Домой / Игры / Подключение абсолютного энкодера к микроконтроллеру. Как использовать поворотный энкодер в проекте на микроконтроллере

Подключение абсолютного энкодера к микроконтроллеру. Как использовать поворотный энкодер в проекте на микроконтроллере

Коротко энкодеры можно назвать преобразователями угловых перемещений. Они служат для модификации угла поворота объекта вращения, например, вала какого-либо механизма, в сигнал электрического тока. При этом определяется не только угол поворота вала, но и его направление вращения, а также скорость вращения и текущая позиция относительно первоначального положения.

Наиболее популярными энкодеры стали при их использовании в системах точного перемещения, на станкостроительных заводах, в производственных комплексах с применением робототехники, в измерительных устройствах, в которых необходима регистрация точных измерений наклонов, поворотов, вращений и углов.

Виды и принцип действия

Энкодеры – это датчики поворота. Простейший датчик имеет ручку, которая может поворачиваться по часовой стрелке или против нее. В зависимости от угла поворота и направления выдается цифровой сигнал, информирующий о том, в каком положении находится ручка, либо в какую сторону она была повернута.

У такого энкодера, показанного на рисунке, ручка также может применяться в качестве кнопки. Это является вспомогательной функцией конкретного вида энкодера.

По типу выдаваемых данных энкодеры делятся на две большие группы:

  1. Абсолютные.
  2. Инкрементальные.

Абсолютные энкодеры

У абсолютного энкодера весь круг поворота разделен на определенное количество секторов, чаще всего одинакового размера. Эти сектора пронумерованы. Энкодер при работе выдает номер сектора, в котором на данный момент он находится. Поэтому он и называется абсолютным. У этого типа энкодера всегда можно определить, на какой угол относительно нулевого сектора повернут энкодер в конкретный момент, то есть, при повороте он выдает значения номеров секторов, до максимального значения. Далее он переходит снова на ноль.

Если вал энкодера поворачивать в другую сторону, то он начнет выдавать противоположные значения. В нашем случае у него используется пять выводов для выдачи значений поворота.

У данного алгоритма имеются свои недостатки. Из таблицы 1 виден порядок выдаваемых значений n-го энкодера. Стоит обратить внимание на две последние строчки, переход от 127 на 128.

Таблица 1

Здесь меняются абсолютно все биты. В идеальном энкодере они все меняются одновременно и нет никаких проблем. Практически в реальном энкодере биты меняются быстро, однако не одновременно. И в какой-то момент на выходе энкодера оказывается совершенно произвольное значение. Так как меняются все биты, следовательно, у энкодера будет произвольное значение от нуля до всех единиц.

Справа изображен пример такого переключения. Чем это может грозить? Разберем пример. Микроконтроллер с помощью двигателя управляет валом и поворачивает его на определенный угол. В определенный момент при переключении со 127 на 128 ячейку он получает определенное случайное значение. Контроллер делает вывод, что вал находится совершенно в другом месте, в отличие от фактического места, и начинает его вращать в другую сторону, с другой скоростью и т.д.

Через определенное время микроконтроллер получает правильное значение, начинает пытаться остановить вал и вращать его в правильную сторону. Такой процесс может продолжаться долго, при условии, что такая ошибка будет встречаться часто. Такие ошибки являются нерегулярными, и вычислить их достаточно сложно.

Код Грея

Выше описанная проблема решается с помощью введения кода Грея. Особенностью кода Грея является то, что при переключении энкодера на единицу, значение кода Грея меняется также на единицу. Меняется только один вид. Это видно в таблице 2 в сравнении двоичного кода и кода Грея.

Таблица 2

Первые две строчки совпадают, но уже во второй строчке поменялся средний бит. Далее также меняется один бит. Также стоит отметить, что последний и первый код Грея отличается на один бит, то есть код Грея может зациклиться.

Преимуществом данного кода является то, что ошибка, которая рассмотрена выше, невозможна. Из недостатков можно отметить, что микроконтроллеру необходимо переводить код Грея в двоичный код для того, чтобы понять, в каком положении находится абсолютный энкодер.

Инкрементальные энкодеры

Следующим типом является инкрементальный энкодер, который имеет более простую структуру. Но при этом он не показывает конкретное место положения своей ручки. Он показывает только направление поворота, а число делений поворота должен считать микроконтроллер.

У инкрементального энкодера есть набор полосок, которые по умолчанию подключены к земле, и при повороте они замыкаются и размыкаются. Получается сигнал, изображенный на рисунке (похож на меандр). Таких круговых полосок у энкодера две. Полоски смещены на одну четверть, и сигналы также смещены между собой на четверть. Это важно, так как позволяет определить направление вращения.

Схему инкрементального энкодера можно представить по правому рисунку. Кнопки обозначают периодические подключения энкодера к земле. Так как внутри энкодер не подключается к логической единице, то необходимо снаружи самостоятельно подтянуть логические единицы через резисторы к выводу энкодера. В этом случае, когда ни одна из ножек у энкодера не подключена к земле, на ножках будет логическая единица.

Если энкодер подключил к земле какую-то ножку, то на этой ножке будет логический ноль. В спокойном состоянии у энкодера на выходе логическая единица. При начале вращения энкодера в любую сторону, то сначала один вывод подключается к земле, затем другой. Далее эти выводы по очереди отключаются от земли, и на них опять образуется логическая единица.

Определить направление поворота можно по тому, какой из выводов раньше подключился к земле. При подсчете полных циклов можно посчитать количество щелчков поворота энкодера.

Фактически у энкодера имеется четыре состояния:

  1. Две единицы.
  2. Ноль и единица.
  3. Ноль и ноль.
  4. Единица и ноль.

Три состояния, которые не равны единицам, являются неустойчивыми, и в них энкодер не может находиться. Во многих микроконтроллерах реализована функция подсчета поворотов с помощью таймеров, у которых есть определенные входы. Таймер считает на аппаратном уровне, на сколько щелчков и в какую сторону был повернут энкодер, и выдает значение. То есть, счетчик инкрементирует какое-либо число.

По изменению этого числа можно определить, на сколько щелчков был повернут энкодер. По количеству щелчков можно определить и угол поворота. Энкодер также имеет дребезг контактов, который усложняет анализ сигналов.

Оптические энкодеры

Подобный преобразователь выполнен в виде диска, зафиксированного на валу, и изготовленного из стекла. Оптический датчик поворота отличается от других видов дополнительным оптическим растором, перемещаемым при повороте вала. При этом он превращает момент вращения в световой поток, который далее принимается фотодатчиком.

Оптический преобразователь запоминает углы вращения. При этом каждому отдельному положению соответствует особый цифровой код, который вместе с числом оборотов образует единицу измерения датчика. Энкодер подключается и работает по аналогии с инкрементальным датчиком.

По характеру функционирования они разделяются на фотоэлектрические и магнитные . Принцип работы магнитных основан на использовании , который был впервые открыт в 1879 году. При этом разность потенциалов появляется только при расположении провода постоянного тока в магнитное поле.

По точности и свойствам разрешения магнитный вид датчика уступает фотоэлектрическому, однако по конструкции он проще, менее требователен к условиям работы и пространству. Магнитный энкодер является прибором, который фиксирует прохождение магнитного полюса магнита при вращении, находящегося рядом с чувствительным элементом. Информация передатчика выражается в цифровом коде.

Фотоэлектрический энкодер является датчиком, работающим на основе фотоэлектрического принципа. Этот эффект наблюдается при воздействии светового потока на вещество. Этот принцип был открыт в 1887 году. При эксплуатации такого датчика происходит постоянное преобразование луча света в сигнал электрического тока.

Аналогами фотоэлектрического энкодера являются оптоэлектронный, оптический и . Эти датчики наиболее чувствительны к характеристикам изготовления, эксплуатации и другим факторам, по сравнению с другими моделями. Однако это оправдывается их повышенной точностью, в отличие от конкурентов.

Из этой статьи вы узнаете, что такое энкодер, зачем он нужен, и как его подружить с микроконтроллером. Если вы пользовались современной стиральной машиной, микроволновой печью или аудио системой то, скорее всего вы уже имели дело с энкодером, сами того не подозревая. Например, в большинстве современных домашних и автомобильных стерео систем энкодеры используются для регулировки громкости звука.
Энкодер или датчик угла поворота – это электромеханическое устройство, предназначенное для преобразования углового положения вала или оси в электрические сигналы. Существует два основных типа энкодеров - инкрементные и абсолютные.
Инкрементный энкодер при вращении формирует импульсы, число которых пропорционально углу поворота. Подсчет числа этих импульсов даст нам величину угла поворота вала энкодера относительно его начального положения. Этот тип энкодеров не формирует выходные импульсы, когда его вал находится в покое. Инкрементные энкодеры находят широкое применение в индустриальных средствах управления, бытовой и музыкальной технике.
Абсолютный энкодер для каждой позиции своего вала выдает уникальный код. Ему, в отличии от инкрементного энкодера, счетчик не нужен, угол вращения всегда известен. Абсолютный энкодер формирует сигнал и когда вал вращается, и когда он находится в покое. Абсолютный энкодер не теряет информацию о своем положении при потере питания и не требует возврата в начальную позицию. Этот тип энкодеров применяется в промышленно оборудовании - робототехнике, станках, конвейерных линиях.
Я хотел бы рассказать о сопряжении инкрементного механического энкодера с микроконтроллером. Для этого я приобрел инкрементный энкодер фирмы Bourns - PEC12-4220F-S0024. Вот расшифровка его названия согласно datasheet: PEC12 – модель, 4 – вертикальное положение выводов, 2 – 24 стопора, 20 – длина вала в мм, S – наличие кнопки, 0024 – 24 импульса за оборот.

У него 5 выводов. 2 вывода на фотографии слева – выводы кнопки, 3 вывода на фотографии справа – выводы энкодера. Из них - 2 сигнальных и 1 общий. Он посередине. Схема подключения энкодера ничем не отличается от подключения обычных кнопок. Сигнальные выводы энкодера подключаем к любому порту ввода вывода микроконтроллера. Общий вывод энкодера сажаем на землю. Для защиты от дребезга контактов не лишним будет добавить еще пару керамических конденсаторов номиналом в несколько нанофарад. Выводы микроконтроллера в программе конфигурируем как входы и включаем подтягивающие резисторы. Можно использовать внешние.

Когда ручка энкодера стоит неподвижно – на входах микроконтроллера присутствуют логические единицы. Когда ручку энкодера поворачивают, на выводах микроконтроллера появляются два прямоугольных сигнала сдвинутых друг относительно друга. От направления вращения вала энкодера зависит, какой из сигналов будет опережать другой. На рисунке ниже представлены возможные варианты сигналов для идеального случая.


Внутри энкодера имеются контакты, которые при вращении то замыкаются, то размыкаются. Этот процесс естественно сопровождается дребезгом, поэтому реальные сигналы могут выглядеть вот так.


Сигналы сняты со старого энкодера, включенного без фильтрующих конденсаторов.


Алгоритм обработки сигналов энкодера выглядит следующим образом. В обработчике прерывания таймера запускается функция опроса энкодера. Она считывает логические уровни, присутствующие на выводах микроконтроллера к которым подключен энкодер и записывает их во временную переменную. Внутри функции есть статическая переменная (переменная, которая сохраняет свое значение при выходе из функции) хранящая последовательность предыдущих состояний. С помощью битовой маски микроконтроллер выделяет из этой переменной последнее состояние и сравнивает его с текущим, чтобы определить произошли ли изменения. Если состояния равны – функция завершает работу, если отличны – значение статической переменной сдвигается влево на 2 разряда и на «освободившееся» место записывается текущее состояние. Таким образом, если вал энкодера вращается, функция будет постоянно сохранять некую повторяющуюся кодовую последовательность. При вращении вправо – это будет 11100001. При вращении влево – 11010010. По этим последовательностям микроконтроллер и будет понимать, в какую сторону происходит вращение.

Исходник для работы с энкодером можно скачать . Архив содержит два файла: encoder.h и encoder.c. В хедере задаются порт и номера выводов, к которым подключен энкодер, константы LEFT_SPIN и RIGHT_SPIN. Также там описаны прототипы функций. Сишный файл содержит реализацию функций.


void InitEncoder(void) – инициализирует выводы порта.

void PollEncoder(void)
– однократно опрашивает энкодер. Если зафиксировано вращение, записывает в буфер одну из констант, если нет, просто завершает работу.

unsigned char GetStateEncoder(void)
– возвращает содержимое буфера и очищает его.

Опрос энкодера я обычно произвожу с частотой ~ 4 кГц. Если опрашивать медленней, микроконтроллер будет пропускать импульсы при быстрых поворотах ручки энкодера. Если энкодер используется для установки линейно меняющейся величины, например для установки времени в часах, то в качестве констант LEFT_SPIN и RIGHT_SPIN удобно использовать числа 255 и 1 соответственно. В обработчике сигналов энкодера эти числа просто складываются с устанавливаемой величиной. При сложении с 1 величина увеличивается на 1, при сложении с 255 уменьшается на 1. Конечно это актуально если эта величина однобайтная. Ну а в принципе константы LEFT_SPIN и RIGHT_SPIN можно выбирать произвольно, главное правильно написать обработчик. На этом все.

Исходник для работы с энкодером .

Наверняка, каждый сталкивался, в повседневной жизни, с энкодером. Например, в автомобильных магнитолах их используют для управления громкостью. Или в компьютерных мышках, колесо прокрутки.

С их помощью очень удобно организовывать меню. Мне известны случаи, когда на очень серьезном и дорогом устройстве, все управление организовано, при помощи всего одного энкодера. Аналогично, в давние времена попадалась модель телефона, где все управление, также было организовано всего одним колесиком.

Прежде всего энкодеры бывают нескольких типов, рассматриваемый в данной статье — механический инкрементальный. В качестве испытуемого, был использован pec12-4220f-s0024. Внешне он похож на переменный резистор, но, в отличие от резистора, он не имеет ограничителей, т.е. может крутиться бесконечно в любую сторону.

Результат работы такого устройства — двоичный код Грея. Получить его можно анализируя состояние ножек, на которые приходят импульсы от энкодера.

Теперь рассмотрим все более детально. Электрически он представляет собой 2 кнопки без фиксации, когда мы начинаем крутить они по очереди срабатывают — сначала одна, затем вторая. В зависимости от того, в какую сторону мы вращаем, одна из кнопок срабатывает раньше или позднее. Для того чтобы узнать, в каком состоянии находятся эти кнопки, ножки порта (к которому подсоединен энкодер) должны быть подтянуты к «+» питания.

На разобранном энкодере 1/3 площадки относится к 1 контакту, 1/3 к 2 контакту, сплошной участок — общий. Когда скользящие контакты попадают на изолированные участки (черные), слышны щелчки. В этот момент энкодер, находится в устойчивом состоянии, когда обе кнопки разомкнуты. На ножках порта будут лог единицы(состояние 11).

Как только мы начинаем вращать в какую либо сторону, один из контактов замыкается на землю. На этой ножеке появится лог 0, на второй ножке по прежнему будет лог1 (состояние 01). Если мы продолжаем вращать, на второй ножке появится лог0(состояние 00). Далее, на первой ножке пропадает контакт (состояние 10), в конце концов энкодер возвращается в устойчивое состояние (11). Т.е. на один щелчок приходится 4 изменения состояния. Временная диаграмма выглядит так:

При вращении в противоположную сторону, идея остается прежней, только сначала будет замыкаться, вторая ножка.

Если выписать эти состояния в двоичной системе и перевести их в десятичную, то получится следующий порядок(для вращения в одну сторону):
11=3
01=1
00=0
10=2

При вращении в противоположную сторону:
11=3
10=2
00=0
01=1

Теперь осталось понять, как эти значение обрабатывать. Допустим, энкодер подключен к ножкам порта В0 и В1. Нам нужно прочитать эти ножки. Есть довольно хитрый способ, но для начала нам нужно понять операцию «логического и» (&).

Результат будет равен единице, только если оба числа равны 1, т.е. результат операции 1&1, будет равен 1. Следовательно 1&0=0, 0&0=0, 0&1=0.

Логическое & поможет нам вычленить из целого порта, только интересующие нас ножки. Т.е. операция x=0b00000011 & PINB; позволит нам прочитать в переменную «х» состояние первых двух ножек, независимо от того, что находится на остальных ножках. Число 0b00000011 можно перевести в шестнадцатеричную систему 0х3.

Теперь все необходимые знания для написания прошивки у нас есть. Задача: увеличивать/уменьшать переменную Vol, при помощи энкодера, результат вывести на lcd дисплей.

#include int NewState, OldState, Vol, upState, downState; #asm .equ __lcd_port= 0x12 ; PORTD #endasm #include #include interrupt [ TIM1_COMPA] void timer1_compa_isr(void ) { NewState= PINB & 0b00000011 ; if (NewState!= OldState) { switch (OldState) { case 2 : { if (NewState == 3 ) upState++; if (NewState == 0 ) downState++; break ; } case 0 : { if (NewState == 2 ) upState++; if (NewState == 1 ) downState++; break ; } case 1 : { if (NewState == 0 ) upState++; if (NewState == 3 ) downState++; break ; } case 3 : { if (NewState == 1 ) upState++; if (NewState == 2 ) downState++; break ; } } OldState= NewState; } TCNT1H= 0x00 ; TCNT1L= 0x00 ; } void main(void ) { char lcd_buf[ 17 ] ; // Input/Output Ports initialization // Port B initialization // Func7=In Func6=In Func5=In Func4=In Func3=In Func2=In Func1=In Func0=In // State7=T State6=T State5=T State4=T State3=T State2=T State1=P State0=P PORTB= 0x03 ; DDRB= 0x00 ; // Timer/Counter 1 initialization // Clock source: System Clock // Clock value: 1000,000 kHz // Mode: CTC top=OCR1A // OC1A output: Discon. // OC1B output: Discon. // Noise Canceler: Off // Input Capture on Falling Edge // Timer 1 Overflow Interrupt: Off // Input Capture Interrupt: Off // Compare A Match Interrupt: On // Compare B Match Interrupt: Off TCCR1A= 0x00 ; TCCR1B= 0x0A ; TCNT1H= 0x00 ; TCNT1L= 0x00 ; ICR1H= 0x00 ; ICR1L= 0x00 ; OCR1AH= 0x03 ; OCR1AL= 0xE8 ; OCR1BH= 0x00 ; OCR1BL= 0x00 ; // Timer(s)/Counter(s) Interrupt(s) initialization TIMSK= 0x10 ; // Global enable interrupts #asm("sei") lcd_init(8 ) ; while (1 ) { if (upState >= 4 ) { Vol++; upState = 0 ; } if (downState >= 4 ) { Vol--; downState = 0 ; } sprintf (lcd_buf, "vol=%d" , Vol) ; lcd_gotoxy(0 , 0 ) ; lcd_clear() ; lcd_puts(lcd_buf) ; } ; }

#include int NewState,OldState,Vol,upState,downState; #asm .equ __lcd_port=0x12 ;PORTD #endasm #include #include interrupt void timer1_compa_isr(void) { NewState=PINB & 0b00000011; if(NewState!=OldState) { switch(OldState) { case 2: { if(NewState == 3) upState++; if(NewState == 0) downState++; break; } case 0: { if(NewState == 2) upState++; if(NewState == 1) downState++; break; } case 1: { if(NewState == 0) upState++; if(NewState == 3) downState++; break; } case 3: { if(NewState == 1) upState++; if(NewState == 2) downState++; break; } } OldState=NewState; } TCNT1H=0x00; TCNT1L=0x00; } void main(void) { char lcd_buf; // Input/Output Ports initialization // Port B initialization // Func7=In Func6=In Func5=In Func4=In Func3=In Func2=In Func1=In Func0=In // State7=T State6=T State5=T State4=T State3=T State2=T State1=P State0=P PORTB=0x03; DDRB=0x00; // Timer/Counter 1 initialization // Clock source: System Clock // Clock value: 1000,000 kHz // Mode: CTC top=OCR1A // OC1A output: Discon. // OC1B output: Discon. // Noise Canceler: Off // Input Capture on Falling Edge // Timer 1 Overflow Interrupt: Off // Input Capture Interrupt: Off // Compare A Match Interrupt: On // Compare B Match Interrupt: Off TCCR1A=0x00; TCCR1B=0x0A; TCNT1H=0x00; TCNT1L=0x00; ICR1H=0x00; ICR1L=0x00; OCR1AH=0x03; OCR1AL=0xE8; OCR1BH=0x00; OCR1BL=0x00; // Timer(s)/Counter(s) Interrupt(s) initialization TIMSK=0x10; // Global enable interrupts #asm("sei") lcd_init(8); while (1) { if (upState >= 4) { Vol++; upState = 0; } if (downState >= 4) { Vol--; downState = 0; } sprintf(lcd_buf,"vol=%d",Vol); lcd_gotoxy(0,0); lcd_clear(); lcd_puts(lcd_buf); }; }

В качестве пояснений: таймер 1 настроен на срабатывание 1000 раз в секунду, строкой NewState=PINB & 0b00000011; считываем состояние ножек 0 и 1 портаВ. if(NewState!=OldState) если состояние не изменилось, значит вращения нет.
Если состояние изменилось конструкция switch определяет в какую сторону было произведено вращение, в зависимости от этого увеличивается значение переменной downState(влево) или upState(вправо).

От щелчка до следующего щелчка 4 изменения состояния, поэтому 1 раз за 4 импульса изменяем переменную Vol. Ее же и выводим на дисплей. Прошивка доступна

Инкрементальный энкодер внешне похож на потенциометр , но в отличие от потенциометра у него нет крайних положений, он может вращаться в обоих направлениях неограниченное количество оборотов. Также надо отметить, что инкрементальный энкодер вращается не так плавно как потенциометр, а шагами. Его можно увидеть на автомобильной магнитоле, осциллографе , музыкальном центре, стиральной машине и прочей технике, где регулировка какого-то параметра осуществляется в больших пределах. Конечно, параметры можно изменять и с помощью кнопок, например, для того чтобы сделать музыку на 20 значений громче, при управлении кнопкой, надо нажать её 20 раз, а при управлении энкодером, провернуть его на определённый угол, в зависимости от алгоритма обработки.

Инкрементальный энкодер представляет собой два контакта, порядок замыкания которых зависит от направления вращения .


По сути инкрементальный энкодер преобразует вращение вала в электрические импульсы , содержащие информацию о направлении вращения.

Давайте соберём тестовую схему изображенную на картинке выше и подключимся к выводу A и B осциллографом , резисторы подтяжки - 4.7К.
Покрутим энкодер по часовой стрелке.


Теперь против часовой.


На осциллограммах видно, что в зависимости от направления вращения, изменяется порядок замыкания контактов. Но фронта не всегда получаются такие красивые.


Так как контакты механические, они подвержены дребезгу, то есть при замыкании за счёт упругости материалов, возникают многократные неконтролируемые замыкания и размыкания, которые можно увидеть на осциллограмме выше.

Бороться с дребезгом можно двумя способами, первый состоит в добавлении конденсаторов и резисторов, как показано на картинке ниже.


Так как дребезг явление кратковременное, он легко гасится конденсатором.


На осциллограмме видно, что после установки конденсаторов, фронты стали менее крутыми, а дребезг исчез.

Второй способ - программный и тут всё зависит от реализации опроса выводов энкодера. Если состояние энкодера отслеживается с помощью внешних прерываний , то после срабатывания прерывания необходимо сделать задержку 20 - 30 миллисекунд, во время которой МК не будет реагировать на изменение состояния вывода, то есть не будет чувствовать дребезг. Если опрос выводов энкодера реализован на таймере , то интервал между опросами должно быть больше длительности дребезга, те же 20 -30 миллисекунд.

Давайте рассмотрим методы обработки данных, приходящих с энкодера .
Первый метод, заключается в том, что одну из ножек энкодера мы подключаем к выходу внешних прерываний и настраиваем её на прерывание по спадающему фронту. В прерывании мы проверяем состояние другой ножки и если на ней ноль, то вращение происходит в одну сторону, иначе в другую. Ниже приведён код, реализующий этот метод для AVR.
#include ISR(INT2_vect) { if (PINB & 0X02) { PORTB |= (1<<0); } else { PORTB &= ~(1<<0); } //антидребезг _delay_ms(20); //сбрасываем флаг прерывания вызванный дребезгом GIFR = (1<При повороте энкодера в одну сторону светодиод загорается, при повороте в другую - гаснет.

Второй метод, заключается в сравнении текущего состояния и предыдущего . Давайте выразим логические уровни последовательности импульсов в виде нулей и единичек.


Тогда мы получим конечное число состояний энкодера. Первая цифра - логический уровень первого вывода энкодера, вторая - логический уровень второго вывода.

Предположим последнее состояние в котором находился энкодер равно трем, если следующее состояние будет равно единице, то он вращается в одну сторону, если двум, то в другую. Получается, что можно фиксировать переход из одного состояние в другое и определять направление вращения, но наиболее простой является реализация при переходе от 11 к 01 и 10. Ниже приведён код реализующий описанный алгоритм для AVR,
#define F_CPU 8000000UL #include #include uint8_t last_state = 0; ISR(TIMER0_COMP_vect) { //оба вывода энкодера подключены к 2 и 3 выводу порта B //считываем их состояние uint8_t current_state = (PINB & 0x06)>>1; //учитываем переход только если пред.состояние 11 //и если оно не равно новому if ((last_state == 3) && (last_state != current_state)) { //если новое сост 01 - включаем светодиод if(current_state == 1) { PORTB |= 0x01; } //если новое сост 10 - гасим светодиод if(current_state == 2) { PORTB &= ~0x01; } } //при выходе из прерывания текущее состояние становится прошлым last_state = current_state; } int main(void) { //два входа для подключения энкодера DDRB &= ~0x06; //подтягиваем входы к питанию PORTB |= 0x06; //выход для подключения светодиода DDRB |= 0x01; //настраиваем таймер по в режим сброс по совпадению TCCR0=(1<На этом всё.
Энкодер покупал

Для реализации демонстрационного проекта нам понадобятся:

  • 24-позиционный энкодер;
  • 16 светодиодов (3 мм);
  • драйвер светодиодов A6276 ;
  • микроконтроллер PIC18F2550 .

Энкодер - современный и оригинальный элемент управления цифровыми устройствами, и по внешнему виду похож на переменный резистор (см. рисунок ниже). Другое название этого элемента управления - датчик угла, датчик поворота. Вращение вала сопровождается щелчками, например 24 щелчка на один оборот. Энкодер имеет 3 вывода - A, B, C и применяется для быстрого ввода данных в цифровые устройства. Некоторые модели имеют встроенную кнопку, которая срабатывает по нажатию на вал энкодера (добавляется еще один вывод).

Принцип работы энкодера

При повороте на один щелчок, например, вправо, сначала замыкается контакт А+С, затем В+С. Когда в этом щелчке вал доворачивается, в той же последовательности контакты размыкаются. При повороте вала в другую сторону, последовательность замыкания с контактом С меняется, т.е. при повороте влево замыкаются сначала В+С, затем А+С.

Используя энкодер в проектах на микроконтроллерах, возможно, при помощи одного и того же энкодера, реализовать несколько различных типов ввода данных, однако, это требует некоторой обратной связи и визуализации, чтобы пользователь знал, какую информацию он вводит и в какой позиции энкодер.

Принципиальная схема

Выводы энкодера A и B подключаются к портам микроконтроллера RB4 и RB5, вывод С энкодера подключается к «земле». Стоит заметить, что на сигнальные линии выводов A и B должны быть подключены подтягивающие резисторы. Энкодер не случайно подключен к указанным линиям ввода/вывода микроконтроллера: во-первых, порт B имеет встроенные подтягивающие резисторы и нам не придется подключать внешние, во-вторых, порт B микроконтроллера имеет очень полезную функцию - «interrupt-on-change» - прерывание по изменению уровня, что позволит нам отслеживать состояние энкодера.

16 обычных 3 мм светодиодов используются для визуализации вводимых данных и расположены они будут на печатной плате вокруг установленного энкодера. Светодиоды подключены к микросхеме A6276.

Микросхема A6276 представляет собой драйвер светодиодов с 16-битным последовательным вводом информации. Драйвер содержит 16-битный КМОП сдвиговый регистр, соответствующие защелки и драйверы для управления светодиодами и может управлять большим количеством светодиодов, чем это позволяет микроконтроллер. Кроме того, драйвером можно управлять по интерфейсу SPI, что дополнительно сокращает количество используемых линий ввода/вывода и делает проект масштабируемым.

Программное обеспечение микроконтроллера для решения нашей задачи относительно простое. Реализуется 3 режима работы (ввод информации) и обратная связь:

  • Режим позиционирования на 360° - в этом режиме светодиоды указывают текущую «позицию» энкодера, пользователь может поворачивать вал энкодера влево и вправо на любой угол;
  • Режим «Громкость/Уровень» - в этом режиме светодиоды указывают текущее значение между минимальным и максимальным уровнями диапазона ввода (как уровень громкости в аудиоустройствах);
  • Режим 3-позиционного ротационного тумблера - в этом режиме имеется только три выбираемых позиции, которые пользователь выбирает, поворачивая вал энкодера влево/вправо.

Демонстрация работы проекта

Загрузки

ZIP-архив с проектом в среде MPLAB и исходным кодом на Hitech C, а также, принципиальная схема и топология печатной платы находятся .