Домой / Группы / Виды модуляции. Эффективные методы цифровой модуляции

Виды модуляции. Эффективные методы цифровой модуляции

Модуляция и её разновидности

Виды модуляции

Существует два вида переносчиков: гармонический и импульсный.

Для гармонического переносчика возможны три вида модуляции: амплитудная модуляция (АМ), фазовая (ФМ) и частотная (ЧМ).

Для импульсного переносчика возможны четыре вида модуляции: амплитудно-импульсная, или высотно-импульсная модуляция (АИМ),когда по закону передаваемого сигнала изменяется амплитуда импульсов, фазо-импульсная, или время-импульсная (ФИМ)-изменяется фаза импульсов, широтно-импульсная или модуляция по длительности (ШИМ), когда изменяется ширина импульсов и, наконец, либо частотно-импульсная (ЧИМ)-изменяется частота следования импульсов, либо интервально-импульсная (ИИМ).

Модуляцию ФИМ и ЧИМ объединяют во временно-импульсную (ВИМ). Между ними существует связь, аналогичная связи между фазовой и частотной модуляцией синусоидального колебания.

Спектры ШИМ, ЧИМ, и ФИМ имеют более сложный вид чем спектр сигнала АИМ.

Импульсные последовательности АИМ, ШИМ, ЧИМ, и ФИМ называются последовательностями видеоимпульсов. Если позволяет среда распространения, то видеоимпульсы передаются без дополнительных преобразований (например, по кабелю). Однако по радиолиниям передать видеоимпульсы невозможно. Тогда сигнал подвергают второй ступени преобразования (модуляции).

Модулируя с помощью видеоимпульсов гармоничное несущее колебание достаточно высокой частоты, получают радиоимпульсы, которые способны распространяться в эфире. Полученные в результате сочетания первой и второй ступеней модуляции сигналы могут иметь названия АИМ-АМ, ФИМ-АМ, ФИМ-ЧМ и др.

Сравнение импульсных видов модуляции показывает, что АИМ имеет меньшую ширину спектра по сравнению с ШИМ и ФИМ. Однако последние более устойчивы к воздействию помех. Для обоснования выбора метода модуляции в системе передачи необходимо сравнить эти методы по различным критериям: энергетическим затратам на передачу сигнала, помехоустойчивости (способности модулированных сигналов противостоять вредному воздействию помех), сложности оборудования и др.

Модулированные по ширине (ШИМ) и по фазе (ФИМ) видеоимпульсы.

Воздействие сообщения на модулируемый параметр может повлечь за собой изменение других параметров. Например, частотная модуляция гармонического переносчика сопровождается изменением начальной фазы, и наоборот. Однако одновременное воздействие на несколько параметров может осуществляться преднамеренно. В этом случае модуляция называется смешанной. Возможны, например, амплитудно-частотная и амплитудно-фазовая модуляции гармонического переносчика.

При многоканальной передаче на разные параметры могут воздействовать различные сообщения.

Иногда модуляция осуществляется в несколько этапов: сперва исходное сообщение модулирует некоторое поднесущее колебание, затем модулированный сигнал воздействует на основной переносчик. Примерами могут служить система ЧМ-АМ, в которой сообщение а(t) модулирует поднесущее колебание по частоте, а затем ЧМ колебание модулирует основной переносчик по амплитуде, АМ-ЧМ, ШИМ-ФМ и т.д. Некоторые системы многоступенной модуляции (например, АМ-АМ, АИМ-АМ) эквивалентны одноступенчатой модуляции сообщением a(t) некоторого условного переносчика, который можно сформулировать, модулируя переносчиком первой ступени переносчик следующей ступени.

Изучить: · аппаратуру радиорелейных линий прямой видимости; · приемопередающую аппаратуру радиосвязи; · тропосферные радиорелейные линии; Привести методы расчета: · профиля канала связи; · вычисления затухания в радиочастотном канале; ·...

Анализ систем радиорелейной связи и расчет трасс между узлами

В многоканальных РРЛ модуляция сигнала представляет собой двухступенчатый процесс. С помощью первой ступени формируется многоканальный сигнал...

Локальные вычислительные сети

Информация в кабельных локальных сетях передается в закодированном виде, то есть каждому биту передаваемой информации соответствует свой набор уровней электрических сигналов в сетевом кабеле...

Модуляция и демодуляция оптических колебаний

Процесс модуляции состоит в изменении амплитуды, интенсивности, частоты, фазы или поляризации колебания несущей частоты (fн) в соответствии с информационным сигналом Ui (t)...

Модуляция и её разновидности

Процесс преобразования первичного сигнала заключается в изменении одного или нескольких параметров несущего колебания по закону изменения первичного сигнала (то есть в наделении несущего колебания признаками первичного сигнала) и...

Модуляция и её разновидности

Рассмотрение смешанной модуляции представляет интерес с различных точек зрения. В некоторых приборах (например, магнетронах) при изменениях амплитуды колебания наблюдается изменение частоты генерации...

Радиотелеметрическая система с частотным разделением товаров

Радиотелеметрические системы с временным разделением каналов

Разработка системы эксплуатационного управления спутниковых каналов связи для ООО "ДИАЛОГ" на базе платформы LabVIEW

Технико-экономические показатели радиорелейных (РРСП) и спутниковых (ССП) систем передачи и особенности построения оконечного оборудования ствола...

Расчет необходимой частоты дискретизации амплитудно-модулированных КВ сигналов

При передаче информации в радиотехнике используются полосовые радиосигналы. Введем несколько понятий, для строгости рассуждений. Модулирующим сигналом будем называть низкочастотный информационный сигнал (речь, цифровая информация и т...

Современные методы сбора видеоинформации

беспроводной видеоинформация камера Для осуществления мобильного видеорепортажа или построения мобильных пунктов видеонаблюдения ЗАО «РОКС» предлагает свою новую разработку - специальную РРЛ COFDM модуляции...

Технологии цифровой связи

Сигналы формируются путём изменения тех или иных параметров физического носителя в соответствии с передаваемым сообщением. Этот процесс (изменения параметров носителя) принято называть модуляцией...

Технология ZigBee

Оборудование стандарта EEE 802.15.4b может работать в трех частотных диапазонах: 868 МГц в Европе, 915 МГц в США и 2,4 ГГц во всем мире. В диапазонах 868 МГц и 915 МГц полосы используются три дополнительных схемы модуляции: двоичная фазовая манипуляция BPSK...

Эффективный способ формирования SSB сигнала

В радиосвязи на коротких (KB) и ультракоротких (УКВ) волнах в настоящее время используются в основном три вида сигналов: телеграфные (CW), однополосные (SSB) и частотно-модулированные сигналы (FM)...

Полезный звуковой сигнал, например голос, представляет собой акустические колебания или звуковые волны. Очевидно, что эти колебания должны быть преобразованы в электрический вид. Обычно, преобразование обычно осуществляется с помощью микрофона.

Для передачи сигналов на большие расстояния необходимо, чтобы они обладали большой энергией. Известно, что энергия сигнала пропорциональна четвертой степени его частоты, то есть сигналы с большей частотой обладают большей энергией. В практике часто сигналы, несущие в себе информацию, например, речевые сигналы, имеют низкую частоту колебаний и поэтому, чтобы передать их на большое расстояние необходимо частоту информационных сигналов повышать.

Таким образом для передачи электромагнитных колебаний необходим источник электромагнитных колебаний значительной мощности и частотного диапазона, исходя из условий распространения радиоволн .

Итак, мы имеем электрический сигнал звуковой частоты и имеем высокочастотную электромагнитную волну - несущую. То есть у нас есть информация и несущая для ее транспортировки. Как же «нагрузить» электромагнитную волну звуком?

Рассмотрим гармоническое колебание, которое имеет частоту ω достаточную для распространения на большие расстояния и изменяется по закону:

Наложить информацию на это колебание можно путем медленного, по сравнению с периодом, изменения его амплитуды Um, частоты ω или фазы φ. Такой процесс называется модуляцией.

В зависимости от того, какой параметр изменяют, различают амплитудную (АМ), частотную (ЧМ) и фазовую (ФМ) модуляцию.

Амплитудно-модулированный сигнал получается путем перемножения двух сигналов. Один содержит информацию, а другой является несущим. Пусть сигнал информации, (рис. 3.1.) и несущее колебание (рис. 3.2.) изменяются в соответствии со следующими выражениями:

U 1 (t) = U 0 + U 1 m cosΩt,

U 2 (t) = U 2 m cos?t,

где U0 - постоянная составляющая сигнала, U1mи U2m - амплитуды информационного сигнала и несущего колебания, Ω, ω - частота информационного сигнала и несущего колебания.

Рис. 3.1. Информационный сигнал.

Рис. 3.2. Несущее колебание.

Перемножим эти сигналы:

Введем обозначения:

где Um - амплитуда промодулированного сигнала, М - коэффициент модуляции.

С учетом введенных обозначений, получим выражение для амплитудно - модулированного сигнала в следующем виде:

Вид амплитудно-модулированного сигнала показан на рис. 3.3, а его спектр на рис. 3.4.

Рис. 3.3. Амплитудно-модулированный сигнал.

Таким образом, спектр радиочастотного колебания при амплитудной модуляции гармоническим колебанием состоит из трех составляющих: нижней боковой, несущей и верхней боковой гармоник. Видно, что амплитуды боковых составляющих зависят от коэффициента модуляции М.


Рис.3.4. Спектр амплитудно - модулированного сигнала.

Вид амплитудно-модулированного сигнала и его спектра, изображенные на рис. 3.3 и 3.4. справедлив для случая, когда модуляция производится однотональным сигналом частотой Ω. На практике чаще используют модуляцию несущих колебаний речевым сигналом, который занимает определенный спектр частот ΔΩ. В этом случае вместо двух боковых частот (?-Ω) и(?+Ω) имеют место два боковых спектра частот (?-ΔΩ) и (?+ΔΩ), которые называются верхней и нижней боковой полосой частот - ВБ и НБ. (рис.3.5)

Для получения однополосного амплитудно-модулированного сигнала необходимо подавить сигнал несущий частоты и одной из боковых полос.

Существует два метода получения сигнала с одной боковой полосой (ОБП):

1. Метод фильтрации.

2. Метод фазирования

При этом следует иметь в виду два обстоятельства:

Спектр ВБ и НБ оказываются сдвинуты относительно исходного спектра речевого сигнала ΔΩ на величину несущей частоты;

Спектр НБ оказывается инверсным относительно исходного спектра речевого сигнала.

Частотно-модулированный сигнал - это колебание, у которого мгновенная частота изменяется по закону модулирующего сигнала. Пусть модулирующий сигнал и несущее колебание изменяется, как показано на рис. 3.6, 3.7.

Рис. 3.6. Модулирующий сигнал.

Рис. 3.7. Несущий сигнал.

Тогда мгновенная частота при частотной модуляции равна:

здесь Δω - девиация (отклонение) частоты под действием модулирующего сигнала, это отклонение в принципе пропорционально амплитуде модулирующего колебания.

Уравнение частотно-модулированное колебания запишется в следующем виде:

где - есть индекс частотной модуляции. Вид частотно - модулированного сигнала показан на рис. 3.8.

Рис. 3.8. Частотно - модулированный сигнал.

Частотно - модулированный сигнал имеет дискретный спектр рис. 3.9. с гармониками на частотах (ω0± nΩ), где n = 1, 2, 3, 4, 5…

Рис. 3.9. Спектр частотно - модулированного сигнала.

Вид спектра модулированного колебания зависит от индекса частотной модуляции m, теоретически спектр бесконечен, но на практике он ограничивается двумя - тремя составляющими, так как амплитуды гармоник высших порядков интенсивно убывают. Фазомодулированным колебанием называется колебание, у которого фаза изменяется по закону модулирующего сигнала. Выражение, описывающее такое колебание, имеет вид:

Частотно-модулированное колебание является в то же время и фазомодулированным. Иногда оба вида модуляции называют угловой модуляцией. Однако при частотной модуляции изменение частоты, а не фазы совпадает с законом изменения модулирующего сигнала. Кроме того, при частотной модуляции индекс модуляции обратно пропорционален модулирующей частоте, тогда как при фазовой модуляции такой зависимости нет.

Когда колебание промодулировано гармоническим сигналом, отличить частотную модуляцию от фазовой можно, только сравнив изменения мгновенной фазы модулированного колебания с законом изменения модулирующего напряжения.

Все три рассмотренных способа модуляции несущего сигнала гармоническим информационным сигналом пригодны и для передачи дискретных сигналов. Такой вид модуляции называется манипуляцией. Источником информации манипулирующих сигналов служат телеграфный ключ, датчик кода Морзе , телеграфная буквопечатающая аппаратура, аппаратура передачи данных и быстродействия.

Принцип амплитудной манипуляции при однополюсном телеграфировании поясняется рис. 3.10.


Технические способы формирования сигналов АТ чрезвычайно просты. Передатчик должен излучать высокочастотные колебания при нажатом ключе, а в момент телеграфной паузы (ключ не нажат) излучение должно отсутствовать.

Спектр АТ радиосигнала носит дискретный характер и показан на рис. 3.11. На этом рисунке F т = V т/2 - основная частота телеграфирования, где V


Рис. 3.11. Спектр АТ сигнала

Для нормального приема радиосигнала по каналу должны быть переданы составляющие спектра сигнала в полосе частот 6F т = 3V т или в полосе 10F т = 5V т (радиоканал с замираниями). Таким образом, ширина спектра АТ радиосигнала напрямую зависит от скорости передачи информации и составит ΔF АТ = (3...5)V т.

Так как при слуховой работе телеграфными радиосигналами АТ обеспечивается скорость до 15…20 бод, то ширина спектра такого сигнала составит 45…60 Гц. Из всех телеграфных сигналов радиосигнал с амплитудной манипуляцией имеет самый узкий спектр.

При частотном управлении колебаниями отрицательной посылке (передаче "0") соответствует работа передатчика на частоте f Б, а положительной посылке (передаче "1") - работа на частоте f В, причем f Б < f В (рис. 3.11).

Рис. 3.12. Принцип частотного телеграфирования

Разность частот f В - f Б называют частотным сдвигом Δf cдв (рис. 3.13). Радиосигналы ЧТ обозначаются следующим образом: ЧТ-125, ЧТ-200, ЧТ-250 и т. д. или F1-125, F1-200, F1-250 и т. д. Число, записанное после дефиса, является значением частотного сдвига в герцах.

Рис. 3.13. Взаимное расположение сигналов на оси частот при ЧТ

Спектр радиосигналов ЧТ зависит как от скорости телеграфирования, так и от частотного сдвига, а именно: чем больше скорость телеграфирования V т (в бодах) и чем больше частотный сдвиг, тем шире спектр радиосигнала. Ширина спектра радиосигналов ЧТ может быть определена по следующей приближенной формуле:

ΔF чт = (3…5)V т + Δf cдв.

Существующая техника радиосвязи предусматривает использование и двухканального частотного телеграфирования (ДЧТ или F6), при котором обеспечивается

одновременная работа по двум телеграфным каналам. Каждому из 4-х возможных сочетаний первичных посылок в каналах соответствует определенная частота радиосигнала: f А, f Б, f В, f Г

(табл. 3.1.), причем f А < f Б < f В < f Г.

Таблица 3.1

1-й ТГканал 2-й ТГканал Частота сигнала Частота сигнала относительно f 0
"0" "0" f А
"0" "1" f Б
"1" "0" f В
"1" "1" f Г

Принцип двойного частотного телеграфирования поясняется на рис. 3.14.

Рис. 3.14. Принцип двойного частотного телеграфирования

Частотные сдвиги f Г - f В, f В - f Б, f Б - f А выбираются равными (рис.3.15). Соответственно частотным сдвигам сигналы обозначаются следующим образом: ДЧТ-250, ДЧТ-500 и т. д. или F6-250, F6-500 и т. д.


Рис. 3.15. Взаимное расположение сигналов на оси частот при ДЧТ

Сигналы ДЧТ увеличивают пропускную способность радиолинии вдвое, однако, обладают более низкой помехоустойчивостью, чем сигналы ЧТ, и могут применяться при достаточно большом превосходстве уровня сигнала над уровнем помех.

Ширина спектра радиосигналов ДЧТ может быть определена по приближенной формуле:

ΔF дчт = (3…5)V т + 3Δf cдв.

Телеграфные радиосигналы с частотной манипуляцией можно рассматривать как частный случай частотной модуляции с девиацией частоты Δf чт = Δf cдв/2 для ЧТ сигналов и Δf дчт = 3Δf cдв/2 - для ДЧТ сигналов.

При передаче дискретных сигналов методами фазовой манипуляции передаваемая информация содержится в изменении фазы высокочастотного гармонического колебания. Различают два вида фазовой манипуляции: абсолютную фазовую манипуляцию (ФТ) и относительную фазовую манипуляцию (ОФТ).

При ФТ фаза высокочастотных колебаний изменяется на 180° при смене первичных телеграфных посылок, т. е. при переходе от передачи "0" к передаче "1" и наоборот (рис.3.16.). Сигналы ФТ достаточно просто реализуются в передатчике, однако их демодуляция в приемном устройстве связана с большими техническими сложностями. По этой причине ФТ практического применения в настоящее время не находит.


Рис. 3.16. Принцип абсолютной фазовой манипуляции

При ОФТ информация содержится не в абсолютном изменении (скачке) фазы сигнала в момент смены посылок "0" и "1", а в изменении фазы текущего элемента относительно фазы предшествующего элемента. При передаче символа "0" фаза высокочастотного колебания текущего элемента противоположна фазе предыдущего элемента, а при передаче "1" - та же самая (рис.3.17.). Первый элемент в начале сеанса связи может иметь любую фазу, так как он информацию не несет, а служит лишь для отсчета разности фаз в следующем элементе.

Процесс формирования сигнала с ОФМн можно свести к случаю формирования сигнала с ФМн путем перекодирования передаваемой двоичной последовательности. Алгоритм перекодировки прост: если обозначить как информационный символ, подлежащий передаче на - м единичном элементе сигнала, то перекодированный в соответствии с правилами ОФМн символ определяется следующим рекуррентным соотношением:

Рис. 3.17. Принцип относительной фазовой манипуляции

Формирование сигнала ОФТ производится в два этапа. Сначала исходный телеграфный сигнал U тг перекодируется в такой сигнал, который необходим для осуществления абсолютной фазовой манипуляции. Перекодирование производится специальным устройством, основанным, как правило, на логических элементах. Затем перекодированный первичный сигнал используется для абсолютной фазовой манипуляции, при которой перемена символов ПЭС приводит к изменению фазы высокочастотного колебания на обратную.

Радиосигналы ОФТ широко применяются на высокоскоростных линиях связи. Спектр ОФТ радиосигналов определяется аналогично спектру радиосигналов АТ, т. е. его ширина составит

ΔF офт = (3…5)V т,

где V т - скорость телеграфирования в бодах.

Обладает большим числом преимуществ, отмеченных в статье "Виды сигналов, применяемых в телекоммуникации". Однако при передаче на дальние расстояния (более 100 метров) он начинает терять одно из своих самых важных свойств: помехозащищенность. Это связано с тем, что в качестве среды, как правило, используется воздушное пространство в случае радиопередачи и проводные каналы связи, а в этих средах очень быстро затухает. Использовать ретрансляторы через каждые несколько сотен метров при передаче на дальние расстояния экономически неэффективно. Кроме того, это не всегда технически реализуемо, в частности в сотовых системах связи максимальная удаленность мобильной станции () от базовой станции () может достигать 35 км. Также есть еще одно важное свойство, требуемое для цифрового канала связи – широкополосность. Цифровой с резкими переходами между уровнями требует широкой полосы для его передачи. В противном случае переходы между уровнями будут "заламываться" и будет "смазанным", что может привести к высокому проценту ошибок. Для решения вышеуказанных проблем используют различные методы модуляции сигналов, о которых и пойдет речь в данной статье.

Модуляция – это процесс изменения каких-либо параметров несущего сигнала под действием информационного потока. Данный термин обычно применяют для сигналов. Применительно к цифровым сигналам существует другой термин "манипуляция", однако его часто заменяют все тем же словом "модуляция" подразумевая, что речь идет о сигналах.

Существует 3 основных вида манипуляции сигналов: (Amplitude-shift keying (ASK)), (Frequency-shift keying (FSK)) и (Phase-shift keying (PSK)). Этот набор манипуляций определяется основными характеристиками, которыми обладает любой (см. статью "Сигнал и его основные характеристики").

И являются базисом и достаточно редко применяются на практике поодиночке. Чаще применяются их модификации или в сочетании друг с другом. В частности в стандарте (Global System for Mobile Communications) на радио интерфейсе применяется модуляция GMSK (Gaussian modulation with Minimum Shift Keying) – гауссовская манипуляция с минимальным фазовым сдвигом. Главное ее преимущество заключается в том, что манипулированный этим методом занимает гораздо меньшую частотную полосу, чем при обычной фазовой манипуляции. Однако в основу GMSK положена, рассмотренная выше обычная манипуляция, и это видно даже из названия.

Таким образом, выбор того или иного метода манипуляции обусловлен требованиями по помехозащищенности, пропускной способности канала связи, стоимостью реализации оборудования и т.п.

Цифровая модуляция

Цифровая модуляция — процесс преобразования цифровых символов в сигн а лы, совместимые с характеристиками канала связи. Каждому возможному значению передаваемого символа ставятся в соответствие некоторые параме т ры аналогового несущего колебания.

Манипуляция - способ цифровой или импульсной модуляции, когда пар а ме т ры несущего колебания меняются скачкообразно.

При цифровой модуляции используют чаще всего дискретные последов а тельности двоичных символов — двоичных кодов. Закодированный первичный аналоговый сигнал e(t), представляющий собой последовательность кодовых символов {е n } = е n (k ) (n = О, 1, 2, 3, ... — порядковый номер символа; — номер позиции кода; m — основание кода, т. е. число различных его элеме н тов, которые преобразуются в последовательность элементов (посылок) сигнала { U n (t)} путем воздействия кодовых символов на высокочастотное несущее к о лебание U Н (t). Как правило, используют двоичные коды т.е. m =2. Обычно п о средством модуляции частота или фаза несущего в радиоимпульсе изменяется по закону, определяемому цифр о вым кодом.

Наиболее известны следующие виды цифровой модуляции:

  1. Невозвращающийся в нуль код - NRZ (Non Return to Zero). Является простейшим линейным кодом, широко применяемым на практике. Сущ е ствуют две разновидности этого кода — униполярный и биполярный NRZ-коды. В униполярном NRZ-коде логической единице соответствует прямоугольный импульс положительной полярности, а логическому нулю — нулевое напряж е ние (пауза). В биполярном NRZ-коде логической единице соответствует пр я моугольный импульс положительной полярности, а логическому нулю — пр я моугольный импульс отрицательной полярности. Положительное или отриц а тельное напряжение на выходе кодера сохраняется неизменным в течение дл и тельности символа, что и определяет термин «нево з вращающийся в нуль» код. Длительность импульсов и пауз в NRZ-кодах равна длительности одного си м вола (бита) информации (рис. 1, а, б).
  2. Амплитудная манипуляция (АМн; иначе ИКМ-АМ , или цифровая а м плитудная модуляция — ЦАМ; amplitude shift keying — ASK). Битовому си м волу «1» при ИКМ-АМ (рис. 2, в) соответствует передача несущего колеб а ния в течение времени τ И (длительность посылки), символу «0» — отсутствие кол е бания (пауза) на таком же временном интервале.
  3. Частотная манипуляция (ЧМн; иначе ИКМ-ЧМ , или цифровая часто т ная модуляция — ЦЧМ; frequency shift keying — FSK). При ИКМ-ЧМ (рис. 1, г) передача несущего с частотой f 0 соответствует символу «1», а передача колеб а ния с частотой f 1 — символу «0».
  4. Фазовая манипуляция (ФМн; иначе ИКМ-ФМ , или цифровая фаз о вая модуляция — ЦФМ; phase shift keying — PSK ). При двоичной ИКМ-ФМ (рис. 1, д) фаза несущей меняется на 180° при каждом переходе символов от «1» к «0» и от «0» к «1». Долгое время не находила практического применения из-за сложности восстановления в приемнике опорного («несущего») колебания, строго синфазного с несущей частотой принимаемого сигнала.
  5. Относительная фазовая (дифференциальная; фазоразностная) манип у ляция (ОФМ ; differential phase shift keying — DPSK ), часто называемой мног о позиционной амплитудно-фазовой манипуляцией (рис. 1, е). На практике ци ф ровую фазовую манипуляцию применяют при небольшом числе возможных значений начальной фазы — как правило, 2, 4 или 8. Так как на практ и ке при приеме сигнала сложно определить абсолютное значение начальной ф а зы, то проще определять относительный фазовый сдвиг между двумя соседними си м волами. Поэтому обычно используется ОФМ при которой в зависимости от значения информационного элемента изменяется только фаза сигнала при неизменной амплитуде и частоте, при этом фазу канального сигнала отсчит ы вают не от некоторого эталона, а от фазы предыдущего элемента. На рис 1. видно, что изменение фазы несущего сигнала на 180 0 происходит при каждом «приходе» логической «1» - символ «О» передается отрезком синусоиды с начальной фазой предшествующего элемента сигнала, а символ «1» — таким же отрезком с начальной фазой, отличающейся от начальной фазы предш е ствующего элемента на 180°. При ОФМ передача сообщения начинается с п о сылки одного не несущего передаваемой информации элемента, который сл у жит лишь опорным (эталонным) сигналом для сравнения фазы последующ е го элемента. Каждому информационному биту ставится в соответствие не абс о лютное значение фазы, а ее изменение относительно предыдущего знач е ния.
  6. В цифровом телевидении для передачи по спутниковым трактам и в наземном телевещании при тяжелых условиях приема используется двукратная, или четырехфазная ОФМ (ОФМ-4 ; другое название — квадратурная относ и тельная фазовая модуляция — КОФМ ; англ. — Quadrature phase shift keying — QPSK). Модуляция ОФМ-4 (QPSK) обеспечивает необходимый компромисс между скоростью передачи информации и помехоустойчивостью системы и применяется как самостоятельно, так и в комбинациях с другими методами. Этот вид модуляции основан на передаче четырех сигналов, каждый из кот о рых несет информацию о двух битах (дибите) исходной двоичной последов а тельности. Обычно используется два набора фаз: в зависимости от значения дибита (00, 01,10 или 11) фаза сигнала может изменит ь ся на О, 90, 180, 270 или 45, 135, 225, 315° соответственно. При этом, если число кодируемых бит более трех (8 позиций поворота фазы), резко сниж а ется помехоустойчивость ОФМ. Потому для высокоскоростной передачи данных ОФМ использовать не рек о мендуется.

Рис. 1. Формы сигналов при различных видах цифровой модуляции двои ч ным кодом: а — униполярный код; б — биполярный код; в — ИКМ-АМ;

г — ИКМ-ЧМ; д — ИКМ-ФМ; е — ОФМ

Многопозиционные сигналы. Эффективность систем передачи цифровых с о общений можно существенно повысить путем использования многопозицио н ных (многоуровневых) сигналов, которые можно применять при большой мо щ ности сигнала без риска увеличить вероятность ошибки при определении зн а чения принимаемого сигнала. Увеличение числа позиций, или уровней, позв о ляет увеличить удельную скорость модуляции, но лишь за счет увеличения мощности излучаемого колебания. То же самое можно сказать и о выборе ко р ректирующих кодов. Выбор сигналов и кодов в этих случаях является опред е ляющим для построения высокоэффективных кодемов (согласованных между собой кодеков и модемов).

Рис.2. Формирование четырехпозиционного сигнала:

а — передаваемый первичный сигнал; б — четырехпозиционный сигнал

Формирование четырехпозиционного сигнала показано на рис. 2. Пары с о седних значений двоичных данных (длительность каждого символа τ и ) перед а ваемого первичного сигнала u 1 (t) (рис. 2, а) определяют один из четырех уро в ней, который занимает сигнал u 2 (t ) (рис. 2, б). Пара двоичных символов 00 с о ответствует уровню (амплитуде) 0 , пара 01 — уровню 1 , пара 10 — уро в ню

2 и пара 11 — уровню 3 . Сигнал u 2 (t ) меняется в 2 раза реже, чем исходный u 1 (t), для его передачи требуется в 2 раза меньшая полоса частот, следовател ь но, использование четырехпозиционного сигнала позволяет увеличить удел ь ную скорость передачи в 2 раза. Но надо помнить, что применение многопоз и цио н ных сигналов связано со значительным увеличением их мощности.

Чтобы осуществить эффективную передачу сигналов в какой-либо среде, необходимо перенести спектр этих сигналов из низкочастотной области в область достаточно высоких частот. Данная процедура получила в радиотехнике название модуляции.

Сущность модуляции заключается в следующем. Формируется некоторое колебание (чаще всего гармоническое), называемое несущим колебанием или просто несущей, и какой-либо из параметров этого колебания изменяет­ся во времени пропорционально исходному сигналу. Исходный сигнал называют модулирующим, а результирующее колебание с изменяющи­мися во времени параметрами - модулированным сигналом. Обратный процесс - выделение модулирующего сигнала из модулированного колебания - называется демодуляцией.

Классификация видов модуляции:

1) по виду информационного сигнала (модулирующий сигнал);

Непрерывная модуляция (аналоговый сигнал);

Дискретная модуляция (дискретный сигнал);

2) по виду переносчика (или несущей частоты)

Гармоническая (синусоидальный сигнал);

Импульсная (прямоугольный периодический импульс).

3) по виду параметров несущей частоты, которые претерпевают изменения под действием информационного сигнала.

Амплитудная модуляция;

Частотная модуляция;

Фазовая модуляция;

Широтная модуляция;

Широтно-импульсная модуляция (рисунок 1.1).

Рисунок.1.1 – Виды модуляции

Гармонический сигнал общего вида:

S (t) = A cos(ω 0 t+ φ 0).

У данного сигнала есть три параметра: амплитуда А, частота ω 0 и начальная фа­за φ 0 . Каждый из них можно связать с модулирующим сигналом, получив, таким образом, три основных вида модуляции: амплитудную, частотную и фазовую. Частотная и фазовая модуляция очень тесно взаимосвязаны, поскольку обе они влияют на аргумент функции cos. Поэтому эти два вида моду­ляции имеют общее название - угловая

модуляция.

В настоящее время все большая часть информации, передаваемой по разнообраз­ным каналам связи, существует в цифровом виде. Это означает, что передаче под­лежит не непрерывный (аналоговый) модулирующий сигнал, а последователь­ность целых чисел п 0 , п 1, п 2 , ..., которые могут принимать значения из некоторого фиксированного конечного множества. Эти числа, называемые символами, поступают от источника информации с периодом Т, а частота, соответствующая этому периоду, называется символьной скоростью: f T = 1/Т.

Часто используемым на практике вариантом является двоичная последовательность символов, когда каждое из чисел n i может принимать одно из двух значений - 0 или 1.

Последовательность передаваемых символов является, очевидно, дискретным сиг­налом. Поскольку символы принимают значения из конечного множества, этот сигнал фактически является и квантованным, то есть его можно назвать цифровым сигналом.

Типичный подход при осуществлении передачи дискретной последовательности символов состоит в следующем. Каждому из возможных значений символа со­поставляется некоторый набор параметров несущего колебания. Эти параметры поддерживаются постоянными в течение интервала Т, то есть до прихода сле­дующего символа. Фактически это означает преобразование последовательности чисел { n k } в ступенчатый сигнал S n (t ) с использованием кусочно-постоянной ин­терполяции:

s n (t)=f(n k ), kT

Здесь f - некоторая функция преобразования. Полученный сигнал S n (t ) далее используется в качестве модулирующего сигнала обычным способом.

Такой способ модуляции, когда параметры несущего колебания меняются скачко­образно, называется манипуляцией . В зависимости от того, какие именно параметры изменяются, различают амплитудную (АМ), фазовую (ФМ), час­тотную (ЧМ). Кроме того, при передаче цифровой

информации может использоваться несущее колебание, отличное по форме

от гармонического. Так, при использовании в качестве несущего колебания последовательности прямоугольных импульсов возможны амплитудно-импульсная (АИМ), широтно-импульсная (ШИМ) и время-импульсная (ВИМ) модуляция. АИМ – амплитудно–импульсная модуляция заключается в том, что амплитуда импульсной несущей изменяется по закону изменения мгновенных значений первичного сигнала.

ЧИМ – частотно–импульсная модуляция. По закону изменения мгновенных значений первичного сигнала изменяется частота следования импульсов несущей.

ВИМ – время–импульсная модуляция, при которой информационным параметром является временной интервал между синхронизирующим импульсом и информационным.

ШИМ – широтно–импульсная модуляция. Заключается в том, что по закону изменения мгновенных значений модулирующего сигнала меняется длительность импульсов несущей.

ФИМ – фазо–импульсная модуляция, отличается от ВИМ методом синхронизации. Сдвиг фазы импульса несущей изменяется не относительно синхронизирующего импульса, а относительно некоторой условной фазы.

ИКМ – импульсно – кодовая модуляция. Ее нельзя рассматривать как отдельный вид модуляции, так как значение модулирующего напряжения представляется в виде кодовых слов.

СИМ – счетно–импульсная модуляция. Является частным случаем ИКМ, при котором информационным параметром является число импульсов в кодовой группе.

При амплитудной манипуляции единичный символ передается ВЧ заполнением, а нулевой отсутствием сигнала. Амплитудно – манипулированный сигнал описывается выражением:

где амплитудный член может приниматьМ дискретных значений, а фазовый член φ –это произвольная константа. Изображенный на рисунке 1.2 (в) АМ – сигнал может соответствовать радиопередаче с использованием двух сигналов, амплитуды которых равны 0 и .

Амплитудная манипуляция наиболее простая, но вместе с тем наименее помехозащищенная и в настоящее время практически не используется.

При частотной дискретной модуляции (ЧМ, FSK–Frequency Shift Keying) значениям 0 и 1 информационного бита соответствуют свои частоты физического сигнала при неизменной его амплитуде. Общее аналитическое выражение для частотно-манипулированного сигнала имеет следующий вид:

Здесь частота ω i может принимать М дискретных значений, а фаза φ является произвольной постоянной. Схематическое изображение ЧМ - сигнала приведено на рисунке 1.2 б, где можно наблюдать типичное изменение частоты в моменты переходов между символами.

Частотная модуляция весьма помехоустойчива, поскольку искажению при помехах подвергается в основном амплитуда сигнала, а не частота. При этом достоверность демодуляции, а значит и помехоустойчивость тем выше, чем больше периодов сигнала попадает в бодовый интервал. Но увеличение бодового интервала по понятным причинам снижает скорость передачи информации. С другой стороны, необходимая для этого вида модуляции ширина спектра сигнала может быть значительно уже всей полосы канала. Отсюда вытекает область применения ЧМ – низкоскоростные, но высоконадежные стандарты, позволяющие осуществлять связь на каналах с большими искажениями амплитудно-частотной характеристики, или даже с усеченной полосой пропускания.

При фазовой манипуляции 1 и 0 отличаются фазой высокочастотного колебания. Фазоманипулированный сигнал имеет следующий вид:

Здесь фазовая составляющая φ i (t ) может принимать М дискретных значений, обычно определяемых следующим образом:

где Е – это энергия символа;

Т – время передачи символа.

На рисунке 1.2 а приведен пример двоичной (М=2) фазовой манипуляции, где явно видны характерные резкие изменения фазы при переходе между символами.

На практике фазовая манипуляция используется при небольшом числе возмож­ных значений начальной фазы - как правило, 2,4 или 8. Кроме того, при приеме сигнала сложно измерить абсолютное значение начальной фазы; значительно проще определить относительный фазовый сдвиг между двумя соседними сим­волами. Поэтому обычно используется фазоразностная или относительная фазовая мани­пуляция.

При фазоразностной модуляции (ДОФМ, ТОФМ, DPSK – Differential Phase Shift Keying) изменяемым в зависимости от значения информационного элемента параметром является фаза сигнала при неизменных амплитуде и частоте. При этом каждому информационному элементу ставится в соответствие не абсолютное значение фазы, а ее изменение относительно предыдущего значения.

Согласно рекомендаций МККТТ при скорости 2400 бит/с поток данных, подлежащих передаче, разделяется на пары последовательных битов (дибитов), которые кодируются в изменение фазы по отношению к фазе предыдущего элемента сигнала. Один элемент сигнала несет 2 бита информации. Если информационный элемент есть дибит, то в зависимости от его значения (00, 01, 10 или 11) фаза сигнала может измениться на 90, 180, 270 градусов или не измениться вовсе.

При тройной относительно-фазовой модуляции или восьмикратной

фазоразностной модуляции поток данных, подлежащих передаче, разделяется на тройки последовательных битов (трибитов), которые кодируются в изменение фазы по отношению к фазе предыдущего элемента сигнала. Один элемент сигнала несет 3 бита информации.

Фазовая модуляция наиболее информативна, однако увеличение числа кодируемых бит выше трех (8 позиций поворота фазы) приводит к резкому снижению помехоустойчивости. Поэтому на высоких скоростях применяются комбинированные амплитудно-фазовые методы модуляции.

Амплитудно-фазовая манипуляция. Амплитудно-фазовая манипуляция (amplitude phase keying - АРК) - это комби­нация схем ASK и PSK. АРК-модулированный сигнал изображен на рис. 1.2 г и выражается как

с индексированием амплитудного так и фазового членов. На рис.1. 2 г можно видеть харак­терные одновременные (в моменты перехода между символами) изменения фазы и ампли­туды АРК-модулированного сигнала. В приведенном примере М =8, что соответствует 8 сигналам (восьмеричной передаче). Возможный набор из восьми векторов сигналов изо­бражен на графике в координатах "фаза-амплитуда". Четыре показанных вектора имеют одну амплитуду, еще четыре - другую. Векторы ориентированы так, что угол между двумя ближайшими векторами составляет 45°.

Рисунок 1.2 – Виды цифровых модуляций

Если в двухмерном пространстве сигналов между М сигналами набора угол прямой, схема называется квадратурной амплитудной модуляци­ей (quadrature amplitude modulation - QAM).

Квадратурная амплитудная модуляция

Необходимо отметить, что еще одним видом линейной модуляции является квадратурная амплитудная модуляция (КАМ), сущность которой заключается в передаче двух разных сигналов методами AM или ЧМ на одной несущей частоте. Спектры этих двух сигналов полностью перекрываются и их разделение с помощью фильтров невозможно. Чтобы сохранить возможность разделения сигналов на приемной стороне, несущие колебаний на модуляторы подают с фазовым сдвигом 90° (в квадратуре).

На рисунке 1.3 представлена схема формирования КАМ сигнала.

Рисунок 1.3 – Квадратурная АМ

Достоинством КАМ по сравнению с обычными AM или БМ, является вдвое большее количество сигналов, которые можно независимо передавать в одной и той же полосе частот.

Угловая (частотная и фазовая) модуляция

Угловая модуляция обычно применяется, когда требуется обеспечить высокую верность приема передаваемого сообщения. Объясняется это тем, что системы с угловой модуляцией обладают повышенной по сравнению с AM устойчивостью к воздействию шумов и других видов помех. Известно, например, свойства ЧМ систем подавлять аддитивную шумовую помеху. Это значит, что при детектировании ЧМ существенно улучшается отношение сигнал/шум. Однако это преимущество достигается ценой ухудшения других параметров сигнала, в частности ценой увеличения занимаемой полосы частот. Частотная модуляция является, пожалуй, наиболее общим примером, который иллюстрирует методы повышения помехоустойчивости систем связи, основанные на расширении спектра сигнала.

На рисунке 1.4 представлена Временная диаграмма сигнала при однотональной угловой модуляции.

Рисунок 1.4 Угловая модуляция: а - модулирующий низкочастотный сигнал; б - однотональный сигнал с угловой модуляцией

Сигнал угловой модуляции (УМ) при гармонической несущей можно записать так:

u УМ (t)= U 0 cos[(t)]=U 0 cos[ω 0 t+φ(t)],

где (t)=ω 0 t+φ(t) – полная фаза сигнала;

φ(t) – фаза, которая несет информацию о первичном сигнале.

Различают два вида УМ: фазовая (ФМ) и частотная (ЧМ). При ФМ изменения фазы прямо пропорциональны первичному сигналу

Где φ 0 – начальная фаза.

При ЧМ мгновенная частота сигнала прямо пропорциональна первичному сигналу

, где - коэффициент преобразования управляющего сигнала в изменение частоты сигнала на выходе частотного модулятора.

Формы сигналов ФМ и ЧМ не отличаются друг от друга, если производная первичного сигнала по времени имеет тот же вид, что и сам первичный сигнал. Это имеет место при синусоидальном первичном сигнале, например

b(t)=Usint .

Сигнал УМ в этом случае можно записать так:

u УМ (t)=U 0 cos(ω 0 t+Мsint),

где М – индекс модуляции.

Индекс ФМ определяют как

М ФМ ==К ФМ U  ( – девиация фазы).

Индекс ЧМ равен

М ЧМ ==К ЧМ U  /,

причем девиация частоты К ЧМ U  . следовательно, индекс ЧМ

М ЧМ =/=f / F.

Найдем спектр сигнала при УМ одним тоном. Представим сигнал при УМ одним тоном следующим выражением:

(Re – вещественная часть).

Поскольку при ЧМ

М ЧМ =/=f /F,

то получаем, что при больших индексах модуляции

f ум 2f ,

т. е. ширина полосы частот при ЧМ равна удвоенной величине девиации частоты и не зависит от частоты модуляции F.

На рисунках 1.5 и 1.6 представлены схемы получения сигналов угловой модуляции

где b(t) – первичный сигнал;

–генератор несущей U0cosω0t ;

блок -/2 осуществляет поворот фазы на угол -/2;