Домой / Видео / Raspberry Pi для домашней автоматизации. Структурная схема. Разъем расширения Raspberry Pi. Подключение Raspberry Pi

Raspberry Pi для домашней автоматизации. Структурная схема. Разъем расширения Raspberry Pi. Подключение Raspberry Pi

Многие наверняка знают, что подать питание на Arduino от Raspberry Pi не трудно, для этого просто нужен USB шнур. Обратная задача выглядит сложнее, так как у большинства контроллеров Arduino нет USB выхода (Due - исключение). Тем не менее, это возможно сделать с помощью пинов GPIO, и я хочу рассказать о конкретном примере для Arduino Nano V3.0 и Raspberry Pi B rev.2. Помимо самой подачи питания, также расскажу как можно контроллировать это питание используя кнопку и MOSFET транзистор.

Теоретическая возможность
Большинство Arduino-совместимых контроллеров изпользуют 5V пины. Исключение составляет разве что Arduino Due и 3.3V выход из Arduino, но сейчас не об этом. Также известно, что один из способов подать питание на Raspberry Pi - это использование 5V и GND пинов на 26-ти контактном разъеме P1:

Казалось бы, что решение очевидно - надо подсоединить Raspberry Pi к любому из пинов Arduino, и все заработает. Моя попытка сделать это привела к тому, что Raspberry Pi засветил светодиодом PWR, но светодиод ACT так и не зажегся. Причина - очень маленькая сила тока от пинов Arduino (порядка 40-50 мА). Но у Arduino есть отдельный пин 5V, который (согласно ссылке) может выдавать около 400-500 мА. Теперь необходимо проверить, хватит ли такого тока для питания Raspberry.

Для нормального питания Raspberry Pi с двумя подключенными USB устройствами необходимо порядка 700 мА. Каждое USB устройство может потреблять до 140 мА (). Малина может потреблять еще больше тока, если она разогнана (моя - нет). Таким образом, если использовать неразогнанную RPi без USB устройств, то силы тока от Arduino 5V пина должно вполне хватить.

Для того чтобы контроллировать подачу питания, необходимо еще несколько ингредиентов: кнопка питания и что-то, способное управлять большими токами. Я для этих целей использовал MOSFET транзистор. Перейдем непосредственно к использованным частям.

Необходимое аппаратное и программное обеспечение
Я использовал следующие «железные» части:
  • Raspberry Pi B rev. 2;
  • Arduino Nano V3.0;
  • кнопка для контроля питания (я использовал кнопку с фиксацией и сигнальным проводом);
  • MOSFET транзистор (у меня оказался IRF530N);
  • Breadboard и несколько проводов.
Для прошивки Arduino понадобится IDE, я использовал версию 1.5.8 BETA, но стабильная 1.0.6 тоже подойдет. Также понадобится моя маленькая библиотека для PowerButton (ссылка в конце статьи в разделе про утилиты).
Схемы
Схема подключения выглядит так:

Принципиальная схема так:

Пояснения к схемам:

  1. D2 подсоединен к пину SIG у кнопки.
  2. D4 подсоединен к пину VCC у кнопки.
  3. D5 подсоединен к затвору MOSFET.

Cоединение c D2 пином не случайно: библиотека для кнопки использует прерывания, а у Arduino Nano только пины D2/D3 предназначены для этих целей (проверить какие пины на вашей Arduino поддерживают прерывания можно ).

Исходный код программы для Arduino
#include

#define POWER_PIN_SIG 2
#define POWER_PIN_VCC 4
#define POWER_FET_GATE 5
#define POWER_PIN_INT 0

PowerButtonSwitch pbs;

void onPowerOn() {
Serial.println ("Power On" ) ;
digitalWrite(POWER_FET_GATE, 1 ) ; // Открываем затвор (gate)
}

void onPowerOff() {
Serial.println ("Power Off" ) ;
// Закрываем затвор (gate)
}

void setup() {
Serial.begin (9600 ) ;

// Вывод сигнала от Arduino к затвору MOSFET (gate)
pinMode(POWER_FET_GATE, OUTPUT) ;
digitalWrite(POWER_FET_GATE, 0 ) ;

// Начальная настройка кнопки питания
pbs.setupPowerButton (POWER_PIN_SIG, POWER_PIN_VCC, POWER_PIN_INT) ;

// Считываем текущее значение
// Если есть сигнал от кнопки,
// включаем Raspberry Pi
int st = pbs.getSwitchStatus () ;
if (st == POWER_ON) {
onPowerOn() ;
}

// Добавляем обработчики событий
pbs.onPowerOn (onPowerOn) ;
pbs.onPowerOff (onPowerOff) ;
}

void loop() {
// Пустой цикл
delay(1000 ) ;
Serial.println ("No actions" ) ;
}

Большинство действий на себя берет библиотека, так что код очень прост.

Тестирование решения
Короткое видео с тестированием:

Как видно, визуально все работает. Но все-таки надо проверить напряжение между пинами TP1/TP2 (методика ). У меня получилось значение ~4.6V, рекомендуемое значение больше 4.75V.
Заключение
Несмотря на то, что все работает, все-таки есть подозрение что при подключении периферии тока от 5V пина Arduino будет недостаточно. MOSFET и кнопка работают отлично в паре, такая связка может пригодится для дальнейших проектов.

Утилиты и библиотеки, использованные для написания:

  • Fritzing : использовалась для рисования схем, доступна .
  • собственно библиотека для PowerButton : можно взять с GitHub .

Так как это мой первый пост, отзывы и комментарии будут очень полезны.

Самая мощная на сегодня модель Raspberry Pi 3 Model B имеет разъём HDMI для подключения монитора, 4 USB-порта для подключения USB устройств, Ethernet-порт для подключения к сети, встроенный Wi-Fi и Bluetooth, 4 ядерный 64-битный процессор ARM 1.2 ГГц, 1 ГБ оперативной памяти. В отличие от обычных компьютеров на маленькой плате Raspberry есть 40 контактов (пинов) GPIO, который могут использоваться как на вход, так и на выход с применением различных протоколов взаимодействия с внешними устройствами, что и позволяет подсоединять к плате различные датчики и исполнительные приборы.

1. Внешний вид, основные элементы, корпус.

Итак, в наших руках Raspberry Pi 3 Model B.

Верхняя сторона выглядит так:

Нижняя сторона:

На нижней стороне установлены слот для SD-карты и оперативная память. SD-карта служит постоянным запоминающим устройством и содержит файлы операционной системы, программ и файлы пользователя.

Для удобства обращения с платой предлагается множество различных корпусов, а вот детали одного из них, они соединяются между собой без винтов:

Но сначала на процессор и графический чип стоит установить радиаторы, поскольку эти микросхемы прилично греются при активной работе платы:

Вот теперь можно собрать корпус и пометить туда плату микрокомпьютера:




Корпус имеет открывающуюся крышку для удобного подключения камеры, дисплея и контактов GPIO.

2. Подготовка к включению и первый запуск.

Для первого запуска Raspberry необходимо следующее:

  • микро SD-карта с установленной операционной системой (OC) Raspbian, рекомендуемой для этого устройства (оптимальная емкость карты - 8 Гб, класс скорости - 10);
  • монитор с HDMI входом;
  • сетевой блок питания с выходным напряжением 5 В и током не менее 2 А, с выходным разъемом micro-USB;
  • USB-мышь и USB-клавитура.

Образ операционной системы Raspbian, созданной на основе Linux Debian 8 Jessi, можно скачать в разделе Downloads сайта raspberrypi.org. Для начала можно воспользоваться образом RASPBIAN JESSIE LITE, как наиболее простым в изучении. Записать образ на SD-карту удобно из-под Windows с помощью программы Win32DiskImager. Способ установки и сама программа описаны на сайте Raspberry по адресу.

Вы также можете воспользоваться файлами, размещенными на нашем сайте в карточке Raspberry Pi 3 или напрямую скачать с Яндекс диска:

  • образ операционной системы;
  • программа Win32DiskImager.

Дальнейшее описание базируется именно на этом образе.

Мышь и клавиатура, подключенные к Raspberry без проблем распознаются системой. Можно также использовать беспроводную мышь и клавиатуру, например Bluetooth, но их надо настроить после запуска Raspberry, а для этого нужна хотя бы USB-мышь. У нас в хозяйстве не нашлось USB-клавиатуры, поэтому для первого запуска мы подключили USB-мышь, а также монитор и питание:

Кстати, на плате нет выключателя питания, она запускается сразу при подключении разъема, и начинается загрузка операционной системы. После загрузки на экране появляется рабочий стол с вполне привычными (но оригинальными) обоями и иконками:

На начальном экране имеются легко распознаваемые иконки Меню, интернет-браузера, менеджера Bluetooth, регулятора громкости, настройки сети и некоторые другие. Из них, пожалуй, самая нужная при настройке и работе - это черный экранчик в правой верхнем углу: терминал. С помощью терминала вводятся команды операционной системы. Поскольку далеко не все программы для Linux имеют графический интерфейс, их можно запустить и работать в них только посредством командной строки. Именно эту возможность и предоставляет терминал. Также все системные операции Linux, например установка и удаление программ осуществляются преимущественно через терминал. В OC используется программа LXTerminal, которая и запускается при щелчке правой кнопкой мыши по иконке. Следует заметить, что многие команды требуют ввода в начале строки приставку sudo (gksudo при запуске программ с графическим интерфейсом), что позволяет выполнить команду от лица администратора компьютера, то есть с наивысшими правами (sudo - Super User Do). Только администратор может устанавливать и удалять программы, а также менять параметры OC и ее конфигурацию.

После первой загрузки системы имеет смысл сразу подключиться к интернету, чтобы обновить файлы ОС до актуальной версии. В правом верхнем углу рабочего стола есть иконка с узнаваемым изображением двух терминалов. При подключении кабеля к разъему Ethernet на плате Raspberry происходит автоматическое подключение к локальной сети. Если щелкнуть мышью по этой иконке, появляется список беспроводных сетей, из которых можно выбрать свою и подключиться к ней, введя соответствующий ключ. При этом вместо терминалов на иконке появится стандартное изображение подключение к беспроводной сети. Именно такая ситуация показана на рисунке выше.

Надо сказать, что по сравнению с ранними версиями Linux многие задачи сейчас автоматизированы. Например, если ранее было необходимо из командной строки монтировать том при подключении обычной флешки, то сейчас флешка распознается при подключении в один из четырех разъемов USB на плате вполне самостоятельно и ей сразу можно пользоваться.

Теперь можно подключить, например, беспроводные мышь и клавиатуру по Bluetooth:

Это делается щелчком на иконке с логотипом Голубого Зуба рядом с индикатором подключение к сети в правом верхнем углу экрана. Далее надо нажать Add Device и выбрать ваши устройства из списка найденных беспроводных устройств.

Следует отметить, что при всем удобстве использовании Bluetooth устройств ввода с Raspberry - они не занимают разъемов USB - эти устройства в нашем случае периодически теряли связь с платой. Поэтому для стабильной работы, все же следует использовать USB-мышь и клавиатуру, а так же, в качестве альтернативного варианта, занимающего только один USB-разъем, комплект мыши и клавиатуры с одним приемопередатчиком по радиоканалу.

После соединения с сетью мы попробовали, используя уже и мышь и клавиатуру, зайти в интернет, щелкнув на иконке браузера. Сайты открывались без проблем, с приемлемой скоростью.

3. Знакомство с GPIO, программированием на Python и запуск светофора

Контакты GPIO, безусловно, являются очень интересной частью Raspberry, значительно расширяющей возможности микрокомпьютера для применения в электронных автоматизированных системах. С помощью этих контактов можно как считывать данные с огромного множества предлагаемых сегодня датчиков: температуры, давления, движения, наклона, ориентации, открытия и т.п., так и посылать команды на исполнительные устройства: реле, двигатели, актуаторы, серво-машины и многие другие.

Вот схема 40-контактного разъема GPIO:

Как видно, кроме обычных цифровых пинов вход/выход, принимающих или выдающих значения логических 0 и 1, имеются контакты, работающие по распространенным интерфейсам I 2 C, SPI и UART. Также есть возможность генерации ШИМ и прерываний от изменения уровней на входах.

Используем GPIO для моделирования работы светофора по нажатию кнопки, как это делается на редко используемых пешеходных переходах, где обычно горит зеленый свет для транспорта, а пешеход может кнопкой запустить программу включения красного света для транспорта. Алгоритм этой программы такой: при нажатии кнопки начинает мигать зеленый свет, затем на короткое время зажигается желтый, затем красный; красный свет горит некоторое время, затем короткое время горят красный и желтый, и, наконец, снова зеленый; далее система ждет очередного нажатия кнопки.

Для программирования этого алгоритма воспользуемся встроенной в образ ОС Raspbian интегрированной среды разработки (IDE) на языке Python (Пайтон). Язык Python имеет большое число достоинств, о которых можно почитать в сети, что делает его весьма хорошим инструментом как для начинающих программистов, так и для профессионалов. Это интепретирущий язык, его команды выполняются последовательно, одна за другой. В IDE Python команды можно выполнять, просто вводя их с клавиатуры и нажимая клавишу Enter в конце строки.

Среда разработки программ на языке Python запускается с рабочего стола последовательным выбором Menu - Programming - Python 3 . Далее, в открывшемся окне Python Shell следует нажать File - New File . В открывшемся окне редактора нужно набрать или скопировать следущий текст программы, обращая особое внимания на отступы в тексте, так как для программ на Python они имеют принципиальное значение:

#!/usr/bin/python

import RPi.GPIO as GPIO
from time import sleep

RED_PIN = 36

YELLOW_PIN = 32
GREEN_PIN = 29
BUTTON_PIN = 40

print ("RPi.GPIO init start")
GPIO.setwarnings(False)
GPIO.setmode(GPIO.BOARD)
print ("RPi.GPIO init end")

print ("GPIO setup")

GPIO.setup(RED_PIN, GPIO.OUT)

GPIO.setup(YELLOW_PIN, GPIO.OUT)
GPIO.setup(GREEN_PIN, GPIO.OUT)
GPIO.setup(BUTTON_PIN, GPIO.IN, pull_up_down=GPIO.PUD_UP)

GPIO.output(RED_PIN, 0)
GPIO.output(YELLOW_PIN, 0)
GPIO.output(GREEN_PIN, 1)

while True:

if inp==0:
for x in range(0, 5):
GPIO.output(GREEN_PIN, 1)
sleep(0.5)
GPIO.output(GREEN_PIN, 0)
sleep(0.5)
GPIO.output(YELLOW_PIN, 1)
sleep(2)
GPIO.output(YELLOW_PIN, 0)
GPIO.output(RED_PIN, 1)
sleep(5)
GPIO.output(YELLOW_PIN, 1)
sleep(1)
GPIO.output(RED_PIN, 0)
GPIO.output(YELLOW_PIN, 0)
GPIO.output(GREEN_PIN, 1)

Первая строка указывает, где в ОС находится интерпретатор Python.

Функция, начинающаяся с print , просто выводит свой аргумент на экран.

Строки, начинающиеся с GPIO.setup , задают режим выхода (OUT ) или входа (IN ) соответствующих пинов, а аргумент pull_up_down=GPIO.PUD_UP включает подтягивающий резистор на входе 40, к которому подключена кнопка. Поскольку программа на Python не имеет стандартного «вечного цикла», как, например в Ардуино, где загруженная в микроконтроллер программа выполняется бесконечно, пока подано питание, оператор while True: осуществляет этот цикл. Нам ведь надо возвращать наш светофор в исходное состояние всякий раз по завершению цикла его работы.

Оператор присвоения inp = GPIO.input(BUTTON_PIN) записывает в переменную inp значение на входе 40. Если кнопка не нажата - это 0, если нажата - 1. Если inp равно 0, то начинается цикл работы светофора:

  • с помощью цикла for 5 раз мигает зеленый светодиод;
  • на 2 секунды зажигается желтый (пауза задается оператором sleep);
  • желтый гаснет, зажигается красный на 5 секунд и т д.

После окончания цикла работы светофора все начинается снова.

Теперь необходимо собрать электрическую схему с помощью проводов с разъемами без пайки:



Короткие ножки светодиодов (это минус) подключаем к земле - контакты 6, 14, 20; длинные (плюс) через резисторы 240 Ом - к контактам 29 (зеленый), 32 (желтый), 36 (красный).

Кнопку подключаем к контактам 39 и 40.

Теперь в редакторе с нашей программой выбираем Run - Run Modul или нажимаем F5, и программа начинает выполняться, ожидая нажатия кнопки.

Но вовсе неудобно каждый раз запускать программу с помощью оболочки. Удобнее, чтобы наша программа запускалась при включении питания Raspberry, ведь тогда устройство можно использовать автономно, без монитора, клавиатуры и мыши.

Для этого необходимо включить нашу программу в автозагрузку операционной системы.

Тут нам понадобится терминал, без него обойтись.

Сначала сохраним нашу программу в виде файла svetofor-rpi.py3 в корневом каталоге пользователя /home/pi .

Теперь запустим терминал и после приглашения pi@raspberrypi:~ $ наберем следующую строку: gksudo leafpad /etc/xdg/autostart/Svetofor.desktop .

Тем самым мы вызовем текстовый редактор leafpad и создадим файл Svetofor.desktop в папке автозапуска.

В текстовом редакторе набираем следующее:


Version=1.0
Encoding=UTF-8
Name=Svetofor
Comment=
Exec=sudo python /home/pi/svetofor-rpi.py3
Terminal=false
Type=Application

и сохраняем файл.

Основное в этом файле - строка, начинающаяся с Exec , которая запускает интерпретатор Python на выполнение программы svetofor-rpi.py3 .

Можно проверить, зайдя в папку /etc/xdg/autostart с помощью файлового менеджера, чья иконка в виде двух ящичков расположена в левом углу экрана, появился ли в этой папке файл Svetofor.

Теперь, если выключить питание, отключить монитор, мышь и клавиатуру, и снова включить питание, наш светофор начнет работать в автономном режиме!

Видео работы светофора:

Продолжаем рассматривать применение компьютера Raspberry Pi для домашней автоматизации. Как вы помните, в предыдущих выпусках мы получили общие сведения о Raspberry Pi , научились, как установить и сконфигурировать операционную систему Raspbian , познакомились с фреймворком WebIOPi и его возможностями по работе с портами GPIO , в частности, как управлять дискретными входами / выходами и работу последовательного порта UART .

Сегодня я постараюсь познакомить вас с общей структурной схемой планируемой системы домашней автоматизации, которая будет создаваться с применением Raspberry Pi . (рис.1).

Рис. 1

Система домашней автоматизации состоит из центрального сервера , связанного по интерфейсу RS 485 с установленными в каждом помещении контроллерами , а к контроллерам в свою очередь подключаются все периферийные устройства (различные устройства управления, контроля, регулирования, защиты). Преимущество такой сетевой архитектуры состоит в том, что нет необходимости тянуть провода от каждого устройства к серверу, а достаточно соединить контроллеры, к которым они подключены, двумя парами проводов - по одной паре подается питание, а вторая используется для интерфейса RS 485. Кроме того, логика работы задумывается так, что выход из строя любого контроллера или даже центрального сервера не должен повлиять на работоспособность остальной системы. Другими словами, архитектура системы домашней автоматизации должна быть распределенной и децентрализованной . Подобная архитектура напоминает широко используемую в коммерческих проектах «умного дома» шину Smart Bus .

В качестве центрального сервера системы домашней автоматизации применяется Raspberry Pi . На нем установлен Web сервер , посредством которого пользователь с любого коммуникационного устройства (смартфона, ноутбука, планшета) через браузер может получать информацию о всех процессах, происходящих в доме и соответственно, управлять ими. Доступ к Web серверу по вводу логина и пароля можно получить как из домашней локальной сети, так и из сети интернет через Wi - Fi роутер .

К последовательному порту UART Raspberry Pi через согласующее устройство по интерфейсу RS 485 подключаются контроллеры , имеющие необходимый набор вводов/выводов. Кроме этого, к RS 485 подключается GSM модем для доступа к системе через сотовую или стационарную телефонную сеть на случай, если в точке, где находится пользователь, нет возможности получить выход в интернет. Доступ в этом случае также выполняется через ввод пароля.

Как уже говорилось ранее, Raspberry Pi имеет собственные порты GPIO , которые можно задействовать под различные функции. UART GPIO мы используем для организации интерфейса RS 485, а остальные порты пока свободны. Поэтому, вполне логично, что кроме подключения датчиков и исполнительных устройств к контроллерам, некоторые элементы системы домашней автоматизации можно подключить и непосредственно к портам GPIO Raspberry Pi через буферное устройство при условии, что к таким элементам не нужно прокладывать длинные коммуникации. Например, это может быть датчик атмосферного давления или датчик контроля температуры с управлением охлаждения самого Raspberry Pi . На структурной схеме непосредственное подключение к портам Raspberry Pi показано через буферный модуль GPIO .

Так как на первом этапе практической реализации нашей системы мы будем организовывать подключение порта UART Raspberry Pi к контроллеру по интерфейсу RS 485, а так же подключать исполнительные устройства непосредственно к портам ввода/вывода GPIO , предлагаю для начала завершить настройку и конфигурирование Raspberry Pi для выполнения этих задач.

Итак, если вы прочитали предыдущие три части обзора, выполнили установку фреймворка WebIOPi , попробовали управлять портами, проверили работу UART в режиме двухстороннего обмена через терминальную программу, то для завершения настроек осталось сделать совсем немного.

Заходим в файл конфигурирования командой:

sudo nano /etc/ webiopi / config

и устанавливаем следующие настройки [ GPIO ] (рис.2)

4 = OUT 0

7 = OUT 0

8 = OUT 0

25 = OUT 0

24 = OUT 0

Рис. 2

В разделе [ HTTP Server Configuration ] необходимо прописать строку:

doc-root = /home/pi/myproject/html

Это будет путь к папке, которую мы потом создадим для хранения страницы Web интерфейса index . html . Разумеется, можно было создать эту папку и в другом месте, прописав к ней соответствующий путь, но во избежание путаницы и проблем в дальнейшем, давайте будем придерживаться однообразия (рис.3)

gpio-export = 4, 7, 8, 25, 24

gpio-post-value = true

gpio-post-function = true

device-mapping = true


Рис. 4

В файле конфигурации настройки завершены. Сохраняем их нажатием сочетания клавиш Ctrl и O , затем нажимаем Enter и выходим командой Ctrl и Х .

Создаем на диске Raspberry Pi папки для хранения нашего проекта. Для этого, да и вообще для работы с файлами на диске Raspberry Pi можно воспользоваться файловым менеджером о котором упоминалось . Вложенность создаваемых папок должна иметь следующий вид:

/home/pi/myproject/html (рис.5)


Рис. 5

Для контроля правильности выполненных операций, распакуйте архив тестового файла в папку html . Там должен появится файл index . html . Введите сетевой адрес Raspberry Pi , логин и пароль (webiopi / raspberry ). Выполните перезагрузку WebIOPi командой:

sudo /etc/init.d/webiopi restart

После этого вы должны увидеть тестовый web интерфейс (рис.6). С помощью этого интерфейса можно управлять выходами GPIO 4 , 7 , 8 , 24 , 25 кликая мышкой по соответствующей кнопке. Высокий уровень на выходе показывается оранжевым цветом, низкий - черным. После каждого клика по кнопке состояние выхода меняется на противоположное. Для визуального контроля выполняемых команд к этим выходам можно подключить светодиоды через токоограничивающие резисторы 300 - 470 Ом .

Рис. 6

Если у вас все получилось, значит, настройки выполнены правильно. В следующем выпуске нашего обзора перейдем к практической реализации в «железе» первого этапа системы домашней автоматизации.

Сегодня четвертый урок, на котором мы поработаем с портами GPIO, в частности помигаем светодиодом в разных режимах.

Урок ориентирован на начинающих пользователей и представлен в текстовом и видео-форматах.

Видео четвертого урока:

Для урока нам понадобится:

  • плата Raspberry Pi;
  • кабель питания;
  • USB-клавиатура;
  • USB-мышь;
  • монитор или телевизор с HDMI/RCA/DVI интерфейсом;
  • кабель, один конец которого RCA или HDMI, а другой соответствует вашему монитору;
  • SD-карта с уже установленной ОС Raspbian ();
  • светодиод;
  • кнопка;
  • резистор на 220 Ом
  • 3 провода «мама-папа»
  • 2 провода «папа-папа».

Программирование Raspberry Pi GPIO на языке Python

Для сегодняшнего урока мы выбрали язык программирования Python.

Python — современный объектно-ориентированный язык. Он наиболее часто используется для программирования GPIO на Raspberry Pi. Python входит в состав операционной системы Raspbian.

Сборка модели

Для работы нам потребуется собрать следующую схему:

Схема подключения светодиода и кнопки к Raspberry Pi

Обратите внимание, что порты GPIO на Raspberry Pi не подписаны, полезно иметь распечатанную распиновку.

Распиновка Raspberry Pi. Схема с ledgerlabs.us

Собранная модель со светодиодом и кнопкой

Управление светодиодом на Raspberry Pi из консоли

Заходим в LXTerminal и набираем:

После этого вместо имени пользователя в начале строки должно отобразиться >>> .

Вводим следующие строки:

Import RPi.GPIO as GPIO #импорт библиотеки
GPIO.setmode(GPIO.BOARD) #"включение" GPIO
GPIO.setup(7, GPIO.OUT) #объявление 7-го пина как выход

Затем для включения светодиода можно использовать команду
GPIO.output(7, 1)

А для выключения
GPIO(output(7, 0)

После работы с GPIO желательно выполнить команду
GPIO.cleanup()

Программа для мигания светодиодом на Raspberry Pi

Для автономной работы светодиода нам потребуется написать и запустить программу. Для этого откроем предустановленную программу IDLE 3 и в меню File нажмем New. В открывшемся окне мы можем писать программу.

Напишем:
import RPi.GPIO as GPIO #импорт библиотеки для работы с GPIO
import time #импорт библиотеки для ожидания
GPIO.setmode(GPIO.BOARD) #"запуск" GPIO


____GPIO.output(7, 1) #включение светодиода

____GPIO.output(7, 0) #выключение светодиода
____time.sleep(1) #ожидание 1 секунды

Сохраним программу в папке /home/pi.

Теперь мы можем запустить программу из LXTerminal с помощью команды
sudo python programname.py

Управление светодиодом с помощью кнопки

Поуправляем светодиодом с помощью внешней кнопки: когда кнопка зажата — светодиод горит, когда отжата — не горит.

Для этого подключим кнопку к порту 5.

Для управления нам потребуется следующая программа:

Import RPi.GPIO as GPIO #импорт библиотеки GPIO
GPIO.setmode(GPIO.BOARD) #"включение GPIO"
GPIO.setup(7, GPIO.OUT) #объявление порта 7 как выход
GPIO.setup(3, GPIO.IN) #объявление порта 3 как вход
while True: #бесконечный цикл
____if GPIO.input(3) == False: #если кнопка зажата
________GPIO.output(7, 1) #включаем светодиод
____else: #иначе
________GPIO.output(7, 0) #выключаем

Управление светодиодом с клавиатуры

Сделаем еще одну программу. Она будет менять состояние светодиода при получении пустой строки и заканчиваться при получении другой строки.

Import RPi.GPIO as GPIO
GPIO.setmode(GPIO.BOARD)
GPIO.setup(7, GPIO.OUT)
while True:
____str = input("Enter - включение, другое - выход ");
____if str != "":
________break
____else:
________GPIO.output(7, 1)
____str = input("Enter - выключение, другое - выход ");
____if str != "":
________break
____else:
________GPIO.output(7, 0)
GPIO.cleanup()

На этом четвертый урок по Raspberry Pi для начинающих закончен, продолжение следует!

Raspberry PI - это устройство имеющее достаточную производительность для того чтобы на его основе могли быть построены роботы способные распознавать образы, выполнять работу людей и прочие подобные устройства для автоматизации и выполнения сложных вычислительных действий. Т.к. тактовая частота процессора Raspberry PI 3 м.б. 1.2 ГГц а его разрядность 32 бита то Raspberry PI 3 значительно превосходит обычное Arduino у которого тактовая частота как правило 16 МГц а разрядность микроконтроллера 8 бит, Arduino безусловно занимает своё место в выполнении операций не требующих большой производительности но когда её уже не хватает Raspberry PI "приходит на помощь" и перекрывает такой большой диапазон возможных применений что можно быть абсолютно уверенным в целесообразности приобретения данного одноплатного компьютера Raspberry PI 3 (можно заказать по ссылке) . Т.к. Raspberry PI - это компьютер то для того чтобы его использовать нужно на него установить операционную систему (хотя существуют обходные пути но всё же лучше и проще установить операционную систему (ос далее)). Существует много ос которые можно установить на Raspberry Pi но одной из самых популярных (для использования с Raspberry Pi), наиболее подходящих для начинающих является ос Raspbian. Для того чтобы установить ос на Raspberry Pi понадобиться micro sd карта с расширителем для того чтобы её можно было вставить в обычный компьютер и записать на неё ос. Sd карта должна иметь не менее 4Гб памяти при установке полной версии Raspbian и не менее 8Гб для установки минимальных версий Raspbian. Минимальные версии могут не иметь (и скорее всего не имеют) графического интерфейса и много всего остального что может считаться лишним и занимает место. Для избежания проблем с отсутствием необходимых файлов, можно поставить полную версию. Можно использовать SD карту 10го класса и с 32Гб памяти (проверено работает (как см. видео ниже)). После приобретения карты памяти её надо вставить в компьютер в соответствующий разъём, после этого посмотреть с какой буквой появился диск в разделе "мой компьютер" и запомнить, потом надо скачать ос с официального сайта https://www.raspberrypi.org/downloads/raspbian/ нажав кнопку "Download ZIP" под "RASPBIAN JESSIE" для скачивания полной версии или под "RASPBIAN JESSIE LITE" для скачивания облегчённой но, для начинающих, лучше выбрать "RASPBIAN JESSIE" т.е. полную версию. После скачивания архива "RASPBIAN JESSIE" его нужно разархивировать, потом скачать программу (или от сюда https://yadi.sk/d/SGGe1lMNs69YQ), установить её, открыть, далее нужно в правом верхнем углу указать букву диска (запомненную ранее), найти разархивированный образ ос

И нажать кнопку "write".

После чего выведется окно с предупреждением и в этом окне надо нажать кнопку "Yes",

После того как запись закончиться и появится окно сообщающее об успешной записи (Write Successful) нужно нажать кнопку "Ok" в этом окне.

Потом закрыть программу, вытащить SD карту безопасным способом и вставить в Raspberry Pi.

Далее можно подключить к Raspberry Pi usb клавиатуру (или ps2 через ), usb мышь и монитор или телевизор через hdmi кабель или можно подключить ethernet кабель (но это для опытных пользователей поэтому далее рассмотрим первый вариант). После этого надо подключить питание через micro usb например от зарядного устройства от смартфона. После подключения питания начнётся установка операционной системы. Как правило в новых (на момент написания данной статьи) версиях ос уже настроена возможность связи с Raspberry Pi по SSH и поэтому для того чтобы настроить связь с Raspberry Pi 3 по wifi достаточно настроить только wifi, Для этого в правом верхнем углу экрана есть значёк на который нужно нажать и выбрать wifi,

После чего вписать пароль от данного wifi в появившееся текстовое поле,

После этих действий wifi на Raspberry Pi 3 будет настроен и дальше можно будет не используя провода программировать Raspberry Pi 3 удалённо по wifi. После настройки Raspberry Pi 3 можно выключить вписав в командной строке (в программе LXTerminal которую можно открыть двойным кликом по иконке программы) команду sudo halt или нажав соответствующие кнопки выключения в графическом режиме, после окончательного выключения можно отключить питание и при следующей подаче питания Raspberry Pi 3 включиться с wifi. Теперь чтобы программировать Raspberry Pi 3 по wifi нужно выяснить какой у него ip адрес. Для того чтобы это сделать надо подать питание на Raspberry Pi 3, дождаться окончания загрузки ос, зайти в веб интерфейс маршрутизатора (вписав в строке браузера 192.168.1.1 или то что надо для входа в веб интерфейс, ввести логин и пароль), найти вкладку DHCP Leases или что то подобное, найти там строку с raspberry и ip адрес Raspberry Pi 3.

Далее нужно открыть программу PuTTY (если её нет то перед этим скачать (или ) и установить) поставить порт 22, соединение по SSH, вписать в поле "Host Name (or IP Adress)" ip адрес Raspberry Pi 3,

После чего нажать кнопку "Open" внизу окна, далее появиться чёрное окно с предложением ввести логин. По умолчанию логин "pi" - его надо ввести и нажать enter. Далее надо ввести пароль, по умолчанию "raspberry". При вводе пароля он не отображается - это нормально. После того как пароль введён невидимыми буквами нужно нажать enter и если всё было сделано правильно то мы получим доступ к Raspberry Pi 3 если нет то нужно повторить действия. После того как получен доступ к Raspberry Pi 3 можно его программировать, для начала нужно войти в папку "pi" для этого надо вписать команду

И нажать enter (после cd обязательно пробел).
Теперь можно открыть текстовый редактор nano. Nano - это специальный текстовый редактор который есть на большинстве ос на подобии Linux и в котором можно написать программу для Raspberry Pi. Для открытия этого редактора и одновременно с этим создания файла с названием "first" и расширением "py" нужно вписать команду

И нажать enter. Откроется редактор nano и можно заметь что его интерфейс немного отличается но в основном - это то же чёрное поле в которое надо вписывать команды. Т.к. мы хотим управлять портами ввода вывода общего (GPIO) то прежде чем запустить программу по управлению этими портами, нужно подключить к ним какое нибудь устройство чтобы можно было видеть что управление получилось. Надо также отметить что пины настроенные как выходы у Raspberry Pi могут выдавать очень небольшой ток (предполагаю что до 25мА) и учитывая что Raspberry Pi это всё таки не самое дешёвое устройство то настоятельно рекомендуется позаботиться от том чтобы нагрузка на выводы не была слишком большой. Маломощные индикаторные светодиоды, как правило, могут использоваться с Raspberry Pi т.к. им для того чтобы светиться достаточно небольшого тока. Для первого раза можно сделать приспособление с разъёмом, двумя встречно параллельно включёнными светодиодами и резистором с сопротивлением 220Ом включённым последовательно со светодиодами. Т.к. сопротивление резистора 220Ом, ток обязательно проходит через этот резистор и нет параллельных путей его прохода, напряжение на выводах 3.3В то ток не будет больше чем 3.3/220=0.015А=15мА. Подключить это можно к свободным GPIO например к 5 и 13 как на схеме

(распиновка взята с https://en.wikipedia.org/wiki/Raspberry_Pi), выглядеть это может примерно так:

После того как всё аккуратно и правильно подключено и есть уверенность в том что ничего не сгорит можно скопировать в редактор NANO первую простенькую программу на языке Python

Import RPi.GPIO as GPIO
import time
GPIO.setmode(GPIO.BCM)
GPIO.setup(13, GPIO.OUT)
GPIO.setup(5, GPIO.OUT)
GPIO.output(13, True)
GPIO.output(5, False)
time.sleep(1)
GPIO.output(13, False)
GPIO.output(5, True)
time.sleep(1)
GPIO.output(13, True)
GPIO.output(5, False)
time.sleep(1)
GPIO.output(13, False)
GPIO.output(5, True)
time.sleep(1)
GPIO.output(13, True)
GPIO.output(5, False)
time.sleep(1)
GPIO.output(13, False)
GPIO.output(5, True)
time.sleep(1)
GPIO.cleanup()

Потом нажать

После выхода из редактора NANO можно ввести команду

Sudo python first.py

После чего светодиоды помигают некоторое количество раз. Т.е. получилось управлять портами ввода вывода общего назначения по wifi! Теперь давайте рассмотрим программу и выясним как это получилось.
Строка:

Import RPi.GPIO as GPIO

Это подключение библиотеки "GPIO" для управления выводами.
Строка:

Это подключение библиотеки "time" для задержек.
Далее идёт установка режима GPIO:

GPIO.setmode(GPIO.BCM)

Конфигурация выводов 5 и 13 как выходы:

GPIO.setup(13, GPIO.OUT)
GPIO.setup(5, GPIO.OUT)

Установка логической единицы на выводе 13, установка логического нуля на выводе 5:

GPIO.output(13, True)
GPIO.output(5, False)

Задержка

Установка логического нуля на выводе 13, установка логической единицы на выводе 5:

GPIO.output(13, False)
GPIO.output(5, True)

Переводит все выводы в исходное состояние и программа завершается. Т.о. можно управлять любыми свободными пинами по wifi и если сделать питание 5В от аккумулятора то уже можно сделать какого нибудь автономного робота или устройство не привязанное проводами к чему либо стационарному. Язык программирования Python (питон) отличается от си подобных языков, например вместо точки с запятой, для завершения команды, в питоне используется перевод строки, вместо фигурных скобок используется отступ от левого края который делается клавишей Tab. В общем Python это очень интересный язык на котором получается легко читаемый простой код. После того как работа (или игра) с Raspberry PI 3 закончена можно его выключить командой

И после полного выключения убрать питание. При подаче питания Raspberry PI 3 включается и с ним снова можно работать (или играть). Заказать Raspberry pi 3 можно по ссылке http://ali.pub/91xb2 . О том как делается настройка Raspberry PI 3 и управление его пинами можно посмотреть на видео:

После успешного мигания светодиодами можно приступить к полномасштабному изучению данного компьютера и созданию проектов используя возможностями Raspberry PI 3 которые ограничены лишь вашим воображением!