Домой / Faq / Отопление на ардуино мега 2560. Какие проекты можно создавать на Arduino? Расширение возможности на Ардуино

Отопление на ардуино мега 2560. Какие проекты можно создавать на Arduino? Расширение возможности на Ардуино

Ардуино – популярнейшая платформа для реализации различных проектов, подходящая инженерам, которые не хотят программировать «пустые» микроконтроллеры и, в принципе, желают свести общение с программной средой к минимуму. Но даже у неё в базовой комплектации имеются свои подводные камни, о которых лучше узнать заранее.

Давайте же разберёмся, с какими проблемами вы рано или поздно столкнетесь, и какие Ардуино проекты на возможно эффективно спроектировать под стандартный микроконтроллер?

Постепенно ставя перед собой более сложные задачи и занимаясь новыми разработками на данном МК, вы со временем столкнетесь с двумя главными проблемами стандартных плат:

  1. Неоптимальные размеры, не подходящие для удобного их размещения во многих корпусах.
  2. Недостача в количестве пинов на ввод-вывод данных.

Первая проблема . Минимизировать занимаемое место крайне легко – достаточно использовать специальные разновидности МК, будь то нано или мини. Здесь есть некоторые особенности, с недостатком памяти, например, на Attiny85, но для простого функционала – это не столь существенно.

Конечно, для более сложных задач можно докупить специальные модули с дополнительным объемом памяти под инструкции, но это полностью нивелирует все плюсы нано, ведь уменьшенный размер будет компенсирован дополнительным слотом под чип и занятым пином. Относится эта проблема не ко всем платам, и всё та же nano способна полностью копировать функционал уно.

Вторая проблема – менее приятная, но и у неё есть несколько путей для решения:

  1. Расширить число выводов, используя сдвиговые регистры. Данный метод имеет ряд недостатков, вроде отсутствия ШИМ под расширенные выводы и применения лишь к выходным сигналам. Но в некоторых случаях и такие «костыли» способны спасти ситуацию, позволив сэкономить средства и время.
  2. Объединить пару МК на одной платформе, а затем, через специальный «мост», создать между ними связь. Здесь стоит применить несколько паттернов проектирования, дабы не засорять буфер каждого контроллера информацией с другого, тем самым перегружая систему. Готовые решения уже размещены на просторах нашего сайта, но, чтобы их использовать, вам всё же придется углубиться в программную часть продукта, что не каждый захочет сделать. Ведь в таком случае нивелируется ценность самой платформы Ардуино.

Как мы видим, оба выхода из ситуации задействуют «костыли», и элегантными их не назовешь. Но это далеко не единственная проблема. Они или работают частично, или нивелируют достоинства системы, что абсолютно недопустимо для сколь-нибудь сложных проектов.

Благо, есть и третий подход, используемый всё чаще, – , проекты на которой уже не страдают от обилия этих «костылей». Есть также аналог данной платы, поддерживающий usb-хосты, но давайте сначала разберёмся с основным МК.

Первое, что бросается в глаза при знакомстве с 2560, – внешний вид, ведь она в 1.8 раз длиннее уно, что является необходимым злом, дабы разместить на ней целых 54 порта. Притом, 15 из них можно использовать в качестве источников ШИМ-сигналов, чтобы регулировать мощность тока или другие параметры системы. Регуляция осуществляется с помощью широтно-импульсных модуляций, а дополнительные 16 портов под вход могут обработать цифровые сигналы и применяться в качестве всё тех же цифровых выходов. В результате, мы получаем более тонкую, длинную и функциональную плату.

Под связь с несколькими видами устройств установлено 4-о UART интерфейсов, на 0, 1, 14, 19 пинах. Притом, один из них направлен под usb с помощью микроконтроллера ATmega8U2, применяемого в качестве замены привычному USB-TTL, который использовался повсеместно в более старых платах. Но, что важнее, – прошивка располагается в паблик репозитории, а соответственно, доступна для скачивания и модификации любому желающему. Под связь с дисплеями присутствуют SPI и I2C технологии, которые вы также можете применить в своем проекте.

Технические характеристики

Ну, а если говорить конкретнее, то технические характеристики данного контроллера таковы:

  1. Тактовая частота ядер достигает 16 мГц.
  2. Воспринимаемое напряжение равно 5 Вольтам.
  3. Максимальное допустимое напряжение на цепи – 20 В.
  4. Соответственно, среднее рекомендуемое для работы – 9 В +-2 В
  5. С одного вывода максимальная сила тока может достигать 40 мА.
  6. Ну, а главное, что присутствуют 54 цифровых пина, из которых 15 – с поддержкой ШИМ.
  7. Аналоговых же всего 16, но для большинства проектов этого будет достаточно.
  8. Доступная постоянная память составляет 256 КБ, но учитывайте, что компилятором занято 8.
  9. Оперативная же составляет всего 8 КБ.

Все эти характеристики необходимо запомнить, чтобы подобрать под Аrduino mega 2560 проекты, подходящие по параметрам. Ведь далеко не в каждой ситуации такой длинный чип будет куда уместить, да и вообще возникнет в нём потребность.

Популярные и интересные проекты Ардуино с использованием контроллера 2560

В отличие от своих собратьев, данный МК имеет достаточные характеристики, чтобы реализовать то, что ещё вчера казалось невозможным сделать на подобной плате. Так, из интересных проектов, стоит отметить поддерживаемый правительством РФ Mega Server, идея которого в использовании данных контроллеров в качестве основы для сервера веб-ресурсов.

Естественно, проект предполагает серьезные ограничения по памяти, из-за того, что единственным её расширением являются SD-карты, а Ethernet поддерживает лишь 32 ГБ. Но, учитывая размеры конечного сервера, данные характеристики не кажутся столь значимыми.

В целом, ничего особенного и новаторского в продукте нет, ведь он предоставляет лишь front-end технологии веба, для которых достаточно отправить соответствующие файлы на клиент, а браузер уже сам скомпилирует конечный продукт. Соответственно, никакими препроцессорами и интерпретаторами заморачиваться не нужно, что серьёзно упрощает задачу для разработчиков.

Но, тем не менее, возможность поместить ваш сервер в карман и запустить его с любого места доступа в интернет – уже поражает, а также позволяет взглянуть на проблему размеров мейнфреймов под другим углом.

Но это не единственные проекты, которые можно реализовать на плате. Однако остальное большинство можно разделить на:

  1. Стандартный для Ардуино .
  2. Автоматизированная котельная.
  3. Робот-бармен. Это один из интереснейших проектов, прогремевших в сети на днях. Все исходники доступны бесплатно, а соответственно, никто не мешает вам повторить опыт самостоятельно.

Питание Arduino Mega 2560

Для того, чтобы запитать плату, вам будет достаточно подключить к соответствующему пину источник тока в 9-10 В, главное – контролировать напряжение, чтобы оно не превысило доступный максимум в 20 В.

Подключение к компьютеру

Для подключения к компьютеру плата предполагает использование протокола USB-TTL или USB-c, в зависимости от разновидности, которую вы решили приобрести. А в остальном вам потребуется стандартный софт для программирования и работы с Ардуино через ПК, в зависимости от вашей операционной системы.

Arduino Mega построена на микроконтроллере ATmega2560 (). Плата имеет 54 цифровых входа/выходов (14 из которых могут использоваться как выходы ШИМ), 16 аналоговых входов,4 последовательных порта UART, кварцевый генератор 16 МГц, USB коннектор, разъем питания, разъем ICSP и кнопка перезагрузки. Для работы необходимо подключить платформу к компьютеру посредством кабеля USB или подать питание при помощи адаптера AC/DC, или аккумуляторной батареей. Arduino Mega 2560 совместима со всеми платами расширения, разработанными для платформ или Duemilanove .

Схема и исходные данные

Краткие характеристики
Микроконтроллер ATmega2560
Рабочее напряжение
Входное напряжение (рекомендуемое) 7-12В
Входное напряжение (предельное) 6-20В
Цифровые Входы/Выходы 54 (14 из которых могут работат также как выходы ШИМ)
Аналоговые входы 16
Постоянный ток через вход/выход 40 mA
Постоянный ток для вывода 3.3 В 50 mA
Флеш-память 256 KB (из которых 8 КB используются для загрузчика)
ОЗУ 8 KB
Энергонезависимая память 4 KB
Тактовая частота 16MHz
Питание

Arduino Mega может получать питание как через подключение по USB, так и от внешнего источника питания. Источник питания выбирается автоматически.

Внешнее питание (не USB) может подаваться через преобразователь напряжения AC/DC (блок питания) или аккумуляторной батареей. Преобразователь напряжения подключается посредством разъема 2.1 мм с положительным полюсом на центральном контакте. Провода от батареи подключаются к выводам Gnd и Vin разъема питания (POWER).

Платформа может работать при внешнем питании от 6 В до 20 В. При напряжении питания ниже 7 В, вывод 5V может выдавать менее 5 В, при этом платформа может работать нестабильно. При использовании напряжения выше 12 В регулятор напряжения может перегреться и повредить плату. Рекомендуемый диапазон от 7 В до 12 В.

Плата Mega2560, в отличие от предыдущих версий плат, не использует FTDI USB микроконтроллер. Для обмена данными по USB используется микроконтроллер Atmega8U2, запрограммированный как конвертер USB-to-serial.

Выводы питания:

  • VIN . Вход используется для подачи питания от внешнего источника (в отсутствие 5 В от разъема USB или другого регулируемого источника питания). Подача напряжения питания происходит через данный вывод. Если питание подается на разьем 2.1mm, то на этот вход можно запитаться.
  • 5V . Регулируемый источник напряжения, используемый для питания микроконтроллера и компонентов на плате. Питание может подаваться от вывода VIN через регулятор напряжения, или от разъема USB, или другого регулируемого источника напряжения 5 В.
  • 3V3. Напряжение на выводе 3.3 В генерируемое микросхемой FTDI на платформе. Максимальное потребление тока 50 мА.
  • GND. Выводы заземления.
Память

Микроконтроллер ATmega2560 имеет: 256 кБ флеш-памяти для хранения кода программы (4 кБ используется для хранения загрузчика), 8 кБ ОЗУ и 4 Кб EEPROM (которая читается и записывается с помощью библиотеки EEPROM).

Входы и Выходы

Каждый из 54 цифровых выводов Mega, используя функции pinMode() , digitalWrite() , и digitalRead() , может настраиваться как вход или выход. Выводы работают при напряжении 5 В. Каждый вывод имеет нагрузочный резистор (стандартно отключен) 20-50 кОм и может пропускать до 40 мА. Некоторые выводы имеют особые функции:

  • Последовательная шина: 0 (RX) и 1 (TX); Последовательная шина 1: 19 (RX) и 18 (TX); Последовательная шина 2: 17 (RX) и 16 (TX); Последовательная шина 3: 15 (RX) и 14 (TX). Выводы используются для получения (RX) и передачи (TX) данных TTL. Выводы 0 и 1 подключены к соответствующим выводам микросхемы последовательной шины ATmega8U2.
  • Внешнее прерывание: 2 (прерывание 0), 3 (прерывание 1), 18 (прерывание 5), 19 (прерывание 4), 20 (прерывание 3), и 21 (прерывание 2). Данные выводы могут быть сконфигурированы на вызов прерывания либо на младшем значении, либо на переднем или заднем фронте, или при изменении значения. Подробная информация находится в описании функции attachInterrupt().
  • PWM: 2 до 13 и 44-46. Любой из выводов обеспечивает ШИМ с разрешением 8 бит при помощи функции analogWrite() .
  • SPI: 50 (MISO), 51 (MOSI), 52 (SCK), 53 (SS). Посредством данных выводов осуществляется связь SPI, например, используя библиотеку SPI . Также выводы SPI могут быть выведены на блоке ICSP, который совместим с платформами Uno, Duemilanove и Diecimila.
  • LED: 13. Встроенный светодиод, подключенный к цифровому выводу 13. Если значение на выводе имеет высокий потенциал, то светодиод горит.
  • I2C: 20 (SDA) и 21 (SCL). Посредством выводов осуществляется связь I2C (TWI). Для создания используется библиотека Wire (информация на сайте Wiring). Расположение выводов на платформе Mega не соответствует расположению Duemilanove или Diecimila.

На платформе Mega2560 имеется 16 аналоговых входов, каждый разрешением 10 бит (т.е. может принимать 1024 различных значения). Стандартно выводы имеют диапазон измерения до 5 В относительно земли, тем не менее имеется возможность изменить верхний предел посредством вывода AREF и функции analogReference().

Дополнительная пара выводов платформы:

  • AREF. Опорное напряжение для аналоговых входов. Используется с функцией analogReference() .
  • Reset. Низкий уровень сигнала на выводе перезагружает микроконтроллер. Обычно применяется для подключения кнопки перезагрузки на плате расширения, закрывающей доступ к кнопке на самой плате Arduino.
Связь

На платформе Arduino Mega2560 установлено несколько устройств для осуществления связи с компьютером, другими устройствами Arduino или микроконтроллерами. ATmega2560 поддерживает 4 порта последовательной передачи данных UART для TTL. Установленная на плате микросхема ATmega8U2 направляет один из интерфейсов через USB, предоставляя виртуальный COM порт программам на компьютере (машинам под упровлением Windows для корректной работы с виртуальным COM портом необоходим.inf файл, системы на базе OSX и Линукс, автоматически распознаю COM порт). Утилита мониторинга последовательной шины (Serial Monitor) среды разработки Arduino позволяет посылать и получать текстовые данные при подключении к платформе. Светодиоды RX и TX на платформе будут мигать при передаче данных через микросхему ATmega8U2 и USB подключение (но не при использовании последовательной передачи через выводы 0 и 1).

Программирование

Микроконтроллер ATmega2560 поставляется с записанным загрузчиком, облегчающим запись новых программ без использования внешних программаторов. Связь осуществляется оригинальным протоколом STK500.

Имеется возможность не использовать загрузчик и запрограммировать микроконтроллер через выводы блока ICSP (внутрисхемное программирование). находится в данной инструкции.

Код прошивки для контроллера ATmega8U2 доступен для свободного скачивания . Контроллер ATmega8U2 имеет собственный DFU загрузчик, который может быть активирован замыканием джампера на обратной стороне платы (рядом с картой Италии) и перезагрузкой контроллера. Для записи новой прошивки возможно использовать Atmel"s FLIP (под Windows) или (на Mac OS X или Linux). Также можно переписать прошивху внешним программатором, используя ISP вход.

Автоматическая (программная) перезагрузка

Mega разработана таким образом, чтобы перед записью нового кода перезагрузка осуществлялась самой программой, а не нажатием кнопки на платформе. Одна из линий ATmega8U2, управляющих потоком данных (DTR), подключена к выводу перезагрузки микроконтроллера ATmega2560 через конденсатор 100 нФ. Активация данной линии, т.е. подача сигнала низкого уровня, перезагружает микроконтроллер. Программа Arduino, используя данную функцию, загружает код одним нажатием кнопки Upload в самой среде программирования. Подача сигнала низкого уровня по линии DTR скоординирована с началом записи кода, что сокращает таймаут загрузчика.

Функция имеет еще одно применение. Перезагрузка Mega2560 происходит каждый раз при подключении к программе Arduino на компьютере с ОС Mac X или Linux (через USB). Следующие полсекунды после перезагрузки работает загрузчик. Во время программирования происходит задержка нескольких первых байтов кода во избежание получения платформой некорректных данных (всех, кроме кода новой программы). Если производится разовая отладка скетча, записанного в платформу, или ввод каких-либо других данных при первом запуске, необходимо убедиться, что программа на компьютере ожидает в течение секунды перед передачей данных.

На Mega2560 имеется возможность отключить линию автоматической перезагрузки разрывом соответствующей линии. Контакты микросхем с обоих концов линии затем могут быть соединены с целью восстановления. Линия маркирована «RESET-EN». Отключить автоматическую перезагрузку также возможно подключив резистор 110 Ом между источником 5 В и данной линией.

Токовая защита разъема USB

В Arduino Mega2560 встроена перезагружаемая плавкая вставка, защищающая порт USB компьютера от токов короткого замыкания и сверхтоков. Хотя практически все компьютеры имеют подобную защиту, тем не менее, данный предохранитель обеспечивает дополнительный барьер. Предохранитель автоматически прерывает обмен данных при прохождении тока более 500 мА через USB порт.

Физические характеристики и совместимость с платами расширения

Длинна и ширина печатной платы Mega2560 составляют 10,2 и 5.3 см соответственно. Разъем USB и силовой разъем выходят за границы данных размеров. Три отверстия в плате позволяют закрепить ее на поверхности. Расстояние между цифровыми выводами 7 и 8 равняется 0,4 см, хотя между другими выводами оно составляет 0,25 см.

Arduino Mega2560 совместима со всеми платами расширения, разработанными для платформ Uno, Duemilanove или Diecimila. Расположение выводов 0 - 13 (и примыкающих AREF и GND), аналоговых входов 0 - 5, силового разъема, блока ICSP, порта последовательной передачи UART (выводы 0 и 1) и внешнего прерывания 0 и 1 (выводы 2 и 3) на Mega соответствует расположению на вышеприведенных платформах. Связь SPI может осуществляться через блок ICSP, как на платформах Duemilanove / Diecimila, так и на Mega2560. Однако расположение выводов (20 и 21) связи I2C на платформе Mega не соответствуют расположению тех же выводов (аналоговые входы 4 и 5) на Duemilanove / Diecimila.

Эта плата отличается от других ардуинок большим количеством вводов и выводов, увеличенным объемом памяти и другими характеристиками, о которых мы расскажем ниже. Ардуино Мега представлена в нескольких версиях. Они практически не отличаются друг от друга. Отличия Arduino Mega 2560 R3 от предыдущих версий платы заключаются в следующих деталях:

  • Для преобразования интерфейса USB-UART используется микроконтроллер ATmega16U2 в R3 версии и ATmega8U2 в версиях платы R1 и R2.
  • Начиная с версии R2 на плате добавлен притягивающий резистор для линии HWB. Это делает процесс прошивки микроконтроллера более простым и удобным.
  • В версии R3 были добавлена пара выводов для последовательного интерфейса I2C SDA и SCL.
  • Так же была улучшена помехоустойчивость цепи сброса.
  • Заменен микроконтроллер для работы с интерфейсом USB-UART с ATmega8U2 на ATmega16U2

Как можно заметить, изменения не повлияли на производительность. Поэтому дальше мы будем говорить только о последней версии этой платы.

Arduino Mega 2560 R3

Ардуино Мега 2560 снабжена микроконтроллером ATmega2560 с тактовой частотой 16 мГц.

Характеристики Ардуино Мега 2560

  • Микроконтроллер: ATmega2560
  • Тактовая частота: 16 мГц
  • Рабочее напряжение: 5 В
  • Предельные напряжения питания: 5-20 В
  • Рекомендуемое напряжение питания: 7-12 В
  • Максимальная сила тока с одного вывода: 40 мА
  • Цифровые входы/выходы: 54
  • Цифровые входы/выходы с поддержкой ШИМ: 15
  • Аналоговые входы: 16
  • Flash-память: 256 КБ (8 из них используются загрузчиком)
  • SRAM: 8 КБ
  • EEPROM: 4 КБ

Подключение Arduino Mega 2560 к питанию

Эту плату можно питать четырьмя разными способами:

  1. Через порт USB. Можно питать ардуино от компьютера, powerbank, смартфона (если он поддерживает режим OTG) или от адаптера, вставленного в розетку.
  2. Через пин +5V. Этот пин является не только выводом, но и вводом. Будьте внимательны! На этот пин нужно подавать ровно 5 вольт. В противном случае можно спалить сам микроконтроллер.
  3. Через штекер питания, расположенный на плате. Можно использовать, батарейки, аккумуляторы и разнообразные блоки питания. Этот штекер подключен к пину VIN. О напряжении и мерах предосторожности написано в следующем пункте.
  4. Через пин VIN. Ток от этого пина проходит через встроенный стабилизатор напряжения. По заявлениям производителя можно подавать от 5 до 20 вольт. Но это не совсем так. Так как стабилизатор имеет не 100% КПД, то при подаче 5 вольт на пин VIN напряжения может не хватить на питание микроконтроллера, да и на цифровых пинах будет не 5 вольт, а меньше. Также не стоит работать на максимальном напряжении. При 20 вольтах на пине VIN будет сильно греться стабилизатор напряжения, вплоть до выхода из строя. Поэтому рекомендуется использовать напряжение от 7 до 12 вольт.

Как уже было написано выше, плата имеет 54 цифровых пинов. Они могут быть как входом так и выходом. Рабочее напряжение этих пинов составляет 5 В. Каждый из них имеет подтягивающий резистор и поданное на один из этих пинов напряжения ниже 5 вольт все равно будет считаться как 5 вольт (логическая единица).

Аналоговые пины являются входами и не имеют подтягивающих резисторов. Они измеряют поступающее на них напряжение и возвращают значение от 0 до 1024 при использовании функции . Эти пины измеряют напряжение с точностью до 0,005 В.

ШИМ Arduino Mega

Если внимательно посмотреть на плату то можно увидеть значок тильды (~) рядом с некоторыми цифровыми пинами. Этот значок означает, что данный пин может быть использован как выход ШИМ. На некоторых платах ардуино этого значка нет так как производители не всегда находят место для этого символа на плате. У Arduino Mega есть 15 выводов ШИМ, это цифровые пины со 2 по 13 и с 44 по 46. Для использования ШИМ в Arduino есть специальная функция .

Другие пины:

  • Serial: 0 (rx) и 1 (tx), Serial1: 19 (rx) 18 (tx), Serial2: 17 (rx) и 16 (tx), Serial3: 15 (rx) и 14 (tx) используются для передачи данных по последовательному интерфейсу.
  • Выводы 53 (SS), 51 (MOSI), 50 (MISO), 52 (SCK) рассчитаны для связи по интерфейсу SPI.
  • Так же на выводе 13 имеется встроенный в плату светодиод.
  • 20 (SDA) и 21 (SCL) могут использоваться для связи с другими устройствами по шине I2C. Подробнее про этот интерфейс вы можете почитать на википедии . В среде разработке Arduino IDE есть встроенная библиотека «wire.h» для более легкой работы с I2C.
  • Внешние прерывания: выводы 2 (прерывание 0), 3 (прерывание 1), 18 (прерывание 5), 19 (прерывание 4), 20 (прерывание 3) и 21 (прерывание 2). Эти выводы могут использоваться в качестве источников прерываний, возникающих при различных условиях: при низком уровне сигнала, при фронте, спаде или изменении сигнала. Для получения дополнительной информации см. функцию .
  • AREF. Опорное напряжение для аналоговых входов. Может быть задействован функцией .
  • Reset. Формирование низкого уровня (LOW) на этом выводе приведет к перезагрузке микроконтроллера. Обычно этот вывод служит для функционирования кнопки сброса на платах расширения

Физические характеристики

Arduino Mega имеет следующие размеры: длина 102 мм и ширина 54 мм. Arduino Mega весит около 45 грамм. Плата имеет 4 отверстия для возможности ее закрепления на поверхности. Расстояние между выводами равняется 2,5 мм, кроме выводов 7 и 8. Между ними 4 мм.

Принципиальная схема


Система «Умный дом» на Arduino пользуется большим спросом у людей, стремящихся создать максимальный комфорт дома или в офисе.

Ее особенность - в способности управлять различными системами без участия владельца, а суть заключается в объединении электронных устройств в одну сеть для экономии электроэнергии, управления освещением и электроприборами, оповещения о проникновении в дом посторонних лиц и решении других задач.

Одним из главных элементов системы умный дом в рассматриваемом варианте является Arduino. Что это такое? Как он работает? Какие функции выполняет? Все подробно мы рассмотрим в этой статье.

Что такое Arduino?

Ардуино (Arduino) - специальный инструмент, позволяющий проектировать электронные устройства, имеющие более тесное взаимодействие с физической средой в сравнении с теми же ПК, фактически не выходящими за пределы виртуальной реальности.

В основе платформы лежит открытый код, а само устройство построено на печатной плате с «вшитым» в ней программным обеспечением.

Другими словами, Ардуино - небольшое устройство, обеспечивающее управление различными датчиками, системами освещения, принятия и передачи данных.

В состав Arduino входит микроконтроллер, представляющий собой собранный на одной схеме микропроцессор. Его особенность - способность выполнять простые задачи. В зависимости от модели устройство Ардуино может комплектоваться микроконтроллерами различных типов.

Существует несколько моделей плат, самые распространённые из них – UNO, Mega 2560 R3.

Не менее важная особенность печатной платы заключается в наличии 22 выводов, которые расположены по периметру изделия. Они бывают аналоговыми и цифровыми.

Особенность последних заключается в управлении с помощью только двух параметров - логической единицы или нуля. Что касается аналогового вывода, между 1 и 0 имеется много мелких участков.

Сегодня Arduino используется при создании электронных систем, способных принимать информацию с различных датчиков (цифровых и аналоговых).

Устройства на Ардуино могут работать в комплексе с ПО на компьютере или самостоятельно.

Что касается плат, их можно собрать своими руками или же приобрести готовое изделие. Программирование Arduino производится на языке Wiring.

ЧИТАЙТЕ ПО ТЕМЕ : , обзор, комплектация, подключение и настройка своими руками, сценарии.

Чем управляет Arduino?

Благодаря большому количеству выводов на печатной плате, к Ардуино удается подключить множество различных устройств, а именно:

Кроме того, к Ардуино подключается набор датчиков в зависимости от задач, поставленных перед системой. Как правило, устанавливаются датчики освещенности, дыма и состава воздуха, магнитного поля, влажности, температуры и прочие.

Благодаря этой особенности, Arduino становится универсальным устройством - «мозговым центром» системы «Умный дом» с возможностью конфигурации с учетом поставленных задач.

Принцип работы системы

Устройство Arduino работает следующим образом. Информация, собранная с различных датчиков в доме, направляется по беспроводной сети на планшет или ПК. Далее с помощью специального софта производится обработка данных и выполнение определенной команды.

Главную функцию выполняет центральный датчик, который можно приобрести или собрать самостоятельно. Разъемы на платах являются стандартными, что значительно упрощает выбор комплектующих.

Питание

Питание Arduino производится через USB разъем или от внешнего питающего устройства. Источник напряжения определяется в автоматическом режиме.

Если выбран вариант с внешним питанием не через USB, можно подключать АКБ или блок питания (преобразователь напряжения). В последнем случае подключение производится с помощью 2,1-миллиметровго разъема с «+» на главном контакте.

Провода от АКБ подключаются к различным выводам питающего разъема - Vin и Gnd.

Для нормальной работы платформа нуждается в напряжении от 6 до 20 Вольт. Если параметр падает ниже 7 вольт, на выводе 5V может оказаться меньшее напряжение и появляется риск сбоя.

Если подавать 12 В, возможен перегрев регулятора напряжения и повреждения платы. По этой причине оптимальным уровнем является питание с помощью 7 - 12 В.

В отличие от прошлых типов плат, Arduino Mega 2560 работает без применения USB-микроконтроллера типа FTDI. Для обеспечения обмена информацией по USB применяется запрограммированный под конвертер USB-to-serial конвертер.

ПОПУЛЯРНО У ЧИТАТЕЛЕЙ : .

На Ардуино предусмотрены следующие питающие выводы:

  • 5V - используется для подачи напряжения на микроконтроллер, а также другие элементы печатной платы. Источник питания является регулируемым. Напряжение подается через USB-разъем или от вывода VIN, а также от иного источника питания 5 Вольт с возможностью регулирования.
  • VIN - применяется для подачи напряжения с внешнего источника. Вывод необходим, когда нет возможности подать напряжение через USB-разъем или другой внешний источник. При подаче напряжения на 2,1-миллиметровй разъем применяется этот вход.
  • 3V3 - вывод, напряжение на котором является следствием работы самой микросхемы FTDI. Предельный уровень потребляемого тока для этого элемента составляет 50 мА.
  • GND - заземляющие выводы.

Принципиальную схему платы в pdf формате можно посмотреть .

Связь

Возможности Arduino позволяют подключить группу устройств, обеспечивающих стабильную связь с ПК, а также другими элементами системы - микроконтроллерами или такими же платами Ардуино.

Модель ATmega 2560 отличается наличием 4 портов, через которые можно передавать данные для TTL и UART. Специальная микросхема ATmega 8U2 на плате передает интерфейс (один из них) через USB-разъем. В свою очередь, программы на ПК получают виртуальный COM.

Здесь имеются нюансы, которые зависят от типа операционной системы:

  • Если на ПК установлен Linux, распознавание происходит в автоматическом режиме.
  • Если стоит Windows, потребуется дополнительный файл.inf.

С помощью утилиты мониторинга обеспечивается отправление и получение информации в текстовом формате после подключения к системе.

Мигание светодиодов TX и RX свидетельствует о передаче данных. Для последовательной отправки информации применяется специальная библиотека Software Serial.

К особенностям ATmega 2560 стоит отнести наличие интерфейсов SPI и I2C. Кроме того, в состав Ардуино входит библиотека Wire.

Разработка проекта

На современном рынке представлено множество устройств Arduino, имеющих различную комплектацию. Но универсального решения «на все случаи жизни» не существует. В зависимости от поставленной задачи каждый комплект подбирается в индивидуальном порядке. Чтобы избежать ошибок, требуется разработка проекта.

Какие проекты можно создавать на Arduino?

Ардуино позволяет создавать множество уникальных проектов. Вот лишь некоторые из них:

  • Сборка кубика Рубика (система справляется за 0,887 с);
  • Контроль влажности в подвальном помещении;
  • Создание уникальных картин;
  • Отправка сообщений;
  • Балансирующий робот на двух колесах;
  • Анализатор спектра звука;
  • Лампа оригами с емкостным сенсором;
  • Рука-робот, управляемая с помощью Ардуино;
  • Написание букв в воздухе;
  • Управление фотовспышкой и многое другое.

Составление проекта для умного дома

Рассмотрим ситуацию, когда необходимо сделать автоматику для дома с одной комнатой.

Такое здание состоит из пяти основных зон - прихожей, крыльца, кухни, санузла, а также комнаты для проживания.

При составлении проекта стоит учесть следующее:

  • КРЫЛЬЦО . Включение света производится в двух случая - приближение хозяина к дому в темное время суток и открытие дверей (когда человек выходит из здания).
  • САНУЗЕЛ . В бойлере предусмотрен выключатель питания, который при достижении определенной температуры выключается. Управление бойлером производится в зависимости от наличия соответствующей автоматики. При входе в помещение должна срабатывать вытяжка, и загорается свет.
  • ПРИХОЖАЯ . Здесь требуется включение света при наступлении темноты (автоматическое), а также система обнаружения движения. Ночью включается лампочка небольшой мощности, что исключает дискомфорт для других жильцов дома.
  • КОМНАТА . Включение света производится вручную, но при необходимости и наличии датчика движения эта манипуляция может происходить автоматически.
  • КУХНЯ . Включение и отключение света на кухне осуществляется в ручном режиме. Допускается автоматическое отключение в случае продолжительного отсутствия перемещений по комнате. Если человек начинает готовить пищу, активируется вытяжка.

Отопительные устройства выполняют задачу поддержания необходимой температуры в помещении. Если в доме отсутствуют люди, нижний предел температуры падает до определенного уровня.

После появления людей в здании этот параметр поднимается до прежнего значения. Рекуперация воздуха осуществляется в случае, когда система обнаружила присутствие владельца. Продолжительность процесса - не более 10 минут в час.

Стоит обратить внимание, что если в доме планируется установка , то для управления ими лучше использовать приложения на мобильных устройствах, WIFI или через SMS сообщения.

Визуальное программирование для Arduino можно осуществлять с помощью специального приложения FLProg, которое можно скачать с официального сайта http://flprog.ru/.

Подбираем комплектацию под проект на примере Arduino Mega 2560 R3

Для создания полноценной системы «Умный дом» и выполнения ею возложенных функций важно правильно подойти к комплектации и выбору оборудования.

Что входит в комплект поставки?

Если ваша цель - «Умный дом» на базе Arduino, требуется подготовить следующее оборудование - саму плату Mega 2560 R3, модуль Ethernet (ENC28J60), датчик движения, а также другие датчики и контроллеры.

Кроме того, стоит подготовить кабель вида «витая пара», резистор, реле, переключатель и кабель для модуля Ethernet.

Необходимы и дополнительные инструменты - отвертки, паяльники и прочее.

Учтите, что покупать наборы для монтажа системы стоит в сертифицированных пунктах. Это объясняется тем, что при реализации проекта применяется электричество, а использование подделки может привести к снижению уровня безопасности.

Все программы для адаптации можно найти в сети на официальном сайте Arduino http://arduino.ru. При выборе датчиков стоит ориентироваться на задачи, которая должен решать «Умный дом».

Как правило, требуются датчики движения, температуры, открытия дверей и освещенности. Роль датчика открытия дверей может выполнять обычный геркон.

Прошивается плата с помощью специального софта, предназначенного для различных операционных систем, в том числе и кабеля USB. При этом в программаторах нет необходимости.

Что касается ПО, которое применяется в Ардуино, оно написано на языке Си. На число байт имеются определенные ограничения, но текущей памяти достаточно для реализации поставленной задачи.

Начало работы

Как только необходимое оборудование подготовлено, а проект разработан, можно приступать к выполнению поставленной задачи.

Этапы

При организации системы «Умный дом» на базе Ардуино, стоит действовать по следующему алгоритму:

  • Инсталляция программного кода;
  • Конфигурация приложения под применяемое устройство;
  • Переадресация портов (для роутера);
  • Проведение тестов;
  • Внесение правок и так далее.

В Сети имеется весь необходимый софт на применяемое оборудование - его достаточно скачать с официального сайта и установить (ссылку смотрите выше).

Приложение позволяет увидеть информацию о датчиках. Если это требуется, настройки IP-адрес могут быть изменены.

Последовательность действий при подключении к компьютеру

Чтобы начать работать с Ардуино в Windows, сделайте следующие шаги:


Работа с роутером

Для полноценной работы «Умного дома» важно правильно обращаться с роутером. Здесь требуется выполнить следующие действия - открыть конфигурацию, указать адрес Arduino IP, к примеру, 192.168.10.101 и открыть 80-й порт.

После требуется присвоить адресу доменное имя и перейти к процессу тестирования проекта. Учтите, что для такой системы запрещено применение открытого IP-адреса, ведь в этом случае высок риск взлома через Сеть.

Расширение возможности на Ардуино

Одной из возможностей умного дома является визуализация состояния автоматики и проходящих в системе процессов. Для этого рекомендуется применять отдельный сервер, обеспечивающий обработку состояний (может применяться программа Node.js).

Упомянутая программная технология применяется для решения интернет-задач, поэтому для визуализации «Умного дома» используется язык Java Script (именно с его помощью создается обработчик и сервер). Результаты можно увидеть на экране компьютера или ПК.

Для реализации задуманного подойдет ноутбук, обычный ПК или Raspberry Pi. Применение такой системы позволяет увеличить ее возможности. Так, если на плате Ардуино имеется небольшой объем памяти, на сервере такие ограничения отсутствуют. Программа пишется таким образом, чтобы обеспечить полное управление платформой.

При желании можно задать алгоритм, который будет фиксировать факт нахождения человека в доме, и собирать эту информацию. Если владелец ежедневно возвращается где-то к 17.30, за час может быть включен бойлер или отопительные устройства. По приходу домой человек попадает в теплое здание с горячей водой.

Программа может запомнить время, когда владелец ложится отдыхать и отключать нагрев воды. Таких нюансов, которые при необходимости вносятся в программу, множество. Именно наличие внешнего ПК дает большие возможности контроллеру на Ардуино.

Общение с Arduino

Чтобы узнать, какие действия осуществлять, процессор должен получить соответствующую команду. Общение производится с помощью специального языка, который адаптирован под работу с Ардуино и достаточно прост. При желании в нем легко работаться даже при отсутствии навыков программирования.

Оформление и отправка сообщения контроллеру называется программированием. Чтобы упростить процесс, разработана среда Arduino IDE, в состав которой входит множество программ. Их изучение позволяет получить массу полезной информации о работе с Ардуино.

Как можно управлять?

Как отмечалось, сервер Node.js позволяет связать между собой оборудование в доме. Одним из способов управления процессами являются облачные сервисы в Сети. При этом включить отопление или бойлер можно за один-два часа до приезда.

Еще один способ - управление с помощью сообщений (MMS или SMS). Этот вариант актуален в случае, когда нет связи с Интернетом. Одним из преимуществ системы является возможность получения информации о форс-мажорной ситуации (например, протечке). Здесь помогает плата Edison от компании Intel.

В итоге, что мы получим?

Сегодня Arduino востребовано среди людей, которые ничего не знают о программировании.

Причиной этому является простой интерфейс, а также ряд преимуществ - простой язык программирования, возможность создания своего алгоритма, благодаря открытому исходному коду, а также легкость переноса программ с помощью USB-кабеля. Необходимый для Ардуино софт имеется в Интернете, поэтому тут проблем нет.

Как видно, Ардуино - не просто плата, позволяющая подключить различные устройства. Это мощная база, которую можно использовать для создания «Умного дома». При этом нет нужды тратить большие деньги за дорогостоящие устройства, стоимость которых в 5-10 раз больше.

Это и есть основные преимущества системы.

К особенностям платы стоит отнести возможность подключения к компьютеру и получения визуализации процессов на дисплее планшета или ПК.

Управление автоматикой возможно через Интернет или посредством сообщений. Так что Ардуино отлично подходит для создания устройств повышенной сложности.

Проверка/Оформление/Редактирование: Мякишев Е.А.

Знакомство с Arduino Mega 2560

Arduino Mega 2560 разработана для проектов, где требуется больше I/O контактов, больше памяти для скетчей и больше оперативной памяти. Она имеет 54 I/O контакта, 16 входных аналоговых контактов и рекомендуется для использования в 3D-принтерах и проектах, связанных с робототехникой. Эта статья объясняет, как подключить плату Mega 2560 к компьютеру и загрузить свой первый скетч.

Плата Arduino Mega 2560 программируется при помощи IDE Arduino – интегрированной среды разработки, которая используется для всех плат Arduino . Она доступна и оффлайн, и онлайн. Более подробно с IDE Arduino можно ознакомиться .

Использование Arduino Mega 2560 с онлайновым IDE Arduino

Использование Arduino Mega 2560 с компьютерным IDE Arduino

Если вы хотите программировать Arduino Mega 2560 , будучи оффлайн, вам нужно установить оффлайн-версию IDE Arduino .

Подключите плату

Подключите вашу Arduino Mega 2560 при помощи USB -кабеля типа «A-B» (его еще называют «принтерным» ).

USB -соединение с PC необходимо не только для питания, но и для программирования платы. Mega 2560 будет автоматически получать питание либо от USB , либо от внешнего источника питания. Подключите плату к компьютеру при помощи USB -кабеля. В результате должен загореться зеленый светодиод (под названием PWR ).

Откройте скетч

Откройте скетч-пример «Blink» . Для этого кликните в IDE Arduino на Файл > Примеры > 01.Basics > Blink (File > Examples > 01.Basics > Blink) .

Выберите тип платы и порт

Кликните на Инструменты > Плата (Tools > Board) и в появившемся меню выберите пункт, соответствующий вашей плате Arduino/Genuino . У нас Mega 2560 , поэтому по умолчанию процессором будет выбран ATmega2560 .

Далее кликните на Инструменты > Порт (Tools > Port) и выберите нужный пункт. Скорее всего, это будет COM3 или выше (COM1 и COM2 , как правило, зарезервированы для аппаратных последовательных портов). Чтобы найти правильный порт, отключите плату и заново откройте это меню – исчезнувший пункт и будет портом, к которому подключена ваша плата Arduino/Genuino . Снова подключите плату и выберите нужный последовательный порт.

Загрузите скетч

Теперь просто кликаем на кнопку в IDE Arduino . Ждем несколько секунд – вы должны увидеть, как на плате мигают светодиоды RX и TX . Если загрузка пройдет успешно, в статусной панели появится сообщение .

Спустя несколько секунд после завершения загрузки вы должны увидеть мигание на светодиоде, подключенном к 13-ому контакту. Если увидели – поздравляем! Плата успешно работает. Если у вас возникли какие-то проблемы, смотрите