В этом пошаговом руководстве описывается, как использовать оснастку . Хотя установка службы DFS производится автоматически при установке ОС Windows 2000 Server, Вы должны сконфигурировать DFS для обеспечения доступа клиентов к общим сетевым ресурсам. Для выполнения этих процедур Вам необходимо войти на контроллер домена под учетной записью администратора домена.

В операционной системе Windows 2000 распределенная файловая система может быть интегрирована со службой каталогов Active Directory для обеспечения отказоустойчивости корней DFS, располагающихся как на контроллерах домена Windows 2000 так и на рядовых серверах. Если в Вашем домене Windows 2000 имеется несколько серверов, любое количество этих серверов может использоваться в качестве хостов для обеспечения отказоустойчивости конкретного корня DFS. Служба каталогов Active Directory используется для обеспечения совместного использования контроллеров домена в общей топологии DFS, обеспечивая таким образом избыточность и отказоустойчивость.

Вы можете также создать изолированный сервер DFS, однако, при этом Вы не получите преимуществ службы каталогов Active Directory, и не будет обеспечена отказоустойчивость корневого уровня. Контроллер домена может быть несущим только для одного корня DFS, но в действительности нет ограничений на количество корней DFS в каждом домене. Каждый корень DFS могут поддерживать до 32 контроллеров домена. В домене может поддерживаться несколько корневых томов DFS. Дополнительные компьютеры, которые поддерживают корневые или дочерние узлы (ссылки), позволяют улучшить распределение нагрузки, повысить отказоустойчивость и обеспечить обслуживание сетевых клиентов на основе их принадлежности определенным сайтам сети. Ссылки DFS, указанные в корне, задаются с помощью UNC-пути, доступного для сервера и клиентов DFS.

В этом руководстве Вам будет предложено создать отказоустойчивый корень DFS.

Начало работы с DFS

Нажмите кнопку Пуск (Start) , выберите Программы (Programs) , перейдите в раздел Администрирование (Administrative Tools) и выберите Распределенная файловая система DFS (Distributed File System) .

Щелкните правой кнопкой мыши на корневом элементе Распределенная файловая система DFS (Distributed File System) , расположенном на левой панели, и нажмите Создать корень DFS (New DFS Root) . Отобразится Мастер создания нового корня DFS (New DFS Root Wizard) . Для продолжения нажмите кнопку Далее (Next) .

Убедитесь, что переключатель установлен в позицию Создание корень DFS в домене (Create a domain DFS root) , и нажмите кнопку Далее (Next) для продолжения.

Выберите несущий домен для корня DFS (в нашем примере это домен reskit.com) и нажмите кнопку Далее (Next) для продолжения.

Рисунок 1 – Выбор несущего домена для корня DFS

Выберите несущий сервер для этого корня DFS. В нашем примере это сервер HQ-RES-DC-01.Reskit.com . Нажмите кнопку Далее (Next) для продолжения.

Укажите общую папку, которая будет использоваться в качестве целевой для этого корня DFS. Установите переключатель в положение Создать новый общий ресурс (Create a new share) , введите путь к этой общей папке (в нашем случае это c:\dfsbooks) и укажите имя этой общей папки – Books . Оснастка Распределенная файловая система DFS (Distributed File System) позволит Вам создать новый каталог и настроить для него общий доступ, если ранее это не было сделано.

Рисунок 2 – Выбор общей папки для корневого тома DFS

Нажмите кнопку Далее (Next) . Если указанная папка не существует, то Вам будет задан вопрос о необходимости ее создания. Нажмите кнопку Да (Yes) для продолжения. По желанию Вы можете ввести комментарий с описанием этого корня. Для продолжения нажмите кнопку Далее (Next) .

Нажмите кнопку Готово (Finish) для создания корня DFS. После завершения работы мастера создания нового корня DFS (Create New DFS Root Wizard) Вы можете приступать к администрированию Вашего корня DFS.

Если у Вас имеется несколько контроллеров домена, обеспечивающих отказоустойчивость DFS, помните, что для отказоустойчивости DFS используется служба каталогов Active Directory, которая хранит сведения о топологии. Следовательно, необходимо, чтобы сведения о топологии реплицировались между контроллерами домена. Обновление конфигурации DFS изначально производится на одном из серверов домена Windows 2000, который содержит корень DFS. Различные контроллеры домена могут содержать различные данные о текущем состоянии конфигурации DFS, пока мастером репликации не будут реплицированы сведения об изменениях конфигурации DFS между всеми контроллерами доменов. Корень DFS и все его ссылки хранятся в виде единого элемента, имеющего тип – большой бинарный объект (Binary Large Object, BLOB). После осуществления изменений в этом большом бинарном объекте, необходимо выполнение репликации всего бинарного объекта целиком так, чтобы эти изменения были отражены на всех контроллерах домена в домене.

Репликация данных между двумя контроллерами домена, расположенными в пределах одного сайта занимает около пяти минут, и как минимум 15 минут для контроллеров домена, находящихся в различных сайтах. Пока репликация не будет выполнена, конфигурация DFS , отображаемая с помощью оснастки Распределенная файловая система DFS (Distributed File System)на различных клиентах, может различаться. Вы можете воспользоваться кнопкой Обновить (Refresh) для обновления отображаемых сведений о текущем состоянии хоста DFS.

Если Вы выполнили описанные выше процедуры, то сейчас в Вашей сети имеется пустой корень DFS в службе каталогов Active Directory. Чтобы эта общая папка представляла интерес для пользователей, Вам необходимо опубликовать в ней нелокальные общие папки данного пространства имен DFS.

Для публикации нелокальной общей папки

Щелкните правой кнопкой мыши на созданном Вами корневом объекте DFS и затем нажмите Создать ссылку DFS (New DFS Link) .

Щелкните правой кнопкой мыши на объекте \\Reskit.com\Books .

Определите каталог для данной ссылки. В нашем примере названием ссылки будет ART . Укажите действительный UNC-адрес общей папки Windows 2000, находящейся в Вашей сети, в поле Переадресовать пользователя на эту общую папку (Send the user to this network path) . Для этих целей можно также воспользоваться кнопкой Обзор (Browse) . В нашем примере используется общая папка Architecture , расположенная на сервере BR3-VAN-SRV-01 , который входит в домен Vancouver .

Примечание. Эта общая папка была предварительно создана для этого упражнения.

Рисунок 3 – Выбор общей папки

Нажмите кнопку OK . Вы можете опционально указать комментарий и значение таймаута. Значение таймаута определяет число секунд, на которое клиентами кэшируется указатель, и по истечении которого они должны будут обновить указатель с одного из несущих DFS-серверов.

Если имеется несколько серверов для конфигурирования (например, на двух серверах, один из которых находится в Хартфорде, а второй – в Сиэтле, содержится идентичная информация), то Вы можете добавить их для этого набора реплик. Для этого на значке общей папки, опубликованной в корневом DFS, щелкните правой кнопкой мыши и нажмите Создать реплику (New Replica) .

Выберите общую папку \\Reskit\BR2-RES-SRV-01\Engineering Diagrams и нажмите кнопку OK .

Нажмите OK еще раз.

Щелкните правой кнопкой мыши на подключенной ссылке и нажмите Политика репликации (Replication Policy) . Выберите каждую общую папку и нажмите кнопку Подключить (Enable) , затем нажмите кнопку OK .

Примечание . Для возможности использования репликации общие папки корня или ссылок DFS должны располагаться на томах NTFS 5.0, находящихся на контроллере домена Windows 2000 или на рядовых серверах. Флагом Основной (Primary) помечены конкретные файлы и папки серверов, указанные для принудительной начальной репликации, после выполнения которой будут осуществляться штатные репликации.

Рисунок 5 – Политика репликации
На рисунке, представленном ниже, изображена оснастка DFS после выполнения описанных процедур.

Рисунок 6 – Корень DFS

Проверка механизма DFS

Любой пользователь, вошедший в домен Windows 2000, теперь сможет получить доступ к отказоустойчивой распределенной файловой системе. Полагая, что у него имеются соответствующие права, он может настроить индивидуальные подключения, выполнив следующую процедуру:

В рабочем окружении этот сетевой диск физически может располагаться на другом сервере или рабочей станции. Любой пользователь, получивший доступ к отказоустойчивой общей папке, может продолжать работу, не прерываясь. Плановые мероприятия, проводящиеся на сервере такие как, обновления программного обеспечения и другие задачи, которые обычно требуют отключения сервера, теперь могут выполняться, не влияя на работу пользователей.

Чтобы получить доступ к корню DFS с помощью Проводника (Windows Explorer)

Нажмите Пуск (Start) , нажмите Выполнить (Run) и введите \\reskit.com\book в текстовом поле Открыть (Open) и нажмите OK .

Щелкнув правой кнопкой мыши по отображенной на панели обозревателя ссылке, выбрав Свойства (Properties) , Вы можете перейти на вкладку DFS диалогового окна Свойства (Properties) для просмотра следующей информации:

В случае физического отключения одного из двух серверов у Вас все равно будет доступ к ресурса по тому же пути DFS. При этом, если один из серверов пространства имен DFS, поддерживающих корень или ссылку DFS, станет недоступен, то будет автоматически выполнен перенос подключения на другой доступный общий сетевой ресурс. Заметим, что это возможно только для отказоустойчивых корневых и дочерних узлов, содержимое которых продублировано на нескольких серверах.

Примечание . В данное время, DFS поддерживает службу кластеров (Microsoft Cluster Service), используя только DFS на основе отдельных компьютеров, поэтому Вы не можете создать отказоустойчивую топологию DFS, работающую в кластере, поскольку кластер выступает в роли единого компьютера.

Репликация

Если Вы используете отказоустойчивую распределенную файловую систему в окружении, в котором имеется множество контроллеров домена, важно определить время, которое необходимо для выполнения репликации данных между контроллерами домена, требуемое для конкретной конфигурации DFS. Для немедленной репликации Вам понадобиться инструмент REPLMon , который Вы можете установить из папки support\tools, находящейся на компакт-диске Windows 2000 Server.

Клиенты, которые до сих пор используют ранние версии операционных систем (например, Windows NT 4.0), и которым необходимо использовать возможности DFS, не смогут воспользоваться отказоустойчивостью корня DFS. Однако, такие клиенты могут напрямую подключаться к конкретным корням DFS, которые входят в состав отказоустойчивой распределенной файловой системы. В таком случае при использовании команды Net use необходимо заменить имя домена на имя конкретного компьютера.

Рабочие станции, работающие под управлением Windows NT и использующие DFS, могут также определить, какую общую папку они используют в текущий момент. Для этого необходимо воспользоваться вкладкой DFS , находящейся в диалоговом окне Свойства (Properties) общей папки в проводнике (Windows Explorer).

Примечание. Большинство административных функций могут быть выполнены из командной строки или с помощью файла-сценария с использованием утилиты DFSCMD.EXE. Введите в командной строке DFSCMD /? для получения краткой справки по команде.

Рисунок 7 – Просмотр свойств DFS
При необходимости Вы всегда можете изменить свойства этого объекта.

Также Вы можете опубликовать Ваш отказоустойчивый DFS корень, как общую папку в Active Directory, и получать к ней доступ с использованием обозревателя службы каталогов. Откройте оснастку Active Directory – пользователи и компьютеры (Active Directory Users and Computers) , щелкните правой кнопкой мыши на объекте Вашего домена, нажмите Создать (New) , выберите опцию Общие папки (Shared Folders) и введите соответствующую информацию.

Ключевым компонентом любой распределенной системы является файловая система. Как и в централизованных системах, в распределенной системе функцией файловой системы является хранение программ и данных и предоставление доступа к ним по мере необходимости. Файловая система поддерживается одной или более машинами, называемыми файл-серверами. Файл-серверы перехватывают запросы на чтение или запись файлов, поступающие от других машин (не серверов). Эти другие машины называются клиентами. Каждый посланный запрос проверяется и выполняется, а ответ отсылается обратно. Файл-серверы обычно содержат иерархические файловые системы, каждая из которых имеет корневой каталог и каталоги более низких уровней. Рабочая станция может подсоединять и монтировать эти файловые системы к своим локальным файловым системам. При этом монтируемые файловые системы остаются на серверах.

Важно понимать различие между файловым сервисом и файловым сервером. Файловый сервис – это описание функций, которые файловая система предлагает своим пользователям. Это описание включает имеющиеся примитивы, их параметры и функции, которые они выполняют. С точки зрения пользователей файловый сервис определяет то, с чем пользователи могут работать, но ничего не говорит о том, как все это реализовано. В сущности, файловый сервис определяет интерфейс файловой системы с клиентами.

Файловый сервер – это процесс, который выполняется на отдельной машине и помогает реализовывать файловый сервис. В системе может быть один файловый сервер или несколько, но в хорошо организованной распределенной системе пользователи не знают, как реализована файловая система. В частности, они не знают количество файловых серверов, их месторасположение и функции. Они только знают, что если процедура определена в файловом сервисе, то требуемая работа каким-то образом выполняется, и им возвращаются требуемые результаты. Более того, пользователи даже не должны знать, что файловый сервис является распределенным. В идеале он должен выглядеть также, как и в централизованной файловой системе.

Так как обычно файловый сервер – это просто пользовательский процесс (или иногда процесс ядра), выполняющийся на некоторой машине, в системе может быть несколько файловых серверов, каждый из которых предлагает различный файловый сервис. Например, в распределенной системе может быть два сервера, которые обеспечивают файловые сервисы систем UNIX и MS-DOS соответственно, и любой пользовательский процесс пользуется подходящим сервисом.

Файловый сервис в распределенных файловых системах (впрочем как и в централизованных) имеет две функционально различные части: собственно файловый сервис и сервис каталогов. Первый имеет дело с операциями над отдельными файлами, такими, как чтение, запись или добавление, а второй – с созданием каталогов и управлением ими, добавлением и удалением файлов из каталогов и т.п.



Для любого файлового сервиса, независимо от того, централизован он или распределен, самым главным является вопрос, что такое файл? Во многих системах, таких как UNIX и MS DOS, файл – это неинтерпретируемая последовательность байтов. Значение и структура информации в файле является заботой прикладных программ, операционную систему это не интересует.

В ОС мейнфреймов поддерживаются разные типы логической организации файлов, каждый с различными свойствами. Файл может быть организован как последовательность записей, и у операционной системы имеются вызовы, которые позволяют работать на уровне этих записей. Большинство современных распределенных файловых систем поддерживают определение файла как последовательности байтов, а не последовательности записей. Файл характеризуется атрибутами: именем, размером, датой создания, идентификатором владельца, адресом и другими.

Важным аспектом файловой модели является возможность модификации файла после его создания. Обычно файлы могут модифицироваться, но в некоторых распределенных системах единственными операциями с файлами являются СОЗДАТЬ и ПРОЧИТАТЬ. Такие файлы называются неизменяемыми. Для неизменяемых файлов намного легче осуществить кэширование файла и его репликацию (тиражирование), так как исключается все проблемы, связанные с обновлением всех копий файла при его изменении.

Файловый сервис может быть разделен на два типа в зависимости от того, поддерживает ли он модель загрузки-выгрузки или модель удаленного доступа. В модели загрузки-выгрузки пользователю предлагаются средства чтения или записи файла целиком. Эта модель предполагает следующую схему обработки файла: чтение файла с сервера на машину клиента, обработка файла на машине клиента и запись обновленного файла на сервер. Преимуществом этой модели является ее концептуальная простота. Кроме того, передача файла целиком очень эффективна. Главным недостатком этой модели являются высокие требования к дискам клиентов. Кроме того, неэффективно перемещать весь файл, если нужна его маленькая часть.

Другой тип файлового сервиса соответствует модели удаленного доступа, которая предполагает поддержку большого количества операций над файлами: открытие и закрытие файлов, чтение и запись частей файла, позиционирование в файле, проверка и изменение атрибутов файла и так далее. В то время как в модели загрузки-выгрузки файловый сервер обеспечивал только хранение и перемещение файлов, в данном случае вся файловая система выполняется на серверах, а не на клиентских машинах. Преимуществом такого подхода являются низкие требования к дисковому пространству на клиентских машинах, а также исключение необходимости передачи целого файла, когда нужна только его часть.

Природа сервиса каталогов не зависит от типа используемой модели файлового сервиса. В распределенных системах используются те же принципы организации каталогов, что и в централизованных, в том числе многоуровневая организация каталогов.

Принципиальной проблемой, связанной со способами именования файлов, является обеспечение прозрачности. В данном контексте прозрачность понимается в двух слабо различимых смыслах. Первый – прозрачность расположения – означает, что имена не дают возможности определить месторасположение файла. Например, имя /server1/dir1/ dir2/x говорит, что файл x расположен на сервере 1, но не указывает, где расположен этот сервер. Сервер может перемещаться по сети, а полное имя файла при этом не меняется. Следовательно, такая система обладает прозрачностью расположения.

В системах, состоящих из клиентов и серверов, потенциально имеется четыре различных места для хранения файлов и их частей: диск сервера, память сервера, диск клиента (если имеется) и память клиента. Наиболее подходящим местом для хранения всех файлов является диск сервера. Он обычно имеет большую емкость, и файлы становятся доступными всем клиентам. Кроме того, поскольку в этом случае существует только одна копия каждого файла, то не возникает проблемы согласования состояний копий.

Проблемой при использовании диска сервера является производительность. Перед тем, как клиент сможет прочитать файл, файл должен быть переписан с диска сервера в его оперативную память, а затем передан по сети в память клиента. Обе передачи занимают время.

Значительное увеличение производительности может быть достигнуто за счет кэширования файлов в памяти сервера. Требуются алгоритмы для определения, какие файлы или их части следует хранить в кэш-памяти.

При выборе алгоритма должны решаться две задачи. Во-первых, какими единицами оперирует кэш. Этими единицами могут быть или дисковые блоки, или целые файлы. Если это целые файлы, то они могут храниться на диске непрерывными областями (по крайней мере в виде больших участков), при этом уменьшается число обменов между памятью и диском а, следовательно, обеспечивается высокая производительность. Кэширование блоков диска позволяет более эффективно использовать память кэша и дисковое пространство.

Во-вторых, необходимо определить правило замены данных при заполнении кэш-памяти. Здесь можно использовать любой стандартный алгоритм кэширования, например, алгоритм LRU (least recently used), соответствии с которым вытесняется блок, к которому дольше всего не было обращения.

Кэш-память на сервере легко реализуется и совершенно прозрачна для клиента. Так как сервер может синхронизировать работу памяти и диска, с точки зрения клиентов существует только одна копия каждого файла, так что проблема согласования не возникает.