Домой / Группы / Алгоритм программы для размерного анализа технологических процессов. Размерный анализ технологического процесса. Исходные данные для проведения размерного анализа

Алгоритм программы для размерного анализа технологических процессов. Размерный анализ технологического процесса. Исходные данные для проведения размерного анализа

Министерство образования и науки Российской Федерации

Тольяттинский государственный университет

Кафедра «Технология машиностроения»

КУРСОВАЯ РАБОТА

по дисциплине

«Технология машиностроения»

на тему

«Размерный анализ технологических процессов изготовления вала-шестерни»

Выполнил:

Преподаватель: Михайлов А.В.

Тольятти, 2005

УДК 621.965.015.22

Аннотация

Зарипов М.Р. размерный анализ технологического процесса изготовления детали вал-шестерня.

К.р. – Тольятти.: ТГУ, 2005.

Выполнен размерный анализ технологического процесса изготовления детали вал-шестерня в продольном и радиальном направлении. Рассчитаны припуски и операционные размеры. Проведено сравнение результатов операционных диаметральных размеров, полученных расчетно-аналитическим способом и методом размерного анализа с использованием операционных размерных цепей.

Расчетно-пояснительная записка на 23стр.

Графическая часть – 4 чертежей.

1. Чертеж детали – А3.

2. Размерная схема в осевом направлении – А2.

3. Размерная схема в диаметральном направлении – А2.

4. Размерная схема в диаметральном направлении продолжение – А3.


1. Технологический маршрут и план изготовления детали

1.1. Технологический маршрут и его обоснование

1.2. План изготовления детали

1.3. Обоснование выбора технологических баз, классификация технологических баз

1.4. Обоснование простановки операционных размеров

1.5. Назначение операционных требований

2. Размерный анализ технологического процесса в осевом направлении

2.1. Размерные цепи и их уравнения

2.2. Проверка условий точности изготовления детали

2.3. Расчет припусков продольных размеров

2.4. Расчет операционных размеров

3. Размерный анализ технологического процесса в диаметральном направлении

3.1. Радиальные размерные цепи и их уравнения

3.2. Проверка условий точности изготовления детали

3.3. Расчет припусков радиальных размеров

3.4. Расчет операционных диаметральных размеров

4. Сравнительный анализ результатов расчетов операционных размеров

4.1. Расчет диаметральных размеров расчетно-аналитическим методом

4.2. Сравнение результатов расчета

Литература

Приложения


1. Технологический маршрут и план изготовления детали

1.1. Технологический маршрут и его обоснование

В данном разделе опишем основные положения, использованные при формировании технологического маршрута детали.

Тип производства – среднесерийный.

Способ получения заготовки – штамповка на ГКШП.

При разработке технологического маршрута используем следующие положения:

· Обработку разделяем на черновую и чистовую, повышая производительность (снятие больших припусков на черновых операциях) и обеспечивая заданную точность (обработка на чистовых операциях)

· Черновая обработка связана со снятием больших припусков, что ведет к износу станка и снижению его точности, поэтому черновую и чистовую обработку будем вести на разных операциях с применением различного оборудования

· Для обеспечения требуемой твердости детали введем ТО (закалка и высокий отпуск, шейки под подшипники - цементация)

· Лезвийную обработку, нарезку зубьев и шпоночного паза произведем перед ТО, а после ТО абразивная обработка

· Для обеспечения требуемой точности создаем искусственные технологические базы, используемые на последующих операциях – центровые отверстия

· Более точные поверхности будем обрабатывать в конце ТП

· Для обеспечения точности размеров детали будем использовать специализированные и универсальные станки, станки с ЧПУ, нормализованные и специальные режущие инструменты и приспособления

Для простоты составления плана изготовления закодируем поверхности рис.1.1 и размеры детали и приведем сведения о требуемой точности размеров:

ТА2 = 0,039(–0,039)

Т2В = 0,1(+0,1)

Т2Г = 0,74(+0,74)

Т2Д = 0,74(+0,74)

ТЖ = 1,15(–1,15)

ТИ = 0,43(–0,43)

ТК = 0,22(–0,22)

ТЛ = 0,43(–0,43)

ТМ = 0,52(–0,52)

ТП = 0,2(-0,2)

Технологический маршрут оформим в виде таблицы:

Таблица 1.1

Технологический маршрут изготовления детали

№ операции

Наименование

операции

Оборудование (тип, модель) Содержание операции
000 Заготовительная ГКШП Штамповать заготовку
010 Фрезерно-центровальная

Фрезерно-центровальный

Фрезеровать торцы 1,4; сверлить центровальные отверстия
020 Токарная Токарный п/а 1719

Точить поверхности

2, 5, 6, 7; 8, 3

030 Токарная с ЧПУ Токарный с ЧПУ 1719ф3 Точить поверхности 2, 5, 6; 3, 8
040 Шпоночно-фрезерная Шпоночно-фрезерный 6Д91 Фрезеровать паз 9, 10
050 Зубофрезерная Зубофрезерный 5В370 Фрезеровать зубья 11, 12
060 Зубофасочная Зубофасочный СТ 1481 Снять фаску с зубьев
070 Зубошевинго­вальная Зубошевинговальный 5701 Шевинговать зубья 12
075 ТО Закалка, высокий отпуск, правка, цементация
080 Центродоводочная Центродоводочный 3922 Зачистиь центровочные отверстия
090 Круглошлифовальная Круглошлифовальный 3М163ф2Н1В Шлифовать поверхности 5, 6, 8
100 Торцекругло­шлифовальная Торцекруглошлифовальный 3М166ф2Н1В Шлифовать поверхности 2, 6; 3, 8
110 Зубошлифовальная Зубошлифовальный 5А830

Шлифовать зубья

1.2. План изготовления детали

Приведем в виде таблицы 1.2 план изготовления детали, оформленный в соответствие с требованиями :


Таблица 1.2

План изготовления детали вал-шестерня






1.3. Обоснование выбора технологических баз, классификация технологических баз

На фрезерно-центровальной операции в качестве черновых технологических баз выбираем общую ось шеек 6 и 8, и торец 3 – как будущими основными конструкторскими базами.

На черновом точении за технологические базы принимаем полученную на предыдущей операции ось 13 (используем центры) и обработанные на предыдущей операции торцы 1 и 4.

При чистовом точении используем в качестве технологических баз ось 13, а опорная точка лежит на поверхности центровых отверстий – используем принцип постоянства баз и исключаем погрешность неперпендикулярности, как составляющую погрешности выполнения осевого размера.

Таблица 1.3

Технологические базы

№ операции № опорных точек Наименование базы Характер проявления Реализация № обрабатывае­мых поверхностей Операционные размеры Единство баз Постоянство баз
Явная скрытая Естественная Искусственная Станочные приспособления
1 2 3 4 5 6 7 8 9 10 11 12
010
020-А

Жесткий и плавающий центры,

поводковый патрон

020-Б
030-А
030-Б
040
050
070
090-А
090-Б
100-А
100-Б
110

На зубообрабатывающих операциях используем ось 13 и опорную точку на центровом отверстии, соблюдая принцип постоянства баз (относительно шеек подшипников), ибо, являясь исполнительной поверхностью, зубчатый венец должен быть точно выполнен относительно шеек подшипников.

Для фрезерования шпоночного паза в качестве технологических баз используем ось 13 и торец 2.

В сводной таблице приводим классификацию технологических баз, указываем их целевую принадлежность, выполнение правила единства и постоянства баз.

1.4. Обоснование простановки операционных размеров

Способ простановки размеров зависит в первую очередь от метода достижения точности. Так как размерный анализ имеет большую трудоемкость выполнения, то применять его целесообразно при использовании метода достижения точности размеров с помощью настроенного оборудования.

Особую важность представляет способ простановки продольных размеров (осевых для тел вращения).

На черновой токарной операции мы можем применить схемы простановки размеров «а» и «б» рис.4.1.

На чистовой токарной и шлифовальных операциях применяем схему «г» рис.4.1.

1.5. Назначение операционных технических требований

Операционные технические требования назначаем по методике . Технические требования на изготовление заготовки (допуски на размеры, смещение штампа) назначаем по ГОСТ 7505-89. Допуски на размеры определяем по приложению 1 , шероховатость – по приложению 4 , величины пространственных отклонений (отклонения от соосности и перпендикулярности) – по приложению 2 .

Для заготовки отклонения от соосности определим по методике .

Определим средний диаметр вала

где d i – диаметр i-ой ступени вала;

l i – длина i-ой ступени вала;

l – общая длина вала.

d ср =38,5мм. По приложению 5 определим р к – удельная величина изогнутости. Величины изогнутости оси вала для различных участков определим по следующей формуле:

, (1.2)

где L i – расстояние наиболее удаленной точки i-ой поверхности до измерительной базы;

L – длина детали, мм;

Δ max =0,5·р к ·L – максимальный прогиб оси вала в результате коробления;

– радиус кривизны детали, мм; (1.3)

Аналогично рассчитываем отклонения от соосности при термообработке. Данные для их определения также приведены в приложении 5.

После расчетов получаем


2. Размерный анализ технологического процесса в осевом направлении

2.1. Размерные цепи и их уравнения

Составим уравнения размерных цепей в виде уравнений номиналов.

2.2.

Проверку условий точности выполняем, чтоб убедиться в обеспечении требуемой точности размеров. Условие точности ТА черт ≥ω[А],

где ТА черт – допуск по чертежу размера;

ω[А] – погрешность этого же параметра возникающая в ходе выполнения технологического процесса.

Погрешность замыкающего звена найдем по уравнению (2.1)

Из расчетов видно, что погрешность размер К больше допуска. А это значит, что мы должны корректировать план изготовления.

Для обеспечения точности размера [К]:

на 100-ой операции обработаем с одного установа поверхности 2 и 3, тем самым уберем из размерной цепи размера [К] звенья С 10 , Ж 10 и Р 10 , «заменив» их на звено Ч 100 (ωЧ=0,10).

После внесения в план изготовления данных коррективов, получаем следующие уравнения размерных цепей, погрешность которых равна:


В итоге получаем 100% качество

2.3. Расчет припусков продольных размеров

Расчет припусков продольных размеров будем вести в следующем порядке.

Напишем уравнения размерных цепей, замыкающим размером которых будут припуски. Посчитаем минимальный припуск на обработку по формуле

где - суммарная погрешность пространственных отклонений поверхности на предыдущем переходе;

Высоты неровностей и дефектный слой, образовавшиеся на поверхности при предыдущей обработке.

Рассчитаем величины колебаний операционных припусков по уравнениям погрешностей замыкающих звеньев-припусков

(2.1)

(2.2)

Расчет ведут по формуле (2.2) если количество составляющих звеньев припуска больше четырех.

Находим значения максимальных и средних припусков по соответствующим формулам

, (2.3)

(2.4)

результаты занесем в таблицу 2.1

2.4. Расчет операционных размеров

Определим величины номинальных и предельных значений операционных размеров в осевом направлении по методу средних значений

Исходя из уравнений, составленных в пунктах 2.2 и 2.3, найдем средние значения операционных размеров


запишем значения в удобной для производства форме


3. Размерный анализ технологического процесса в диаметральном направлении

3.1. Радиальные размерные цепи и их уравнения

Составим уравнения размерных цепей с замыкающими звеньями-припусками, т.к. почти все размеры в радиальном направлении получаются явно (см. п.3.2)

3.2. Проверка условий точности изготовления детали

Получаем 100% качество.


3.3. Расчет припусков радиальных размеров

Расчет припусков радиальных размеров будем вести аналогично расчету припусков продольных размеров, но расчет минимальных припусков будем вести по следующей формуле

(3.1)

Результаты заносим в таблицу 3.1

3.4. Расчет операционных диаметральных размеров

Определим величины номинальных и предельных значений операционных размеров в радиальном направлении по методу координат средин полей допусков.

Исходя из уравнений, составленных в пунктах 3.1 и 3.2, найдем средние значения операционных размеров


Определим координату средин полей допусков искомых звеньев по формуле

Сложив полученные величины с половиной допуска, запишем значения в удобной для производства форме


4. Сравнительный анализ результатов расчетов операционных размеров

4.1. Расчет диаметральных размеров расчетно-аналитическим методом

Рассчитаем припуски для поверхности 8 по методике В.М. Кована .

Полученные результаты заносим в таблицу 4.1

4.2. Сравнение результатов расчета

Посчитаем общие припуски по формулам

(4.2)

Посчитаем номинальный припуск для вала

(4.3)

Результаты расчетов номинальных припусков сводим в таблицу 4.2

Таблица 4.2

Сравнение общих припусков

Найдем данные по изменению припусков

Мы получили разницу припусков в 86%, вследствие неучета при расчете методом Кована следующих моментов: особенностей простановки размеров на операции, погрешности выполняемых размеров, влияющих на величину погрешности припуска и др.

Литература

1. Размерный анализ технологических процессов изготовления деталей машин: Методические указания к выполнению курсовой работы по дисциплине «Теория Технологии»/ Михайлов А.В. – Тольятти,: ТолПИ, 2001. 34с.

2. Размерный анализ технологических процессов/ В.В. Матвеев, М. М. Тверской, Ф. И. Бойков и др. – М.: Машиностроение, 1982. – 264 с.

3. Специальные металлорежущие станки общемашиностроительного применения: Справочник/ В.Б. Дьячков, Н.Ф. Кабатов, М.У. Носинов. – М.: Машиностроение. 1983. – 288 с., ил.

4. Допуски и посадки. Справочник. В 2-х ч./ В. Д. Мягков, М. А. Палей, А. Б. Романов, В.А. Брагинский. – 6-е изд., перераб. и доп. – Л.: Машиностроение, Ленингр. отд-ние, 1983. Ч. 2. 448 с., ил.

5. Михайлов А.В. План изготовления детали: Методические указания к выполнению курсовых и дипломных проектов. – Тольятти: ТолПИ, 1994. – 22с.

6. Михайлов А.В. Базирование и технологические базы: Методические указания к выполнению курсовых и дипломных проектов. – Тольятти: ТолПИ, 1994. – 30с.

7. Справочник технолога-машиностроителя. Т.1/под. ред А.Г. Косиловой и Р.К. Мещерякова. – М.:Машиностроение, 1985. – 656с.

При разработке ТП сборки изделий практически всегда возникает задача выбора метода и средств обеспечения точности прибора (изделия). Она решается путем расчета размерной цепи изделия (узла), который проводится в целях определения результирующего отклонения показателей точности изделия, выявления отклонения каждого компонента размерной цепи из числа компонентов, оказывающих наибольшее влияние на выходные параметры или функциональные показатели прибора (изделия).

В конструкторской документации размеры и допуски на выходные параметры изделия обычно указывают исходя из служебного назначения детали, узла или прибора. Однако в некоторых случаях такое задание размеров или такая система их расстановки либо не соответствует выбранной технологии, либо эти размеры невозможно непосредственно измерить. Кроме того, при разработке ТП сборки практически всегда необходимо решить задачу выбора технологического метода и технологических средств обеспечения точности прибора. Устранить недочеты, которые появляются вследствие разного задания размеров, позволяют технологическая инспекция КД, анализ и расчет размерных цепей изделия, по их результатам конструкторские размеры и допуски могут быть заменены технологическими. Однако при такой замене должны быть выдержаны все конструкторские размеры и допуски. Конструкторские и технологические размеры, заданные в документации, можно пересчитывать на максимум-минимум, когда предполагается, что все размеры изделия, составляющие размерную цепь, выполняются по своим предельным значениям или по теории вероятности, когда сочетания отдельных отклонений размеров рассматривают как явления случайного характера. Методика расчета на максимум-минимум наиболее полно отвечает производственной практике.

Рис.4

На рис. 4 представлен исследуемый ГМ.

Размеры А2, А3, А5 – увеличивающие; А1, А4 – уменьшающие.

АΔ – замыкающий – величина зазора между ротором и корпусом.

Так же учтём смещение внутреннего кольца ш/п относительно наружного. Величина смещения

Зазор равен:

7. Контрольное приспособление.

7.1 Описание и принцип работы приспособления.

В рамках курсового проекта было разработано приспособление для контроля, которое должно осуществлять досылку наружного кольца ш/п в корпус ГМ. Необходимо на наружное кольцо ш/п приложить осевое усилие в 15 кг, так же необходимо регистрировать перемещение этого кольца с точностью не менее 0,0001 мм.

Один из вариантов такого приспособления показан на рис.5.

Приспособление представляет из себя Плиту поз.10 которая стоит на 4-х стойках.

Корпус прибора с кольцом ш/п отдельно устанавливается в тарелку поз.15, а затем вставляется во фланец поз.18 по средствам байонета поз.1, при этом верхний свободный торец корпуса упирается в уплотнительное кольцо поз.25, приклеенное к плите 10, что позволяет исключить возможные люфты и защитить поверхность корпуса ГМ от механических повреждений.

Рис.6. Тарелка поз.15 с корпусом ГМ.

Фланец поз.18 закреплён под плитой шестью винтами поз.20. На плите установлен кронштейн, который держит эксцентрик, при вращении которого вокруг оси поз.9 происходит поступательное движение толкателя поз.16. Толкатель сжимает пружину поз.12, которая передаёт усилие от вращения эксцентрика к валу поз.3, который давит на кольцо ш/п, создавая необходимое усилие в 15 кг. Величину силы в процессе выполнения операции нужно отслеживать по шкале на торце толкателя поз.16. Указатель поз.17 вкручен в вал поз.3. В процессе измерения усилия его положение можно считать неизменным (он движется на десятые доли микрона), тогда как толкатель может передвигаться до 8мм (после чего для защиты изделия и продления срока службы пружины приспособления - нижний торец толкателя доходит до упора в кронштейн поз.8).

Согласно ТТ на ГМ, он годен к дальнейшей сборке если усилие в 15 кг вызовет относительное перемещение стрелки микрокатора при 3-х кратном замере не более чем на 0,0004 мм. И для проверки относительного перемещения в приспособлении присутствует микрокатор 01ИГПВ поз. 28, зажим (поз. 7) которого установлен на стойке поз.13. Регулирование положения микрокатора вдоль направляющей стойки осуществится винтом поз.4, а фиксация микрокатора в зажиме поз.7 осуществляется гайкой поз.23. Перед приложением усилия на кольцо ш/п измерительную головку микрокатора необходимо подвести к консоле вала поз. 3 и выставить на шкале микрокатора нулевое значение. Перемещение вала поз.3, измеряемое микрокатором, равно перемещению кольца ш/п.

Основной деталью приспособления является пружина поз. 12, от которой зависит передаваемое на вал поз.3 усилие. Далее представлен расчёт этой пружины.

7.2. Расчёт пружины.

Расчёт пружины будем проводить исходя из необходимости создания усилия в F 2 = 15 кг (~150 Н) с запасом не менее 15-20% (F 3 =180 Н) и возможным габаритам. Наружний диаметр не более 15 мм и высоту пружины в свободном состоянии не более 20 мм, с рабочим ходом h=7 мм.

Материал:

Проволока по ГОСТ 9389. Углеродистая сталь,

закалённая в масле.

Вариант оформления опорных витков:

Поджатые, шлифованные

Диаметр проволоки (прутка) d=

Наружный диаметр D1=

Средний диаметр D=

Длина пружины без нагрузки L0=

Рабочее число витков n=

Полное число витков n1=

Рабочая длина L2=

Длина при соприкосновении витков L3=

Жёсткость пружины c=

Рабочий ход пружины h=

Сделаем предварительный расчёт диаметра проволоки и пружины.

Примем индекс пружины с=6

К-т влияния кривизны витков к=1,24

τ для данного материала при ∅ 2…2,5 мм ~ 950 МПа

Диаметр проволоки:

Диаметр пружины:

D=c*d=13.2 – средний диаметр

D н =D+d=15.4 – наружний диаметр

Подберём пружину по ГОСТ 13766-86.

Наиболее подходящий вариант – позиция 407.

Для этой пружины:

Уточним расчёты среднего диметра:

D=15-2.1=12.9 мм

Жёсткость пружины:

Число рабочих витков:

n=C 1 /C=97/21.5=4

Максимальная деформация:

λ 3 =F 3 /C=180/21.5=8.3 мм

Полное число витков:

n 1 =n+n 2 =4+2=6

Шаг пружины:

Высота пружины при максимальной деформации:

Высота пружины в свободном состоянии:

Рис. 8.11.

Рис. 8.10.


Пример 8.7

Размерный анализ процесса механической обработки проводят в следующем порядке. Для детали (рис. 8.11) вычерчивают совмещенный эскиз исходной заготовки и готовой детали (рис. 8.12), на котором отражают также промежуточные состояния заготовки. Все поверхности заготовки и детали нумеруют по порядку, слева направо, и через них проводят вертикальные линии. Между этими линиями указывают размеры исходной заготовки В, готовой детали А , припуски Z n (индекс п обозначает номер поверхностей, к которым они относятся), а также технологические размеры S, получаемые в результате выполнения каждого технологического перехода. Размеры S указывают в виде направленных стрелок, при этом точка ставится на линии, соответствующей поверхности, которая используется в качестве технологической или настроечной базы.

Рис. 8.12.

Рис. 8.13.

На рис. 8.12 представлен размерный анализ ТП изготовления ступенчатого валика из штампованной заготовки за три операции. На первой операции («фрезерно-центровальная») выполняются размеры S ] и 5 2 , на второй операции («токарная 1») - размер S:i . На третьей операции («токарная 2») выдерживаются размеры S A и S 5 (двукратная обработка торцовой поверхности может быть обусловлена повышенными требованиями, например, к шероховатости поверхности). Выявление размерных цепей начинают с последней операции, т.е. двигаясь по размерной схеме снизу вверх. Для упрощения процесса выявления размерных цепей рекомендуется построить граф размерных связей (рис. 8.13). Вначале строят граф технологических размеров, где кружочками с цифрами внутри обозначаются обрабатываемые поверхности (в виде двойного кружочка обозначается поверхность заготовки, от которой начинается обработка).

Данный граф дополняют графом размеров заготовки (размеры заготовки изображают при этом двойными линиями) и получают совмещенный граф, на котором в виде дуг изображают размеры готовой детали и в виде ломаных линий - припуски на обработку (стрелка на таких линиях указывает, к какой поверхности относится припуск). Важно строить совмещенный граф так, чтобы его ребра (линии) не пересекатись. Любой замкнутый контур совмещенного графа образует размерную цепь. Замыкающим звеном (которое обычно заключают в квадратные скобки) у такой цепи является либо размер детали, либо припуск на обработку (рис. 8.14). Размерные цепи рекомендуется строить таким образом, чтобы припуски и размеры А детати не входили в них в качестве составляющих звеньев. Любая технологическая размерная цепь имеет одно замыкающее звено и два или более составляющих звеньев.

Свои особенности имеет размерный анализ технологических процессов механической обработки заготовок для корпусных детатей. При построении размерной схемы таких процессов следует учитывать, что размеры, опре-


Рис. 8.14.

а-в - для определения технологических размеров S v S 3 и 5, соответственно; г-е - для определения размеров заготовки B v В 3 и В 2 соответственно

деляющие положение основных отверстий корпусной детали, обрабатываемых на нескольких операциях, имеют одинаковые номинальные значения, но выполняются с различной точностью. В этой связи на размерной схеме линия, определяющая положение оси основного отверстия, выполняется прерывистой. На рис. 8.15 изображена размерная схема обработки заготовки корпусной детали, выполняемой за три операции. На первой операции («фрезерная») выполняется размер S 0 , на второй операции («расточная 1») размер S v на третьей операции - размер S 2 . В результате решения размерных цепей выясняется, может ли принятый вариант технологического процесса изготовления детали обеспечить ее точность в соответствии с чертежом.

При этом важно, чтобы точность выполнения технологических размеров S не превышала среднюю экономическую точность принятых методов обработки. В противном случае следует пересмотреть рассматриваемый вариант технологического процесса изготовления детали.


Рис. 8.15. Размерная схема (а) и технологические размерные цепи (б) процесса механической обработки заготовки корпусной детали (R = D/2)

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ЯДЕРНЫЙ УНИВЕРСИТЕТ «МИФИ»

НОВОУРАЛЬСКИЙ ТЕХНОЛОГИЧЕСКИЙ ИНСТИТУТ

В. Н. Ашихмин

РАЗМЕРНЫЙ АНАЛИЗ ТЕХНОЛОГИЧЕСКИХ ПРОЦЕССОВ

Москва 2010

УДК 621.0+621.91 ББК 34.5

Ашихмин В. Н. РАЗМЕРНЫЙ АНАЛИЗ ТЕХНОЛОГИЧЕСКИХ ПРОЦЕССОВ: Практикум.М.: НИЯУ МИФИ, 2010. – 60 с.

Пособие содержит методические указания и рекомендации к выполнению практических работ по курсу «Размерный анализ и обоснование технологических решений» и предназначено для студентов специальности 151001 – Технология машиностроения (очная, очно-заочная, заочная формы обучения). Работа 1 также используется при выполнении практических занятий по курсу «Технология машиностроения».

Подготовленов рамках Программы создания иразвития НИЯУ МИФИ.

Рецензент канд. техн. наук, доцент В. И. Занько

Предисловие …………………………………………………………….4

Практическая работа № 1. Задачи размерного анализа

технологических процессов. Разработка стартовой структуры

технологического процесса, назначение этапов, методов

и планов обработки поверхностей..................................................

Практическая работа № 2. Построение размерной схемы и

графовых моделей размерных связей технологического

процесса.......................................................................................

Практическая работа № 3.

Выявление размерных цепей...............

Практическая работа № 4.

Проверка обеспечения точности

конструкторских размеров и колебаний припусков в стартовом

технологическом процессе...........................................................

Практическая работа № 5.

Расчет размерных цепей.......................

Библиографический список............................................................

ПРЕДИСЛОВИЕ

Качество продукции в машиностроении определяется прежде всего качеством разработки технологических процессов. Для качественной разработки технологических процессов при использовании настроенного на размер оборудования необходимо проведение размерно-точностного анализа.

В ходе проведения размерного анализа должны быть выявлены все размерно-точностные связи в технологическом процессе, начиная от размеров исходной заготовки до размеров готовой детали. Именно такой подход рассматривается в предлагаемом пособии. Актуальность данного пособия обусловлена тем, что в последние годы в отечественной технической литературе практически не издаются книги по размерному анализу технологических процессов.

При решении задач размерного анализа использована методика, основанная на применении теории графов. Это наиболее эффективный математический аппарат для моделирования размерно-точностных связей технологических процессов. Применение этого аппарата способствует развитию навыков математического моделирования у специалиста – технолога.

В отличие от традиционных методик, в которых выявление размерных цепей производится на совмещенном графе, что связано с определенными трудностями, в пособии использована усовершенствованная методика применения графовых моделей при размерном анализе технологических процессов .

Учитывая значение размерного анализа в процессе подготовки спе- циалистов-технологов в ряде вузов в учебных планах технологических кафедр предусмотрены соответствующие дисциплины. Так, например, на кафедрах технологии машиностроения УГТУ – УПИ и НГТИ читается курс «Размерный анализ и обоснование технологических решений». В основу предлагаемой работы положен многолетний опыт изучения указанной дисциплины в УГТУ – УПИ. Пособие может быть использовано при проведении практических занятий в рамках курсов «Основы технологии машиностроения» и «Технология машиностроения».

Практическая работа № 11

ЗАДАЧИ РАЗМЕРНОГО АНАЛИЗА ТЕХНОЛОГИЧЕСКИХ ПРОЦЕССОВ. РАЗРАБОТКА СТАРТОВОЙ СТРУКТУРЫ ТЕХНОЛОГИЧЕСКОГО ПРОЦЕССА, НАЗНАЧЕНИЕ ЭТАПОВ, МЕТОДОВ И ПЛАНОВ ОБРАБОТКИ ПОВЕРХНОСТЕЙ

Цель работы − уяснение необходимости и общих положений проведения размерного анализа, освоение навыков разработки стартовой структуры технологического процесса как начальной стадии решения прямой (проектной) задачи размерного анализа.

Задание – для детали класса втулок на основе чертежа детали и условий среднесерийного производства разработать стартовую структуру технологического процесса при использовании метода восходящего синтеза (снизу вверх).

Работа рассчитана на 8–12 ч.

Задачи размерного анализа и методы расчета размерных цепей

Размерным анализом технологического процесса называют выявление и фиксирование размерных связей между переходами и операциями конкретного технологического процесса. Таким образом, для решения проектной задачи, когда есть только чертеж детали, необходима разработка первоначального, стартового варианта технологического процесса .

Целью размерного анализа является, прежде всего, обеспечение точности указанных на чертеже размерных связей поверхностей детали. С помощью размерного анализа выявляется наиболее эффективная структура технологического процесса, гарантирующая достижение поставленной цели. В результате размерного анализа

1 Работа № 1 выполняется параллельно на практических занятиях по курсу «Технология машиностроения» и по курсу «Размерный анализ и обоснование технологических решений».

наиболее рационально формируются технологические операции и переходы, проверяются и уточняются принятые схемы базирования, определяются все операционные размеры и размеры исходной заготовки. Кроме того, размерный анализ позволяет выявить и устранить недопустимые колебания величины припуска, что особенно важно на финишных операциях.

Вид задачи определяется тем, что задано и что требуется определить. Если разрабатывается новый технологический процесс, то известны и, значит, заданы конструкторские размеры детали. Следовательно, в ряде технологических размерных цепей известен конструкторский размер со всеми его параметрами. Этот размер и будет замыкающим (исходным) звеном в таких размерных цепях.

Если мы анализируем существующий технологический процесс, то известны все технологические (операционные) размеры и их параметры. Эти размеры – составляющие звенья размерных цепей. Таким образом, в цепях, где замыкающее звено – конструкторский размер, мы сможем определить параметры замыкающего звена, которые будут обеспечены в рассматриваемом технологическом процессе.

В теории размерных цепей эти задачи называют соответственно прямой (проектной) и обратной (проверочной).

При прямой задаче заданы номинальный размер, допуск, предельные отклонения замыкающего (исходного) звена и требуется определить номинальные значения, допуски и предельные отклонения всех составляющих звеньев размерной цепи.

При решении обратной задачи по заданным номинальным значениям, допускам, предельным отклонениям составляющих звеньев требуется определить те же характеристики замыкающего звена или поле рассеяния и предельные значения замыкающего звена.

Наиболее распространены два метода расчета размерных цепей: метод максимума-минимума (max-min ) и вероятностный метод.

Первый метод иногда называют методом полной взаимозаменяемости, а второй – методом неполной взаимозаменяемости. По мнению многих авторов, для расчета технологических размерных цепей следует использовать метод максимума-минимума. Это

обосновывается еще и тем, что число составляющих звеньев в технологических размерных цепях обычно не превышает 4–5.

В данном пособии рассмотрено решение проектной (прямой) задачи, когда технологический процесс еще не существует, а исходным документом является только чертеж детали. Кроме чертежа детали, известна производственная среда, в которой будет реализован технологический процесс, или тип производства.

Стартовый вариант технологического процесса формируется на основе разработанной структуры технологического процесса. В нем назначаются первоначально только величины допусков на технологические размеры и минимальные припуски, снимаемые при выполнении технологических переходов. Таким образом, в отличие от проверочной задачи здесь необходимо определить номинальные размеры и предельные отклонения операционных размеров для всех технологических переходов. Задачи такого типа некоторые авторы называют смешанными.

Методические указания к выполнению работы

В ходе проведения практических занятий каждый студент работает по индивидуальному заданию. На рис. 1.1 приведен эскиз детали типа «втулка», применительно к которой показано выполнение всех этапов задания.

1. Анализ чертежа заданной детали, выбор и определение параметров исходной заготовки. Задана деталь – втулка (см. рис. 1.1). Материал – сталь 30. Масса детали – 2,49 кг. Производство среднесерийное. Предусмотрено использование универсального оборудования, в том числе токарно-револьверного станка с вертикальной осью револьверной головки.

Концентричность поверхностей 4 и6 будет обеспечиваться по схеме «ОТ ОТВЕРСТИЯ». Отверстие4 окончательно обрабатывается на токарно-револьверной операции мерным инструментом – разверткой. Торцовые поверхности1 ,5 ,7 , а также радиальное отверстие3 связаны линейными размерами. Наружная цилиндрическая поверхность2 не требует точной обработки. Поверхность6 обрабатывается на круглошлифовальной операции с базированием на отверстие4 .

17 +0,5

Ra 12,5

Ra 12,5

Ra 1,6

Ra 3,2

Ra 1,6

Ra 6,3()

Ra3,2

100h 8

Рис. 1.1. Эскиз детали «втулка» (неуказанные предельные отклонения размеров: H 14;h 14;IT 14/2; номера позиций соответствуют типам обрабатываемых поверхностей)

Нумерация поверхностей детали, связанных линейными размерами, параллельными оси детали, должна производиться по строго определенным правилам:

- номера поверхностей увеличиваются вдоль принятой оси детали;

- фаски не нумеруются;

- для нумерации принимаются только нечетные числа;

- схема конструкторских размерных связей (рис. 1.2) вычерчивается в масштабе.

Рис. 1.2. Схема конструкторских размерных связей

2. Выбор вида исходной заготовки и метода ее получения.

Факторы, определяющие выбор заготовки:

- материал детали – сталь 30 (качественная углеродистая сталь, содержание углерода 0,3 %);

- конфигурация детали – втулка с буртиком и сквозным отверстием;

- тип производства – среднесерийное. Рациональнее при этом типе производства выбрать заготовку, форма которой максимально приближена к форме готовой детали (рис. 1.3). Это сведет к минимуму обработку резанием и отходы в стружку.

Плоскость

Рис. 1.3. Эскиз исходной заготовки

Выбираем метод горячей объемной штамповки в открытых штампах. При соотношении размеров D max >L штамповка производится на молотах или кривошипных горячештамповочных прессах. Сквозные отверстия в исходных заготовках выполняются при условии, что их диаметр не менее 30 мм. Кроме того, длина отверстия должна быть не более диаметра пробиваемого отверстия. Если последнее условие не выполняется, то может быть выполнена наметка (углубление) глубиной до 0,8 диаметра отверстия при изготовлении заготовки на молотах и прессах. ЕслиD max

Рис. 1.4. Упрощенный эскиз исходной заготовки

(1 ,5 ,7 – торцовые поверхности, связанные линейными размерами;

2 ,4 ,6 – цилиндрические поверхности со штамповочными уклонами)

3. Определение общих припусков на обработку и допусков на размеры исходной заготовки.

Определение исходного индекса поковки. Факторы, опреде-

ляющие исходный индекс заготовки, который является ключом к нахождению общих припусков и допусков для поковок:

1) расчетная масса поковки М п.р. , кг.

2) группа стали М1, М2, М3.

3) степень сложности С1, С2, С3, С4.

4) класс точности (для штамповки в открытых штампах Т4 или

Расчетная массы поковки определяется по формуле

М п.р= М дK р,

где K р – расходный коэффициент.

Для деталей круглых в плане (ступицы, шестерни и т.п.) берется

K р = 1,5–1,8. ПримемK р = 1,7, тогдаМ п.р = 2,49. 1,7 = 4,23 кг.

Цель и задачи.

Освоения методики размерного анализа, позволяющего обеспечить точность получаемых размеров при изготовлении деталей из заготовок, является одной из основных задач технологов.

Целью данной работы является освоение методов выявления размерных цепей, определяющих положение обрабатываемых поверхностей относительно баз или других поверхностей, и решение их для построения технологического процесса обработки.

Данную работу выполняют по следующей схеме.

Расчет технологических размерных цепей.

Значения размеров и точности.

Пример размерного анализа.

Задана конструкция детали.

Материал– сталь 40Х

Заготовка – штампованная

Маршрут изготовления

Оп. 010. Токарная

Подрезка торца

Оп. 015. Шлифовальная

Шлифование торца

Рис. 1. Эскиз операций.

Рис. 2. Этапы обработки тел вращения.

Рис. 3. Этапы обработки плоских поверхностей.

Количество необходимых операций и переходов при обработке и выдерживаемые экономически целесообразные квалитеты точности размеров и шероховатость поверхностей назначают в соответствии с рекомендациями, указанными на рис. 2, 3.



Для представленных на рис. 1. операций назначим допуски на получаемые размеры в соответствии с рекомендуемыми квалитетами.

оп. 010 размер - 0,20

оп. 020 - 0,15

По эскизам операции и чертежу детали вскроем размерную цепь с замыкающим звеном Т, который непосредственно не выдерживается и получается как функция остальных звеньев (рис.4).

Рис. 4. Схема размерной цепи

Т = - +

Проверяем возможность решения что

Т = = 80 – 0,2:

Допуск на размер замыкающего звена должен быть

0,20 + 0,15 + 0,08 = 0,43

Так как требуется получить допуск 0,2 мм предложенный маршрут обработки не позволяет работать без брака.

Необходимо уменьшение допусков получаемых размеров. Введем дополнительную операцию.

020 – шлифования торца стержня (рис. 5).

Оп. 020 шлифовальная

Шлифовать торец, выдерживая размер .

Рис. 5. Эскиз шлифования торца стержня

Проанализируем полученные размерные цепи, в которых замыкающим звеном является припуск.

(1)

Припуск размера (оп. 020; оп. 010) (2)

Замыкающим звеном принимают припуск, который назначают по опытно – статистическим данным из таблиц или рассчитывают.

Припуск на шлифования принимаем

Допуск при шлифовании (-0,06)

Решаем размерную цепь

Подставим найденное значение в уравнение (1) и найдем решение

Из уравнения (1):

Принимая во внимание, что размер заготовки двухсторонний назначаем

Свободная таблица размеров

4. Порядок и особенности построения размерных цепей

Вычертить чертеж детали, нанести координатные оси. Деталь изображается в необходимых проекциях, не обязательно в масштабе.

Пронумеровать все поверхности по координатам.

От каждой поверхности провести вертикальные линии.

Провести между вертикальными линиями соответствующие размеры детали.

Размеры проставляются так, чтобы размерная цепь не была замкнутой.

В соответствии с принятом маршрутом наносятся размеры, получаемые на каждой операции. Каждая операция отделяется горизонтальной строкой.

Получаемая система размеров образует размерную цепь.

Р.Ц. не должна включать в качестве составляющих звеньев припуски замыкающих звеньев других цепей, т.е. припуск, являющийся замыкающим звеном, должен быть один.

Решением Р.Ц. определяют операционные размеры, включая и размеры заготовки с назначением на них экономически обоснованных допусков. Расчеты начинают с последней цепи идя к начальной операции.

Допуски размеров переходов всех операций, кроме окончательных, устанавливают в соответствии с экономическим квалитетом точности каждого метода обработки (рис. 1,2). Рекомендуется допуски задавать «в тело», т.е. для охватываемых (валов) – со знаком «минус», а для охватывающих (отверстий) – со знаком «плюс».

При простановке допусков нужно иметь в виду, что размеры заготовки имеют предельные отклонения в обе стороны от номинальных значений.

Прежде чем решать Р.Ц. необходимо назначить операционные припуски, т.к. они, как правило, являются замыкающими звеньями.

Припуски на механическую обработку поверхностей штампованных заготовок представлены в таблице. Распределение припусков по этапам обработки производиться в соответствии с назначенным маршрутом обработки.

Припуски (на сторону) на механическую обработку штампованных заготовок, мм

Список литературы.

1. Справочник технология – машиностроителя. В 2 т. Под ред. А.Г. Косиловой и Р.К. Мещерякова, М.: Машиностроение, 1986 Т.1.

2. А.А. Маталин. Технология машиностроения, Л.: Машиностроение, 1585.

Лабораторная работа №12