Домой / Игры / Энкодер цоколевка. Энкодеры. Виды и работа. Особенности и применение

Энкодер цоколевка. Энкодеры. Виды и работа. Особенности и применение

Мне заказали разработку программы для устройства, в котором в качестве управляющего элемента используется инкрементальный энкодер. Поэтому я решил написать внеплановый урок о работе с энкодером в системе Ардуино.

Совсем коротко, о чем идет речь, т.е. о классификации энкодеров.

Энкодеры это цифровые датчики угла поворота. Другими словами преобразователи угол-код.

Я подчеркиваю, что это цифровые датчики, потому что существует большое число датчиков с выходными аналоговыми сигналами. Простой переменный резистор можно считать датчиком угла. Энкодеры формируют на выходе дискретные сигналы.

Энкодеры бывают абсолютные и накапливающие (инкрементальные).

Абсолютные энкодеры формируют на выходе код, соответствующий текущему углу положения вала. У них нет памяти. Можно выключить устройство, повернуть вал энкодера, включить и на выходе будет новый код, показывающий новое положение вала. Такие энкодеры сложные, дорогие, часто используют для подключения стандартные цифровые интерфейсы RS-485 и им подобные.

Инкрементальные энкодеры формируют на выходе импульсы, появляющиеся при повороте вала. Принимающее устройство может определить текущий угол вала энкодера, подсчитав количество импульсов на его выходе. После включения питания инкрементальные энкодеры не способны определить положение вала. Необходимо привязать его к началу отсчета.

Но в большинстве случаев нет необходимости знать абсолютное значение текущего угла. Если мы энкодером, например, регулируем уровень громкости, то нам надо увеличить ее на несколько градаций или уменьшить. Мы не смотрим на ручку энкодера, на ней нет шкалы. Нам необходимо определить изменение угла относительно текущего положения. То же самое касается установки параметров на дисплее. Мы крутим ручку энкодера и смотрим, как изменяется значение параметра на экране дисплея.

В подобных случаях инкрементальные энкодеры становятся идеальными устройствами управления, установки параметров, выбора меню. Они намного удобнее, чем кнопки ”+” и ”-”.

В этих случаях можно использовать самые простые механические инкрементальные энкодеры, которые отличаются низкой ценой.

Для реализации демонстрационного проекта нам понадобятся:

  • 24-позиционный энкодер;
  • 16 светодиодов (3 мм);
  • драйвер светодиодов A6276 ;
  • микроконтроллер PIC18F2550 .

Энкодер - современный и оригинальный элемент управления цифровыми устройствами, и по внешнему виду похож на переменный резистор (см. рисунок ниже). Другое название этого элемента управления - датчик угла, датчик поворота. Вращение вала сопровождается щелчками, например 24 щелчка на один оборот. Энкодер имеет 3 вывода - A, B, C и применяется для быстрого ввода данных в цифровые устройства. Некоторые модели имеют встроенную кнопку, которая срабатывает по нажатию на вал энкодера (добавляется еще один вывод).

Принцип работы энкодера

При повороте на один щелчок, например, вправо, сначала замыкается контакт А+С, затем В+С. Когда в этом щелчке вал доворачивается, в той же последовательности контакты размыкаются. При повороте вала в другую сторону, последовательность замыкания с контактом С меняется, т.е. при повороте влево замыкаются сначала В+С, затем А+С.

Используя энкодер в проектах на микроконтроллерах, возможно, при помощи одного и того же энкодера, реализовать несколько различных типов ввода данных, однако, это требует некоторой обратной связи и визуализации, чтобы пользователь знал, какую информацию он вводит и в какой позиции энкодер.

Принципиальная схема

Выводы энкодера A и B подключаются к портам микроконтроллера RB4 и RB5, вывод С энкодера подключается к «земле». Стоит заметить, что на сигнальные линии выводов A и B должны быть подключены подтягивающие резисторы. Энкодер не случайно подключен к указанным линиям ввода/вывода микроконтроллера: во-первых, порт B имеет встроенные подтягивающие резисторы и нам не придется подключать внешние, во-вторых, порт B микроконтроллера имеет очень полезную функцию - «interrupt-on-change» - прерывание по изменению уровня, что позволит нам отслеживать состояние энкодера.

16 обычных 3 мм светодиодов используются для визуализации вводимых данных и расположены они будут на печатной плате вокруг установленного энкодера. Светодиоды подключены к микросхеме A6276.

Микросхема A6276 представляет собой драйвер светодиодов с 16-битным последовательным вводом информации. Драйвер содержит 16-битный КМОП сдвиговый регистр, соответствующие защелки и драйверы для управления светодиодами и может управлять большим количеством светодиодов, чем это позволяет микроконтроллер. Кроме того, драйвером можно управлять по интерфейсу SPI, что дополнительно сокращает количество используемых линий ввода/вывода и делает проект масштабируемым.

Программное обеспечение микроконтроллера для решения нашей задачи относительно простое. Реализуется 3 режима работы (ввод информации) и обратная связь:

  • Режим позиционирования на 360° - в этом режиме светодиоды указывают текущую «позицию» энкодера, пользователь может поворачивать вал энкодера влево и вправо на любой угол;
  • Режим «Громкость/Уровень» - в этом режиме светодиоды указывают текущее значение между минимальным и максимальным уровнями диапазона ввода (как уровень громкости в аудиоустройствах);
  • Режим 3-позиционного ротационного тумблера - в этом режиме имеется только три выбираемых позиции, которые пользователь выбирает, поворачивая вал энкодера влево/вправо.

Демонстрация работы проекта

Загрузки

ZIP-архив с проектом в среде MPLAB и исходным кодом на Hitech C, а также, принципиальная схема и топология печатной платы находятся .

Из этой статьи вы узнаете, что такое энкодер, зачем он нужен, и как его подружить с микроконтроллером. Если вы пользовались современной стиральной машиной, микроволновой печью или аудио системой то, скорее всего вы уже имели дело с энкодером, сами того не подозревая. Например, в большинстве современных домашних и автомобильных стерео систем энкодеры используются для регулировки громкости звука.
Энкодер или датчик угла поворота – это электромеханическое устройство, предназначенное для преобразования углового положения вала или оси в электрические сигналы. Существует два основных типа энкодеров - инкрементные и абсолютные.
Инкрементный энкодер при вращении формирует импульсы, число которых пропорционально углу поворота. Подсчет числа этих импульсов даст нам величину угла поворота вала энкодера относительно его начального положения. Этот тип энкодеров не формирует выходные импульсы, когда его вал находится в покое. Инкрементные энкодеры находят широкое применение в индустриальных средствах управления, бытовой и музыкальной технике.
Абсолютный энкодер для каждой позиции своего вала выдает уникальный код. Ему, в отличии от инкрементного энкодера, счетчик не нужен, угол вращения всегда известен. Абсолютный энкодер формирует сигнал и когда вал вращается, и когда он находится в покое. Абсолютный энкодер не теряет информацию о своем положении при потере питания и не требует возврата в начальную позицию. Этот тип энкодеров применяется в промышленно оборудовании - робототехнике, станках, конвейерных линиях.
Я хотел бы рассказать о сопряжении инкрементного механического энкодера с микроконтроллером. Для этого я приобрел инкрементный энкодер фирмы Bourns - PEC12-4220F-S0024. Вот расшифровка его названия согласно datasheet: PEC12 – модель, 4 – вертикальное положение выводов, 2 – 24 стопора, 20 – длина вала в мм, S – наличие кнопки, 0024 – 24 импульса за оборот.

У него 5 выводов. 2 вывода на фотографии слева – выводы кнопки, 3 вывода на фотографии справа – выводы энкодера. Из них - 2 сигнальных и 1 общий. Он посередине. Схема подключения энкодера ничем не отличается от подключения обычных кнопок. Сигнальные выводы энкодера подключаем к любому порту ввода вывода микроконтроллера. Общий вывод энкодера сажаем на землю. Для защиты от дребезга контактов не лишним будет добавить еще пару керамических конденсаторов номиналом в несколько нанофарад. Выводы микроконтроллера в программе конфигурируем как входы и включаем подтягивающие резисторы. Можно использовать внешние.

Когда ручка энкодера стоит неподвижно – на входах микроконтроллера присутствуют логические единицы. Когда ручку энкодера поворачивают, на выводах микроконтроллера появляются два прямоугольных сигнала сдвинутых друг относительно друга. От направления вращения вала энкодера зависит, какой из сигналов будет опережать другой. На рисунке ниже представлены возможные варианты сигналов для идеального случая.


Внутри энкодера имеются контакты, которые при вращении то замыкаются, то размыкаются. Этот процесс естественно сопровождается дребезгом, поэтому реальные сигналы могут выглядеть вот так.


Сигналы сняты со старого энкодера, включенного без фильтрующих конденсаторов.


Алгоритм обработки сигналов энкодера выглядит следующим образом. В обработчике прерывания таймера запускается функция опроса энкодера. Она считывает логические уровни, присутствующие на выводах микроконтроллера к которым подключен энкодер и записывает их во временную переменную. Внутри функции есть статическая переменная (переменная, которая сохраняет свое значение при выходе из функции) хранящая последовательность предыдущих состояний. С помощью битовой маски микроконтроллер выделяет из этой переменной последнее состояние и сравнивает его с текущим, чтобы определить произошли ли изменения. Если состояния равны – функция завершает работу, если отличны – значение статической переменной сдвигается влево на 2 разряда и на «освободившееся» место записывается текущее состояние. Таким образом, если вал энкодера вращается, функция будет постоянно сохранять некую повторяющуюся кодовую последовательность. При вращении вправо – это будет 11100001. При вращении влево – 11010010. По этим последовательностям микроконтроллер и будет понимать, в какую сторону происходит вращение.

Исходник для работы с энкодером можно скачать . Архив содержит два файла: encoder.h и encoder.c. В хедере задаются порт и номера выводов, к которым подключен энкодер, константы LEFT_SPIN и RIGHT_SPIN. Также там описаны прототипы функций. Сишный файл содержит реализацию функций.


void InitEncoder(void) – инициализирует выводы порта.

void PollEncoder(void)
– однократно опрашивает энкодер. Если зафиксировано вращение, записывает в буфер одну из констант, если нет, просто завершает работу.

unsigned char GetStateEncoder(void)
– возвращает содержимое буфера и очищает его.

Опрос энкодера я обычно произвожу с частотой ~ 4 кГц. Если опрашивать медленней, микроконтроллер будет пропускать импульсы при быстрых поворотах ручки энкодера. Если энкодер используется для установки линейно меняющейся величины, например для установки времени в часах, то в качестве констант LEFT_SPIN и RIGHT_SPIN удобно использовать числа 255 и 1 соответственно. В обработчике сигналов энкодера эти числа просто складываются с устанавливаемой величиной. При сложении с 1 величина увеличивается на 1, при сложении с 255 уменьшается на 1. Конечно это актуально если эта величина однобайтная. Ну а в принципе константы LEFT_SPIN и RIGHT_SPIN можно выбирать произвольно, главное правильно написать обработчик. На этом все.

Исходник для работы с энкодером .

Узнайте, как использовать инкрементальный поворотный энкодер в проекте на Arduino.

Поворотный энкодер представляет собой электромеханическое устройство, которое преобразует вращательное движение в цифровую или аналоговую информацию. Он очень похож на потенциометр, но может вращаться бесконечно как по часовой стрелке, так и против часовой стрелки. Существует несколько типов поворотных энкодеров. Двумя основными типами являются абсолютные и относительные (инкрементальные) энкодеры. В то время как абсолютный энкодер выдает значение, пропорциональное текущему углу вала, инкрементальный энкодер выдает шаг движения вала и его направление. Поворотные энкодеры становятся всё более и более популярными в потребительской электронике, особенно в качестве ручек управления, в дополнение к приложениям во многих других областях. Они заменяют собой потенциометры и кнопки навигации, где требуются быстрая навигация, настройка, ввод данных и выбор пункта меню. Некоторые энкодеры также включают в себя встроенную кнопку, которая создает дополнительный вход для процессора, который может использоваться в качестве другой пользовательской команды в интерфейсе управления. На рисунке ниже вы можете увидеть типовой инкрементальный поворотный энкодер с кнопкой включения.

В данной статье мы покажем вам, как использовать инкрементальный поворотный энкодер в проекте на Arduino. Мы объясним, как бороться с дребезгом контактов и интерпретировать сигналы энкодера в программе микроконтроллера, используя прерывания.

Сигнал квадратурного выхода инкрементального энкодера

Инкрементальный поворотный энкодер во время поворота вала генерирует два выходных сигнала, что также называется квадратурным выходом. В зависимости от направления один сигнал опережает другой. Ниже вы можете увидеть форму выходного сигнала инкрементального поворотного энкодера и ожидаемую последовательность битов.

Как видно из рисунка, оба выхода в изначально находятся в состоянии логической единицы. Когда вал энкодера начинает вращаться в направлении по часовой стрелке, первым падает до логического нуля состояние на выходе A, а затем с отставанием за ним следует и выход B. При вращении против часовой стрелки всё происходит наоборот. Временные интервалы на диаграмме сигнала зависят от скорости вращения, но отставание сигналов гарантируется в любом случае. На основе этой характеристики инкрементального поворотного энкодера мы напишем программу для Arduino.

Фильтрация дребезга контактов механического энкодера

Механические энкодеры имеют встроенные переключатели, которые формируют сигнал на квадратурном выходе во время вращения.

Когда имеем дело с сигналами энкодера, основной проблемой является дребезг контактов. Он вызывает ошибочное определение направления вращения и величины поворота вала энкодера и делает использование энкодеров проблематичным. Мы можем избавиться от дребезга контактов, отфильтровывая его в программе или используя дополнительные схемы фильтрации.

Фильтрация шума в программном обеспечении микроконтроллера является одним из вариантов фильтрации, но она обладает некоторыми недостатками. Вам необходимо написать более сложный код для обработки шума. Фильтрация займет время обработки и внесет задержки в основной поток программы. Вам может потребоваться установить таймеры, чтобы игнорировать интервалы дребезга контактов. В конце концов, возможно, у вас не получится получить удовлетворительный и надежный результат.

Фильтрация шума с помощью дополнительных аппаратных средств проще, и она останавливает шум еще в его источнике. Вам понадобится RC фильтр первого порядка. На рисунке ниже вы можете увидеть, как выглядит сигнал после использования RC фильтра.

RC-фильтр замедляет время спада и время нарастания и обеспечивает аппаратное удаление дребезга контактов. При выборе пары резистор-конденсатор вы должны учитывать максимальную частоту вращения. Иначе будет отфильтрован и ожидаемый отклик энкодера.

Простое приложение

Мы создадим приложение, демонстрирующее, как использовать поворотный энкодер в проекте на Arduino. Мы будем использовать энкодер для навигации, ввода данных и выбора. Ниже приведена принципиальная схема приложения.

Схема построена на базе платы Arduino Uno. Для графического интерфейса используется LCD дисплей Nokia 5110. В качестве средств управления добален механический поворотный энкодер с кнопкой и RC-фильтрами.

Мы разработаем простое программное меню, в котором и продемонстрируем работу поворотного энкодера.

Обработка сигналов энкодера с помощью прерываний

Сигналы энкодера должны быть обнаружены и интерпретированы в программе как можно быстрее, чтобы не блокировать основной поток программы. Мы можем детектировать сигналы путем опроса в основном цикле, или используя прерывания. Опрос не эффективен, так как вам необходимо зарезервировать время и ресурсы в основном цикле, что приводит к дополнительным задержкам. Использование прерываний - это более быстрое и экономичное решение. Мы покажем вам, как использовать прерывания для обработки сигналов энкодера.

В Atmega328 есть два типа прерываний, которые можно использовать для этих целей; внешнее прерывание и прерывание по изменению состояния вывода. Выводы INT0 и INT1 назначены на внешнее прерывание, а PCINT0 - PCIN15 назначены на прерывание по изменению состояния вывода. Внешнее прерывание может определить, произошел ли спад или нарастание входного сигнала, и может быть запущено при одном из следующих состояний: нарастание, спад или переключение. Для прерывания по изменению состояния выводов существует гораздо больше аппаратных ресурсов, но оно не может обнаруживать нарастающий и спадающий фронты, и оно вызывается, когда происходит любое изменение логического состояния (переключение) на выводе.

Чтобы использовать прерывание по изменению состояния выводов, подключите выходы поворота энкодера A и B к выводам A1 и A2 , а выход кнопки - к выводу A0 платы Arduino, как показано на принципиальной схеме. Установите выводы A0 , A1 и A2 в режим входа и включите их внутренние подтягивающие резисторы. Включите прерывание по изменению состояния выводов в регистре PCICR и включите прерывания для выводов A0 , A1 и A2 в регистре PCMS1 . При обнаружении любого изменения логического состояния на одном из этих входов будет вызовано ISR(PCINT1_vect) (прерывание по изменению состояния выводов).

Поскольку прерывание по изменению состояния выводов вызывается для любого логического изменения, нам необходимо отслеживать оба сигнала (и A, и B) и обнаруживать вращение при получение ожидаемой последовательности. Как видно из диаграммы сигналов, движение по часовой стрелке генерирует A = …0011… и B = …1001… . Когда мы записываем оба сигналы в байты seqA и seqB , сдвигая последнее чтение вправо, мы можем сравнить эти значения и определить новый шаг вращения.

Вы можете увидеть часть кода, включающую инициализацию и функцию обработки прерывания по изменению состояния выводов.

Void setup() { pinMode(A0, INPUT); pinMode(A1, INPUT); pinMode(A2, INPUT); // Включить внутренние подтягивающие резисторы digitalWrite(A0, HIGH); digitalWrite(A1, HIGH); digitalWrite(A2, HIGH); PCICR = 0b00000010; // 1. PCIE1: Включить прерывание 1 по изменению состояния PCMSK1 = 0b00000111; // Включить прерывание по изменению состояния для A0, A1, A2 } void loop() { // Основной цикл } ISR (PCINT1_vect) { // Если прерывание вызвано кнопкой if (!digitalRead(A0)) { button = true; } // Если прерывание вызвано сигналами энкодера else { // Прочитать сигналы A и B boolean A_val = digitalRead(A1); boolean B_val = digitalRead(A2); // Записать сигналы A и B в отдельные последовательности seqA <<= 1; seqA |= A_val; seqB <<= 1; seqB |= B_val; // Маскировать четыре старших бита seqA &= 0b00001111; seqB &= 0b00001111; // Сравнить запсанную последовательность с ожидаемой последовательностью if (seqA == 0b00001001 && seqB == 0b00000011) { cnt1++; left = true; } if (seqA == 0b00000011 && seqB == 0b00001001) { cnt2++; right = true; } } }

Использование внешнего прерывания делает процесс более простым, но поскольку для этого прерывания назначено только два вывода, то вы не сможете использовать его для других целей, если займете его энкодером. Чтобы использовать внешнее прерывание, вы должны установить выводы 2 (INT0) и 3 (INT1) в режим входа и включить их внутренние подтягивающие резисторы. Затем выберите вариант спадающего фронта для вызова обоих прерываний в регистре EICRA . Включите внешние прерывания в регистре EIMSK . Когда начнется вращение вала энкодера, сначала ведущий сигнал падает до логического нуля, а второй сигнал некоторое время остается на уровне логической единицы. Поэтому нам нужно определить, какой из сигналов во время прерывания находится в состоянии логической единицы. После того, как ведущий сигнал упал до логического нуля, через некоторое время второй сигнал также упадет до логического нуля, что вызовет другое прерывание. Но этот раз и другой (ведущий) сигнал будет на низком логическом уровне, что означает, что это не начало вращения, поэтому мы игнорируем его.

Ниже вы можете увидеть часть кода, включающую в себя инициализацию и функцию обработки внешнего прерывания.

Void setup() { pinMode(2, INPUT); pinMode(3, INPUT); // Включить внутренние подтягивающие резисторы digitalWrite(2, HIGH); digitalWrite(3, HIGH); EICRA = 0b00001010; // Выбрать вызов по спадающему фронту EIMSK = 0b00000011; // Включить внешнее прерывание } void loop() { // Основной цикл } ISR (INT0_vect) { // Если второй сигнал находится в состоянии логической единицы, то это новое вращение if (digitalRead(3) == HIGH) { left = true; } } ISR (INT1_vect) { // Если второй сигнал находится в состоянии логической единицы, то это новое вращение if (digitalRead(2) == HIGH) { right = true; } }

Полный код скетча Arduino, включающий основной цикл приведен ниже:

#include #include #include volatile byte seqA = 0; volatile byte seqB = 0; volatile byte cnt1 = 0; volatile byte cnt2 = 0; volatile boolean right = false; volatile boolean left = false; volatile boolean button = false; boolean backlight = true; byte menuitem = 1; byte page = 1; Adafruit_PCD8544 display = Adafruit_PCD8544(13, 12,11, 8, 10); void setup() { pinMode(A0, INPUT); pinMode(A1, INPUT); pinMode(A2, INPUT); // Включить внутренние подтягивающие резисторы digitalWrite(A0, HIGH); digitalWrite(A1, HIGH); digitalWrite(A2, HIGH); // Включить подсветку LCD pinMode(9, OUTPUT); digitalWrite(9, HIGH); PCICR = 0b00000010; // 1. PCIE1: Включить прерывание 1 по изменению состояния PCMSK1 = 0b00000111; // Включить прерывание по изменению состояния для A0, A1, A2 // Initialize LCD display.setRotation(2); // Установить ориентацию LDC display.begin(60); // Установить контрастность LCD display.clearDisplay(); // Очистить дисплей display.display(); // Применить изменения sei(); } void loop() { // Создать страницы меню if (page==1) { display.setTextSize(1); display.clearDisplay(); display.setTextColor(BLACK, WHITE); display.setCursor(15, 0); display.print("MAIN MENU"); display.drawFastHLine(0,10,83,BLACK); display.setCursor(0, 15); if (menuitem==1) { display.setTextColor(WHITE, BLACK); } else { display.setTextColor(BLACK, WHITE); } display.print(">Contrast: 99%"); display.setCursor(0, 25); if (menuitem==2) { display.setTextColor(WHITE, BLACK); } else { display.setTextColor(BLACK, WHITE); } display.print(">Test Encoder"); if (menuitem==3) { display.setTextColor(WHITE, BLACK); } else { display.setTextColor(BLACK, WHITE); } display.setCursor(0, 35); display.print(">Backlight:"); if (backlight) { display.print("ON"); } else { display.print("OFF"); } display.display(); } else if (page==2) { display.setTextSize(1); display.clearDisplay(); display.setTextColor(BLACK, WHITE); display.setCursor(15, 0); display.print("ENC. TEST"); display.drawFastHLine(0,10,83,BLACK); display.setCursor(5, 15); display.print("LEFT RIGHT"); display.setTextSize(2); display.setCursor(5, 25); display.print(cnt1); display.setCursor(55, 25); display.print(cnt2); display.setTextSize(2); display.display(); } // Выполнить действие, если от энкодера принята новая команда if (left) { left = false; menuitem--; if (menuitem==0) { menuitem=3; } } if (right) { right = false; menuitem++; if (menuitem==4) { menuitem=1; } } if (button) { button = false; if (page == 1 && menuitem==3) { digitalWrite(9, LOW); if (backlight) { backlight = false; digitalWrite(9, LOW); } else { backlight = true; digitalWrite(9, HIGH); } } else if (page == 1 && menuitem==2) { page=2; cnt1=0; cnt2=0; } else if (page == 2) { page=1; } } } ISR (PCINT1_vect) { // Если прерывание вызвано кнопкой if (!digitalRead(A0)) { button = true; } // Или если прерывание вызвано сигналами энкодера else { // Прочитать сигналы A и B boolean A_val = digitalRead(A1); boolean B_val = digitalRead(A2); // Записать сигналы A и B в отдельные последовательности seqA <<= 1; seqA |= A_val; seqB <<= 1; seqB |= B_val; // Маскировать четыре старших бита seqA &= 0b00001111; seqB &= 0b00001111; // Сравнить запсанную последовательность с ожидаемой последовательностью if (seqA == 0b00001001 && seqB == 0b00000011) { cnt1++; left = true; } if (seqA == 0b00000011 && seqB == 0b00001001) { cnt2++; right = true; } } }

Энкодер в действии вы можете увидеть на видео, приведенном ниже.

Энкодер это всего лишь цифровой датчик угла поворота, не более того.

Энкодеры бывают абсолютные — сразу выдающие двоичный код угла и инкрементальные, дающие лишь указание на направление и частоту вращения, а контроллер, посчитав импульсы и зная число импульсов на оборот, сам определит положение.

Если с абсолютным энкодером все просто, то с инкрементальным бывают сложности. Как его обрабатывать?

С Энкодера выходят два сигнала А и В, сдвинутых на 90 градусов по фазе, выглядит это так:

В оптическом же может быть два фонаря и два фотодиода, святящие через диск с прорезями (шариковая мышка, ага. Оно самое).

Механический подключается совсем просто центральный на землю, два крайних (каналы) на подтянутые порты. Я, для надежности, подключил внешнюю подтяжку. Благо мне на для этого только парой тумблеров щелкнуть:


Оптический подключается в зависимости от типа оптодатчика, обычно там стоит два с общим анодом.

Обычно, все пытаются работать с ними через прерывания INT, но этот метод так себе. Проблема тут в дребезге — механические контакты, особенно после длительного пользования, начинают давать сбои и ложные импульсы в момент переключения. А прерывание на эти ложные импульсы все равно сработает и посчитает что нибудь не то.

Метод прост:
Подставим нули и единички, в соответствии с уровнем сигнала и запишем последовательность кода:


A:0 0 1 1 0 0 1 1 0 0 1 1 0
B:1 0 0 1 1 0 0 1 1 0 0 1 1

Если A и B идут на одни порт контроллера (например на A=PB0 B=PB1), то при вращении энкодера у нас возникает меняющийся код:

11 = 3
10 = 2
00 = 0
01 = 1
11 = 3

Теперь остается только циклически опрашивать наш энкодер сравнивая текущее состояние с новым и на основании этого делающего выводы о вращении. Причем частота опроса должна быть такой, чтобы не пропустить ни одного импульса. Например, мой EC12 имеет 24 импульса на оборот. Вращать его предпологается вручную и я вряд ли смогу вращать его с космической скоростью, но решил все же замерить. Подключился к осциллографу, крутнул ручку что есть мочи:

Выжал меньше килогерца. Т.е. опрашивать надо примерно 1000 раз в секунду. Можно даже реже, будет надежней в плане возможного дребезга. Сейчас, кстати, дребезга почти нет, но далеко не факт что его не будет потом, когда девайсина разболтается.

Сам опрос должен быть в виде конечного автомата. Т.е. у нас есть текущее состояние и два возможных следующих.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 // Эту задачу надо запускать каждую миллисекунду. // EncState глобальная переменная u08 -- предыдущее состояние энкодера // EncData глобальная переменная u16 -- счетный регистр энкодера void EncoderScan(void ) { u08 New; New = PINB & 0x03 ; // Берем текущее значение // И сравниваем со старым // Смотря в какую сторону оно поменялось -- увеличиваем // Или уменьшаем счетный регистр switch (EncState) { case 2 : { if (New == 3 ) EncData++; if (New == 0 ) EncData--; break ; } case 0 : { if (New == 2 ) EncData++; if (New == 1 ) EncData--; break ; } case 1 : { if (New == 0 ) EncData++; if (New == 3 ) EncData--; break ; } case 3 : { if (New == 1 ) EncData++; if (New == 2 ) EncData--; break ; } } EncState = New; // Записываем новое значение // Предыдущего состояния SetTimerTask(EncoderScan, 1 ) ; // Перезапускаем задачу через таймер диспетчера }

// Эту задачу надо запускать каждую миллисекунду. // EncState глобальная переменная u08 -- предыдущее состояние энкодера // EncData глобальная переменная u16 -- счетный регистр энкодера void EncoderScan(void) { u08 New; New = PINB & 0x03; // Берем текущее значение // И сравниваем со старым // Смотря в какую сторону оно поменялось -- увеличиваем // Или уменьшаем счетный регистр switch(EncState) { case 2: { if(New == 3) EncData++; if(New == 0) EncData--; break; } case 0: { if(New == 2) EncData++; if(New == 1) EncData--; break; } case 1: { if(New == 0) EncData++; if(New == 3) EncData--; break; } case 3: { if(New == 1) EncData++; if(New == 2) EncData--; break; } } EncState = New; // Записываем новое значение // Предыдущего состояния SetTimerTask(EncoderScan,1); // Перезапускаем задачу через таймер диспетчера }

Почему я под счетчик завел такую большую переменную? Целых два байта? Да все дело в том, что у моего энкодера, кроме импульсов есть еще тактильные щелчки. 24 импульса и 24 щелчка на оборот. А по моей логике, на один импульс приходится четыре смены состояния, т.е. полный период 3201_3201_3201 и один щелчок дает 4ре деления, что некрасиво. Поэтому я считаю до 1024, а потом делю сдвигом на четыре. Получаем на выходе один щелочок — один тик.

Скоростной опрос на прерываниях
Но это механические, с ними можно простым опросом обойтись — частота импульсов позволяет. А бывают еще и высокоскоростные энкодеры. Дающие несколько тысяч импульсов на оборот, либо работающие на приводах и вращающиеся очень быстро. Что с ними делать?

Ускорять опрос занятие тупиковое. Но нас спасает то, что у таких энкодеров, как правило, есть уже свои схемы подавления дребезгов и неопределенностей, так что на выходе у них четкий прямоугольный сигнал (правда и стоят они совершенно негуманно. От 5000р и до нескольких сотен тысяч. А что ты хотел — промышленное оборудование дешевым не бывает).

Так что без проблем можно применять прерывания. И тогда все упрощается неимоверно. Настраиваем всего одно прерывание по внешнему сигналу. Например, INT0 настраиваем так, чтобы сработка шла по восходящему фронту. И подаем на INT0 канал А.


Пунктиром показано предполагаемое положение в произвольный момент. Красные стрелки это фронты по которым сработают прерывания при движении либо в одну, либо в другую сторону.

А в обработчике прерывания INT0 щупаем вторым выводом канал В. И дальше все элементарно!

Если там высокий уровень — делаем +1, если низкий -1 нашему счетному регистру. Кода на три строчки, мне даже писать его лень.

Конечно, можно такой метод прикрутить и на механический энкодер. Но тут надо будет заблокировать прерывания INT0 на несколько миллисекунд. И НИ В КОЕМ СЛУЧАЕ нельзя делать это в обработчике.

Алгоритм прерывания с антидребезгом будет выглядеть так:

  • Зашли в обработчик INT0
  • Пощупали второй канал
  • +1 или -1
  • Запретили локально INT0
  • Поставили на таймер событие разрешающее INT0 через несколько миллисекунд
  • Вышли из обработчика

Сложно? Нет, не сложно. Но зачем? Проще сделать банальный опрос, как указано выше и не зависеть от выводов прерываний. Впрочем, хозяин барин.