Домой / Игры / Лекция. Динамическая устойчивость простейшей системы. Понятие о статической и динамической устойчивости

Лекция. Динамическая устойчивость простейшей системы. Понятие о статической и динамической устойчивости

Состояние системы в любой момент времени или на некотором интервале времени, называется режимом системы. Режим характеризуется показателями, количественно определяющими условия работы системы. Эти показатели называются параметрами режима . К ним относятся значения мощности, напряжения, частоты, углов сдвига векторов ЭДС, напряжений, токов.

Режим электрической системы может быть установившимся или переходным .

В любых переходных процессах происходят закономерные последовательные изменения параметров режима, вызванные какими-либо причинами. Эти причины называются возмущающими воздействиями . Они создают начальные отклонения параметров режима – возмущения режима .

В нормальных условиях эксплуатации всегда имеют место малые изменения нагрузки. Поэтому строго неизменного режима в системе не существует и, говоря об установившемся режиме, всегда имеют в виду режим малых возмущений.

Малые возмущения не должны вызывать нарушения устойчивости системы, то есть не должны приводить к прогрессивно возрастающему изменению параметров исходного режима системы.

Статическая устойчивость – это способность системы восстанавливать исходный (или близкий к исходному) режим после малого его возмущения.

В определенных условиях установившийся режим может быть неустойчивым. Это происходит при работе системы в предельных режимах (слишком большая или малая передаваемая мощность, снижение напряжения в узлах нагрузки и т.д.). В этих случаях малые возмущения приводят к прогрессивно возрастающему измене­нию параметров режима, которые вначале происходят очень медленно, проявляясь в виде самопроизвольного изменения, называемого иногда сползанием (текучестью) параметров нормального режима системы.

При исследовании статической устойчивости заранее предполагается, что установить абсолютные значения изменений параметров режима при их отклонениях от установившихся значений невозможно. Причина и место их возникновения не фиксированы. Это некие свободные возмущения , имеющие вероятностный характер.

Задача исследования статической устойчивости сводится, следовательно, только к определению характера изменения параметров режима без определения величины возмущений. При этом анализ ограничивается малой областью e, заданной в области установившегося значения параметров.

Статическую устойчивость электрической системы можно оценивать разными способами:

1. С помощью практических критериев, основанных на упрощающих допу­щениях. При этом ответ получается только в форме «да – нет», «уйдет – не уйдет» режим из начального его состояния при малом возмущении системы.

2. С помощью метода малых колебаний, основанного на исследовании уравнений движения. В этом случае физическая природа происходящих явлений выясняется более полно: устанавливается не только устойчивость режима, но и характер движения (апериодическое или колебательное, нарастающее или затухающее).



Аварийные режимы в электрической системе возникают при КЗ, аварийных отключениях нагруженных агрегатов или линий и т.п. Под действием больших возмущений возникают резкие изменения режима.

Большие возмущения могут возникать и в нормальных режимах: отключении и включении генераторов, линий, пуске мощных двигателей и т.д.

По отношению к большим возмущениям вводится понятие динамической устойчивости.

Динамическая устойчивость – это способность системы восстанавливать исходное состояние после большого возмущения.

Введенные выше понятия “ малых ” и “ больших ” возмущений условны. Малое возмущение в данном случае понимается как возмущение, влияние которого на характер поведения системы проявляется практически независимо от места появления возмущающего воздействия и его величины. В связи с этим в диапазоне режимов, близких к исходному, система рассматривается как линейная.

Большое возмущение – это возмущение, влияние которого на характер поведения системы зависит от времени существования, величины и места появления воз­мущающего воздействия.

В связи с этим при исследовании динамической устойчивости система во всем диапазоне исследования должна рассматриваться как нелинейная.

Основным методом исследования динамической устойчивости электрических систем на современном этапе является численное интегрирование дифференциальных уравнений, описывающих поведение системы.

Эти расчеты проводятся на ЭВМ, которые работают по программам, контролирующим точность вычислений путём уменьшения шага интегрирования до тех пор, пока модуль разности между вычисленными значениями функции не окажется меньше некоторого заданного положительного числа e.

В зависимости от цели расчетов на практике часто пользуются упрощенными методами, не претендующими на высокую точность. Эти методы применяются, когда можно ограничиться общей характеристикой процесса. Среди упрощенных методов наибольшее распространение получил метод последовательных интервалов, суть которого заключается в приближенном вычислении интеграла.

Но существует более простой и наглядный метод, основанный на энергетическом подходе к анализу динамической устойчивости, который называется методом площадей. При этом методе кинетическая энергия системы определяется по площади графика переходного процесса. Задача исследования заключается в сра­внении площадей ускорения и торможения, то есть сравнения кинетиче­­ской энергии, полученной в процессе ускорения ротора генератора с той энергией, которая расходуется в процессе торможения ротора.

Цель лекции: рассмотрение режимов работы системы при внезапном отключении одной из двух параллельных цепей электропередачи.

Рассмотрим простейших случай, когда электростанция работает через двухцепную линию на шины бесконечной мощности. Условие постоянства напряжения на шинах системы (U = соnst) исключает качания генераторов приемной системы и значительно упрощает анализ динамической устойчивости.

Для выяснения принципиальных положений динамической устойчивости рассмотрим явления, возникающие при внезапном отключении одной из двух параллельных цепей электропередачи (см. рисунок 12.1), связывающей удаленную станцию с шинами неизменного напряжения.

Рисунок 12.1

Схема замещения в нормальном режиме (до отключения цепи) представлена на рисунке 12.2,а. Индуктивное сопротивление системы

Х с = Х г + Х т1 + 0,5Х л + Х т2 ,

определяет амплитуду характеристики мощности в этих условиях:

Рисунок 12.2

При отключении одной цепи линии электропередачи индуктивное сопротивление системы получает новое значение

Х с1 = Х г + Х т1 + Х л + Х т2 ,

которое больше, чем в нормальном режиме. Амплитуда характеристики мощности при отключении цепи соответственно уменьшается до значения ЕU/Х с1 .

Характеристики мощности в условиях нормального режима и при отключенной цепи показаны на рисунке 12.3.

Рисунок 12.3

Нормальному режиму соответствует кривая I , режиму после отключения – кривая II . Точка а и угол δ 0 при мощности Р 0 определяют режим работы до отключения. Точка b определяет режим работы после отключения при том же значении угла δ = δ 0 , что и в нормальном режиме.

Таким образом, в момент отключения цепи режим работы изменяется и характеризуется не точкой а , а точкой b на новой характеристике, что обусловливает внезапное уменьшение мощности генератора. Мощность турбины остается при этом неизменной и равной Р 0 , так как регуляторы турбин реагируют на изменение частоты вращения агрегата, которая в момент отключения цепи сохраняет свое нормальное значение.

Неравенство мощностей, а следовательно, и моментов на валу турбины и генератора вызывает появление избыточного момента, под влиянием которого агрегат турбина – генератор начинает ускоряться. Связанный с ротором генератора вектор ЭДС начинает вращаться быстрее, чем вращающийся с неизменной синхронной скоростью ω 0 вектор напряжения шин приемной системы .

Изменение относительной скорости вращения приводит к увеличению угла δ, и на характеристики мощности генератора при отключенной цепи рабочая точка перемещается из точки b по направлению к точке с . При этом мощность генератора начинает возрастать. Однако вплоть до точки с мощность турбины все еще превышает мощность генератора и избыточный момент, хотя и уменьшается, но сохраняет свой знак, благодаря чему относительная скорость вращения непрерывно возрастает. В точке с мощность турбины и генератора вновь уравновешивают друг друга и избыточный момент равен нулю. Однако процесс не останавливается в этой точке, так как относительная скорость вращения ротора достигает здесь наибольшего значения и ротор проходит точку с по инерции.


При дальнейшем росте угла δ мощность генератора уже не превышает мощность турбины и избыточный момент изменяет свой знак. Он начинает тормозить агрегат. Относительная скорость вращения v теперь уменьшается и в некоторой точке d становится равной нулю. Это означает, что в точке d вектор ЭДС вращается с той же угловой скоростью, что и вектор напряжения и угол δ между ними больше не возрастает. Однако процесс еще не останавливается, так как вследствие неравенства мощностей турбины и генератора на валу агрегата существует избыточный момент тормозящего характера, под влиянием которого частота вращения продолжает уменьшаться, и рабочая точка, характеризующая процесс на характеристике мощности, перемещается в обратном направлении к точке с . Эту точку ротор вновь проходит по инерции, и около точки b угол достигает своего нового минимального значения, после чего вновь начинает возрастать. После ряда постепенно затухающих колебаний в точке с устанавливается новый установившийся режим с прежним значением передаваемой мощности Р 0 и новым значением угла δ уст. Картина колебаний угла δ во времени показана на рисунке 12.4.

Рисунок 12.4

Возможен и другой исход процесса (см. рисунок 12.5). Торможение ротора, начиная с точки с , уменьшает относительную скорость вращения ЭДС v . Однако угол в этой фазе процесса все еще возрастает, и если он успеет достигнуть критической величины δ кр в точке с на пересечении падающей ветви синусоиды мощности генератора с горизонталью мощности турбины Р 0 прежде, чем относительная скорость v упадет до нуля, в дальнейшем избыточный момент на валу машины становится вновь ускоряющим, скорость v начнет быстро возрастать и генератор выпадает из синхронизма (см. рисунок 12.6).

Рисунок 12.5

Таким образом, если в процессе качаний будет пройдена точка с " , то возврат к установившемуся режиму уже невозможен.

Рисунок 12.6

Можно сделать вывод, что, несмотря на теоретическую возможность существования нового установившегося (и статически устойчивого) режима в точке с , процесс качания машины при переходе к этому режиму может привести к выпадению машины из синхронизма. Такой характер нарушения устойчивости называется динамическим.

Основной причиной нарушений динамической устойчивости электрических систем являются обычно короткие замыкания, резко уменьшающие амплитуду характеристики мощности.

13 Лекция. Динамическая устойчивость при коротком

замыкании на линии

Цель лекции: анализ колебаний по правилу площадей.

Наиболее распространенным видом возмущений, приводящим к необходимости анализа динамической устойчивости, является короткое замыкание.

Рассмотрим сначала простейший случай работы электростанции через двухцепную линию электропередачи на шины бесконечной мощности (см. рисунок 13.1).

Рисунок 13.1

На рисунке 13.2 приведена упрощенная схема замещения рассматриваемой системы при нормальном режиме, представляющая собой последовательное соединение индуктивных сопротивлений элементов системы

Х с = Х г + Х т1 + 0,5Х л + Х т2 .

Рисунок 13.2

Характеристика мощности в нормальном режиме определяется

Эта зависимость представлена на рисунке 13.4 (кривая I ). Предположим, что в начале одной из цепей линии в точке К произошло несимметричное КЗ. Схема замещения для этого режима представлена на рисунке 13.3 а , где в точке К включено эквивалентное шунтирующее сопротивление КЗ Х к, состоящее из сопротивлений обратной и нулевой последовательностей.

В связи с изменением конфигурации схемы вследствие КЗ при неизменной ЭДС генератора значение передаваемой системе мощности изменяется. Выражение для передаваемой мощности при КЗ можно найти с помощью простых преобразований схемы замещения для аварийного режима. Эта схема представляет собой с лучами Х к, Х а = Х г + Х т1 и Х b = 0,5Х л + Х т2 , причем для однофазного КЗ Х к = Х 2 + Х 0 , для двухфазного КЗ Х к = Х 2 , а для двухфазного замыкания на землю .

После преобразования звезды в треугольник (см. рисунок 13.3 б ), получим

; ; . (13.1)

Индуктивные сопротивления и , подключенные непосредственно к ЭДС Е и напряжению U , не влияют на значение активной мощности генератора в аварийном режиме и могут не учитываться.

Рисунок 13.3

Весь поток активной мощности генератора будет протекать через индуктивное сопротивление , связывающее ЭДС генератора с напряжением приемной системы. В этом случае характеристика мощности генератора имеет вид

где = .

Зависимость от угла имеет синусоидальный характер, но амплитуда ее меньше, чем при нормальном режиме. Обе характеристики приведены на рисунке 13.4.

Рисунок 13.4

Отдаваемая генератором мощность и угол между ЭДС Е и напряжением U в нормальном режиме обозначены соответственно через Р 0 и δ 0 . В момент КЗ в связи с изменением параметров схемы происходит переход с одной характеристики мощности на другую, и так как вследствие инерции ротора угол δ мгновенно измениться не может, то отдаваемая генераторами мощность уменьшается до значения Р (0) , определяемого углом δ 0 на кривой II . Мощность турбины остается неизменной и равной Р 0 .

В результате на валу машины возникает некоторый избыточный момент, обусловленный избытком мощности ΔР (0) = Р 0 – Р (0) . Под влиянием этого момента ротор машины начинает ускоряться, увеличивая угол δ. В дальнейшем процесс протекает качественно так же, как и при внезапном отключении нагруженной линии. После нескольких колебаний с постепенно затухающей амплитудой относительное движение ротора прекратится и его положение будет определяться точкой с , являющейся точкой установившегося режима на новой характеристике мощности. Если бы ротор при первом отклонении прошел угол δ кр, соответствующий мощности Р 0 на подающей ветви характеристики II , то избыточный момент вновь изменил бы свой знак и сделался бы снова ускоряющим. С дальнейшим увеличением угла ускоряющий момент стал бы нарастать и генератор выпал бы из синхронизма.

Приведенные на рисунке 13.4 характеристики дают возможность определить максимальное отклонение угла ротора и установить, сохраняет ли система устойчивость. Действительно, ординаты заштрихованных площадок представляют собой избыток мощности ΔР = Р 0 – Р, создающий избыточный момент того или иного знака. Избыточный момент в относительных единицах может быть принят численно равным избытку мощности, т.е ΔМ = ΔР.

В рассматриваемом случае избыточный момент сначала ускоряет вращение ротора, и работа, совершаемая в период ускорения при перемещении ротора от δ 0 до δ уст, равна:

,

где - заштрихованная на рисунке 13.4 площадка abc .

Таким образом, кинетическая энергия, запасенная ротором в период его ускорения, равна площадке . Эта площадка называется площадью ускорения.

После того как ротор пройдет точку своего установившегося положения на новой характеристике мощности, избыточный момент меняет свой знак и начинает тормозить вращение ротора. Изменение кинетической энергии в период торможения при перемещении ротора от δ уст до δ m равно:

.

Площадка называется площадь торможения.

В период торможения ротор возвращает запасенную им ранее избыточную кинетическую энергию. Когда вся запасенная ротором избыточная энергия будет израсходована, т.е когда работа торможения А торм уравновесит работу ускорения А уск, относительная скорость становится равной нулю, т.к кинетическая энергия пропорциональна квадрату скорости. В этот момент ротор останавливается в своем относительном движении и достигнутый им при этом угол δ m является максимальным углом отклонения ротора машины. Таким образом, для определения угла δ m оказывается достаточным равенство , или то же самое,

Уравнение (13.3) показывает, что при максимальном угле отклонения площадь торможения должна быть равна площади ускорения и, следовательно, задача сводиться к тому, чтобы найти положение точки d , удовлетворяющее этому условию (см. рисунок 13.4), что может быть сделано графически.

Максимально возможная площадь торможения равна площадке . Если бы эта площадь оказалась меньше площади ускорения , то система выпала бы из синхронизма. Отношение возможной площади торможения к площади ускорения называется коэффициентом запаса устойчивости .

Когда возможная площадь торможения получается меньше площади ускорения, иногда возможно добиться устойчивой работы, достаточно быстро отключив поврежденную цепь. Мощность, которую можно передать по второй, оставшейся в работе цепи, обычно больше мощности, передаваемой по двум цепям при КЗ. Уравнение мощности при отключении поврежденной цепи имеет следующий вид:

Эта зависимость показана на рисунке 13.5 в виде кривой III . Кривые I и II представляют собой характеристики при нормальном режиме и при КЗ.

Рисунок 13.5

В момент КЗ передаваемая мощность падает, и ротор начинает ускоряться. Пусть в некоторой точке d происходит отключение поврежденной цепи. В момент выключения работа переходит в точку е на кривой III , и отдаваемая генераторами мощность значительно повышается. Благодаря этому максимально возможная площадь торможения получается значительно больше, чем при длительном неотключенном КЗ, и это увеличение тем больше, чем раньше происходит отключение, т.е. чем меньше угол отключения δ отк. Таким образом, быстрая ликвидация аварий может значительно повысить устойчивость системы.

С помощью рисунка 13.5, пользуясь правилом площадей, можно графически найти предельное значение угла δ отк, при котором нужно произвести отключение поврежденной для того, чтобы добиться устойчивой работы. Значение этого угла определяется равенством площади ускорения и максимальной возможной площади торможения.

Однако для практических целей этого недостаточно. Необходимо знать не угол δ отк, а тот промежуток времени, в течение которого ротор успевает достигнуть этого угла, т.е так называемое предельно допустимое время отключения КЗ, которое определяется методом последовательных интервалов.

Статическая устойчивость электроэнергетических систем..

Статическая устойчивость – это способность системы восстанавливать исходное или близкое к исходному состояние после его возмущения.

Динамическая устойчивость – это способность системы восстанавливать исходное или близкое к исходному состояние после большого возмущения.

Исходя из определения статической устойчивости системы можно заключить, что существует такой режим, при котором очень малое увеличение нагрузок вызывает нарушение его устойчивости. Такой режим называют предельным, а нагрузки системы - максимальными или предельными нагрузками по условиям статической устойчивости.

Электроэнергетическая система должна работать так, чтобы некоторые изменения (ухудшения) режима не приводили к нарушению устойчивости ее работы. Простейшая оценка ее запаса устойчивости основывается на сопоставлении показателей проверяемого (исходного) режима и показателей, характеризующих режим, предельный по устойчивости.

Статическая устойчивость работы ЭЭС в послеаварийных режимах обеспечивается, как правило, за счет мероприятий, не требующих дополнительных капитальных вложений:

– кратковременного повышения напряжения на зажимах генераторов;

– быстрого снижения нагрузки электропередачи путем отключения части генераторов на электростанциях и т. п.

– Кроме того, существуют мероприятия, повышающие статическую устойчивость, но требующие некоторых капитальных вложений:

– применение быстродействующей системы возбуждения генераторов;

– использование синхронных компенсаторов на промежуточных подстанциях;

– использование статических тиристорных компенсаторов;

– продольная емкостная компенсация индуктивного сопротивления электропередачи с помощью статических конденсаторов и т. п.

– Практически все эти мероприятия позволяют повысить и динамическую устойчивость.

В эксплуатации, в тех случаях, когда это необходимо для предотвращения ограничения потребителей или потери гидроресурсов, допускается длительная работа электропередачи в нормальном режиме с запасом статической устойчивости, уменьшенным до 5-10 % в зависимости от роли электропередачи в энергосистеме и последствий возможного нарушения устойчивости.

Точный ответ на вопрос об устойчивости (или неустойчивости) системы можно получить, вычислив все корни характеристического уравнения. Однако процедура вычисления корней для уравнений высокого порядка относится к разря ду чрезвычайно трудоемких, поэтому разработан ряд специальных математических условий, позволяющих без вычисления корней характеристического уравнения определить их местоположение на комплексной плоскости и таким образом точно ответить на вопрос об устойчивости или неустойчивости системы. Эти математические условия называются критериями устойчивости. Различают алгебраические и частотные критерии устойчивости. Алгебраические критерии содержат группу условий (группу неравенств), составленных по определенным правилам из коэффициентов характеристического уравнения, при соблюдении которых имеет место устойчивость. Если же хотя бы одно из них нарушено, то имеет место неустойчивость. Для проведения анализа с помощью алгебраических критериев необходимо, очевидно, предварительно вычислить коэффициенты полинома в левой части характеристического уравнения. Необходимые и достаточные условия устойчивости линейной однородной системы дифференциальных уравнений в виде алгебраических неравенств были установлены английским ученым Раусом и швейцарским математиком Гурвицем.

Алгебраические критерии устойчивости:

o Критерий Гурвица

Система неравенств Гурвица строится следующим образом. Из коэффициентов характеристического многочлена составляется квадратная матрица Гурвица. Необходимые и достаточные условия устойчивости заключаются в том, что все n диагональных миноров должны быть положительными.

o Критерий Рауса

Он более удобен для систем высокого порядка численно заданными коэффициентами характеристического уравнения. Из коэффициентов характеристического многочлена составляется таблица Рауса, каждый элемент которой вычисляется через четыре элемента двух предшествующих строк. Алгоритм вычисления хорошо виден из таблицы. Всего в таблице оказывается (n+1) строка. Требования устойчивости по Раусу формулируются так: для устойчивости системы необходимо и достаточно, чтобы все коэффициенты первого столбца были положительными.

Частотные критерии устойчивости.

В практике исследования устойчивости систем бывают слу чаи, когда трудно не только вычислить корни характеристического уравнения, но и получить само уравнение в виде характеристического полинома в левой части. В таких случаях

более удобными оказываются частотные критерии, которые,

как и алгебраические критерии, позволяют определить наличие или отсутствие корней характеристического уравнения в правой полуплоскости на плоскости корней. Частотные критерии базируются на известном в высшей математике принципе аргумента. .

20. Понятие динамической устойчивости системы. Основные допущения при упрощенном анализе.

Динамическая устойчивость - это способность системы приходить после большого возмущения к такому установившемуся режиму работы, при котором значения параметров режима являются допустимыми по условиям эксплуатации системы и электроснабжения потребителей.

Режимы системы:

1)Нормальный режим; 2) Режим КЗ; 3) Послеаварийный режим по одноцепной линии.

Главной задачей при решении задачи динамической устойчивости явл. задача нахождения предельного угла отключения КЗ.

Критерий ДУ:

Fуск≤Fторм возм

Допущения:

1. Вращающийся момент синхронной машины в относительных единицах может быть принят равным мощности

2.Изменения сопротивлений синхронных машин и трансформаторов, обусловленные насыщением стали, в расчетах не учитываются или учитываются приближенно путем уменьшения замещаемого сопротивления.

3.В расчетах динамической устойчивости допускается неучет апериодического тока статора и периодического тока ротора синхронных машин.

4.Предполагается, что на ротор синхронной машины действует электромагнитный момент, обусловленный только токами прямой последовательности, протекающими по статору машины.

5.В сложных системах предварительно упрощают конфигурацию сети и уменьшают число машин (путем замены нескольких генераторов и электростанций одной эквивалентной, объединения или переноса нагрузок).

6.Простейшие расчеты устойчивости могут быть выполнены, исходя из постоянства ЭДС Е q ’ Это позволяет синхронную машину представить схемой замещения в виде переходного реактивного сопротивления x" d и ЭДС E q ’ .

7.Все изменения режима системы отражаются в изменении ее схемы, в которой вводятся новые значения сопротивлений, ЭДС синхронных машин и их механических мощностей.

21.Динамическая устойчивость станции, работающей на шины бесконечной мощности. Правило площадей и вытекающие из него критерии устойчивости.

В первый момент времени происходит переход с характеристики мощности 1 на характеристику 2. Из-за инерции ротора угол б не может измениться мгновенно из точки а в точку с. На валу генератора возникает избыточный момент, определяемый разностью мощности турбины и новой мощностью генератора (точка b). Под влиянием избыточного момента ротор генератора начинает ускоряться с увеличением угла б. В результате ускорения рабочая точка начинает движение по характеристике 2 в сторону точки с. В точке с избыточный момент равен нулю и скорость вращения ротора максимальна. После прохождения точки с на ротор воздействует тормозящий момент, который достигает максимума в точке d. Далее тормозящий момент заставляет рабочую точку перемещаться в точку с с уменьшением угла б. Проходя точку с ротор начинает заново ускоряться до точки b за счет избыточного момента. Далее начинается новый цикл относительного движения ротора генератора. Кривая б(t) имеет затухающий характер за счет механических и электрических потерь мощности на валу.

Площадки fabc и fcde называются площадками ускорения и торможения. Для определения максимального угла огклонения ротора б m достаточно выполнить условие Fуск=Fторм. Если максимальный угол превысит значение 6 кр, то генератор выйдет из синхронизма. При этом возможная площадка торможения будет равна fcdm.

Критерий динамической устойчивости можно записать в виде следующего неравенства: F уск= F торм возм

Коэффициент запаса динамической устойчивости вычисляется по формуле Кз=(F торм возм - F уск)/ F уск


22.Анализ динамической устойчивости при отключении короткого замыкания. Предельный угол отключения КЗ. Предельное время отключения.

В момент КЗ происходит переход с характеристики 1 на хар-ку 2. На валу генератора возникает избыточный момент, определяемый разностью мощности турбины и новой мощностью генератора (точка b). Под влиянием избыточного момента ротор генератора начинает ускоряться с увеличением угла б. В результате ускорения рабочая точка начинает движение по характеристике 2 в сторону точки с. В точке с происходит отключение КЗ при угле Рабочая точка переходит на кривую 3 послеаварийного режима. В точке е на ротор воздействует тормозящий момент, равный отрезку ed. Запаса кинетической энергии хватает до точки f . Далее тормозящий момент заставляет рабочую точку перемещаться в точку h с уменьшением угла б. Проходя точку h, ротор начинает заново ускоряться за счет избыточного момента. Далее рабочая точка колеблется вокруг точки h по характеристике 3. За счет механических и электрических потерь мощности на валу угол б установится в точке h.

Согласно критерию динамической устойчивости генератор не выйдет из синхронизма до тех пор, пока точка/не превысит угла 6 кр.

Медленно перемещая угол б откл в сторону увеличения, можно найти предельный угол отключения заданного КЗ б откл пред при равенстве площадок abсd и dem. Решая интегральное уравнение, предельный угол отключения КЗ

При трехфазном КЗ на шинах генератора или полном разрыве (отключении) линии в формуле следует принять Р м2 = 0.

23.Методика расчетов динамической устойчивости сложных электрических систем. Методы численного интегрирования.

Если представить часть ЭЭС в виде системы с тремя генераторами, то активная мощность генераторов выражается в виде следующих формул:

Расчет устойчивости в сложных системах в целом заключается в следующем:

1.Задаться активными и реактивными мощностями каждого генератора в нормальном режиме. Определить распределение потоков мощности в схеме. Проверить баланс активной и реактивной мощностей.

2.Составить схему замещения нормального режима, нагрузки представить постоянными сопротивлениями. Определить ЭДС электростанций и углы между ними при нормальном режиме. Подсчитать собственные и взаимные проводимости для всех станций. Записать характеристики мощности для каждого генератора.

3.Составить схемы замещения обратной и нулевой последовательности и определить результирующие сопротивления обратной и нулевой последовательности, отнесенные к точке КЗ. Подсчитать собственные и взаимные проводимости для всех станций и записать характеристики мощности для каждого генератора в аварийном режиме.

4.Составить схемы замещения послеаварийного режима. Подсчитать собственные и взаимные проводимости для всех станций и записать характеристики мощности для каждого генератора в послеаварийном режиме. Построить угловые характеристики трех режимов и определить предельный угол отключения КЗ.

5.После этого перейти к расчету угловых перемещений Зная углы расхождения роторов машин в момент КЗ, найти значения отдаваемой машинами мощности.

6. Найти избытки мощности в начале первого интервала ΔР 1(0) =Р 10 -Р 1 и т.д.

7.Вычислить угловые перемещения роторов машин в течении первого интервала Δδ 1(1) =k 1 ΔР 1(0) /2 и т. д.

8.Определить новые значения углов в конце первого интервала Δδ 1(1)= δ1 (0) - δ 1(1)

9.Повторить п 1-8 для след. интервалов.

ДИНАМИЧЕСКАЯ УСТОЙЧИВОСТЬ

Если статическая устойчивость характеризует установившийся режим системы, то при анализе динамической устойчивости выяв­ляется способность системы сохранять синхронный режим работы при больших его возмущениях. Большие возмущения возникают Ври различных коротких замыканиях, отключении линий электропередачи, генераторов, трансформаторов и пр. К большим возму­щениям относятся также изменения мощности крупной нагрузки потеря возбуждения какого-либо генератора, включение крупных двигателей. Одним из следствий возникшего возмущения является отклонение скоростей вращения роторов генераторов от синхрон­ной (качания роторов генераторов системы).

Если после какого-либо возмущения взаимные углы роторов примут определенные значения (их колебания затухнут около ка­ких-либо новых значений), то считается, что динамическая устой­чивость сохраняется. Если хотя бы у одного генератора ротор начинает проворачиваться относительно поля статора, то это при­знак нарушения динамической устойчивости. В общем случае о динамической устойчивости системы можно судить по зависимо­стям d и ЭДС E’q. Мощность, вы­даваемая генератором в систему, равна мощности турбины и обо­значена Р0, угол генератора - d0. Характеристика мощности, соответствующая нормальному (доаварийному) режиму, может быть получена из выражения (9.10) без учета второй гармоники, что вполне допустимо в практических расчетах. Принимая Еq" = Е", получим выражение характеристики мощности в следующем виде:

Где,

d S (n a) = x " d + xTl + xLl + xT 2 увеличится по сравнению с x"dS (суммарное сопро­тивление нормального режима). Это вызовет уменьшение макси­мума характеристики мощности послеаварийного режима (кри­вая 2, рис. 10.1, г). После внезапного отключения линии происхо­дит переход с характеристики мощности 1 на характеристику 2. Из-за инерции ротора угол d не может измениться мгновенно, по­этому рабочая точка перемещается из точки а в точку b .

На валу, соединяющем турбину и генератор, возникает избы­точный момент, определяемый разностью мощности турбины, ко­торая не изменилась после отключения линии, и новой мощности генератора (D Р = Р0 - Р(0))- Под влиянием этой разности ротор ма­шины начинает ускоряться, двигаясь в сторону больших углов d. Это движение накладывается на вращение ротора с синхронной скоростью, и результирующая скорость вращения ротора будет w=w0+ Dw, где w0 - синхронная скорость вращения; Dw - относительная скорость. В результате ускорения ротора рабочая точка начинает движение по характеристике 2. Мощность генератора возрастает, а избыточный (ускоряющий) момент (пропорциональ­ный разности D Р = ро - Р(0)) - убывает. Относительная скорость Dw возрастает до точки с. В точке с избыточный момент становится равным нулю, а скорость Dw - максимальной. Движение ротора со скоростью со не прекращается в точке с, ротор по инерции прохо­дит эту точку и продолжает движение. Но избыточный момент при этом меняет знак и начинает тормозить ротор. Относительная скорость вращения начинает уменьшаться и в точке d становится равной нулю. Угол d в этой точке достигает своего максимального значения. Но и в точке d относительное движение ротора не пре­кращается, так как на валу агрегата действует тормозной избыточ­ный момент, поэтому ротор начинает движение в сторону точки с, относительная скорость при этом становится отрицательной. Точку с ротор проходит по инерции, около точки b угол становится минимальным, и начинается новый цикл относительного движе­ния. Колебания угла d(t) показаны на рис. 10.1, г. Затухание коле­баний объясняется потерями энергии при относительном движении ротора.

Избыточный момент связан с избытком мощности выражением

где w - результирующая скорость вращения ротора.

Изменение скорости Dw при качаниях пренебрежимо мало по сравнению со скоростью w0, поэтому с достаточной для практика точностью можно принять w = w0, и тогда получаем (выражая DМ, DР и w0 в относительных единицах) DМ* = DР/w0 = DР*, посколь­ку w0 = 1. Рассматривая только относительное движение ротора и работу, совершаемую в этом движении, можно предположить, что при перемещении ротора на бесконечно малый угол db избыточ­ный момент выполняет элементарную работу DМdd. При отсутст­вии потерь вся работа идет на изменение кинетической энергии ротора в его относительном движении.

В тот период движения, когда избыточный момент ускоряет вращение ротора, кинетическая энергия, запасенная ротором в пе­риод его ускорения, будет определяться по формуле

где fabc - заштрихованная площадь abc на рис. 10.1, г. Изменение кинетической энергии в период торможения вычисляется как

Площади fabc и fcde пропорциональные кинетической энергии ускорения и торможения, называются площадями ускорения и тор­можения.

В период торможения кинетическая энергия ротора переходит в потенциальную энергию, которая возрастает с уменьшением ско­рости Асо. В точке d кинетическая энергия равна нулю, и для опре­деления максимального угла отклонения ротора 5W достаточно выполнить условие

FУСК = FТОР=0

Отсюда следует, что при максимальном угле отклонения площадь ускорения должна быть равна площади торможения. Максимально возможная площадь торможения определяется углом dкр. Если мак­симальный угол превысит значение dкр, то на валу турбина - гене­ратор возникнет ускоряющий избыточный момент (Р0 > PG ) и генератор выпадет из синхронизма. На рис. 10.1, г площадь cdm - максимально возможная площадь ускорения. Определив ее, можно оценить запас динамической устойчивости. Коэффициент запаса вычисляется по выражению


Рис. 10.2. Короткое замыкание в простейшей систе­ме: а - принципиальная схема; б - схема замещения для режима КЗ в точке К1

генератор с системой. Это сопротивление может быть найдено из схемы замещения (рис. 10.2, б) следующим образом:

https://pandia.ru/text/79/122/images/image011_11.jpg" align="left" width="172 height=192" height="192">Это время рассчитывается как

t откл = tЗ + t выкл

где tЗ - собственно время сра­батывания защиты; t выкл - время срабатывания выключате­лей В1 и В2 (предполагается, что выключатели срабатывают одновременно).

Времени /откл соответствует

угол отключения КЗ dОТКЛ. Отключение КЗ вызывает пе­реход с характеристики мощ­ности аварийного режима 2 на характеристику послеаварий­ного режима 3. При этом из­быточный момент меняет знак, превращаясь из ускоряющего в

тормозящий. Ротор, тормозясь, продолжает движение в сторону увеличения угла из-за накопленной в процессе ускорения кинети­ческой энергии. Это движение будет продолжаться до тех пор, по­ка площадь торможения fdefg не станет равной площади ускорения fabcd . В точке f скорость ротора становится синхронной. Но движе­ние ротора не прекращается, так как на него действует тормозной избыточный момент, определяемый избытком мощности DРторм = Pf - ро - Ротор, ускоряясь, начинает движение в обратную сторону. Его скорость максимальна в точке п. После точки п относительная скорость начинает уменьшаться и становится равной нулю в точке Z. Эта точка определяется из равенства площадок fnefgt \\ fxnz . Из-за потерь колебания ротора будут затухать около нового положения равновесия послеаварийного режима - точки п.

Пример 10.1. В электропередаче, показанной на рисунке, в точке К происходит внезапное двухфазное КЗ на землю. В момент времени t1, оно перехо­дит в трехфазное, а затем в момент времени t2 поврежденная линия отключается.

Параметры исходного режима и параметры электропередачи при S d = 220 MBA и базисном напряжении на ступени 220 кВ U d = 209 кВ следующие:

Po =1, Qo = 0.2, Uс = 1, x " d = xG 2 = 0.295, хт, = 0.138, хТ2 = 0.122, хL = 0.244 (для двух цепей), х L 0 = 0.732, 7; Tj*6 = 8.18с.

https://pandia.ru/text/79/122/images/image013_28.gif" width="375 height=25" height="25">.

Величину и фазу переходной ЭДС за переходным сопротивлением найдем по формуле

https://pandia.ru/text/79/122/images/image015_22.gif" align="left" width="145" height="41 src=">

Амплитуду характеристики мощности для нормального режима Р m 1 найдем из выражения

Амплитуду характеристики мощности аварийного режима определим сле-I дующим образом:

где xd S 2 - взаимное сопротивление схемы в аварийном режиме, которое вычис­ляется так:

https://pandia.ru/text/79/122/images/image022_16.gif" align="left" width="111" height="47 src=">

Подставляя в формулы числовые значения, получим

Послеаварийный режим определяется отключением одной цепи линий элект­ропередачи, после чего сопротивление xl удвоится и суммарное сопротивление электропередачи составит

Х’dS3= 0.95+ 0.138+ 0.488+ 0.122 = 1.04.

Амплитуда характеристики мощности послеаварийного режима

Характеристики мощности приведены на рисунке. Построим площади ускорения и торможения. Найдем, что при двухфазном коротком замыкании мощность, отдаваемая генератору, уменьшается до величи­ны, соответствующей точке 2 на характеристике III. Под действием избыточного момента DМо = DPо ротор генератора ускоряется.

В момент времени t 1 (соответствует углу d,) при трехфазном коротком замы­кании отдаваемая генератором мощность падает до нуля. Под действием полного избыточного момента, равного моменту турбины, ротор продолжает ускоряться.

2) после отключения поврежден­ной линии мощность, отдаваемая генератором, повышается до значения, опреде­ляемого точкой 7 на характеристике послеаварийного режима П. Здесь электрическая мощность, отдаваемая генератором, больше мощности, развивае­мой турбиной, генератор тормозится, но угол d продолжает увеличиваться в соответствии с накопленной ротором энергией до точки 8 (угол dmах), где кинети­ческая энергия, накопленная ротором в процессе ускорения, полностью израсхо­дуется при его торможении. Этому соответствует равенство площадей ускорения и торможения (FУCK = FTOРM). Затем угол d начнет уменьшаться. После нескольких циклов качаний ротора установится новый режим, определяемый точкой 10 на характеристике послеаварийного режима II.

Отношение возможной площади торможения к площади ус­корения -1 дает коэффициент запаса устойчивости.

10.3. ПРЕДЕЛЬНЫЙ УГОЛ ОТКЛЮЧЕНИЯ КЗ

Из рис. 10.3 можно найти предельное значение угла отключе­ния КЗ, при котором устойчивая работа системы сохраняется. Оно определяется равенством площади ускорения fabcd и возможной площади торможения fdefm . Приравнивая к нулю сумму этих пло­щадей, получаем аналитическое выражение для предельного угла отключения КЗ:

Раскрывая определенные интегралы, запишем

Ро(dткл. пр - d0) + Pmax2(COSdOTKJ1пр - COSd0) + Ро(dкр - dоткл. пр) + Pmах(COSdкр - COSdOTKJ1пр) = 0.

(все углы выражены в радианах).

Однако для практических целей знания угла dоткл пр недостаточно. При выборе выключателей и расчете релейной защиты необходимо знать не угол, а период времени, в течение которого ротор успевает достигнуть этого угла, т. е. предельно допустимое время отключения КЗ. Это время может быть определено решением уравнения движения ротора генератора известными методами ре­шения дифференциальных уравнений (например, методом Рунге -
Кутта 4-го порядка или методами последовательных интервалов).

10.4. АНАЛИЗ ТРЕХФАЗНОГО КЗ ГРАФИЧЕСКИМ МЕТОДОМ

При трехфазном КЗ в точке К1 взаимное сопротивление схемы становится бесконечно большим, так как сопротивление шунта КЗ

При этом характеристика мощности аварийного режима совпадает с осью абсцисс (рис. 10.4). Ротор генератора начинает свое относительное движение под действием избыточного момента, равного механическому моменту турбины. Дифференциальное уравнение движения ротора при этом принимает вид

(10.4) Это уравнение линейно, и нетрудно получить его решение. Пе­репишем (10.4) в следующем виде:

Постоянная интегрирования с2 определяется из условий d = d0, с2 = d0 при t = 0. Окончательно зависимость угла от времени будет иметь вид

Возрастание угла происходит по квадратической параболе, а время, отвечающее какому-либо значению угла d, находится из уравнения (10.6):

https://pandia.ru/text/79/122/images/image043_10.gif" align="left" width="273" height="47 src=">

Предельное время отключения при трехфазном КЗ определится из выражения (10.7):

Когда трехфазное КЗ происходит не в начале линии (а, напри­мер, в ее середине), то условия нахождения взаимного сопротивления изменяются. Оно уже имеет конечное значение и определяется из схемы, показанной на рис. 10.5. Преобразовав треугольник из сопротивлений линий х L 1 , xL 2 /2 в звезду х1, х2, х3, получим схему связи генератора с системой, подобную схеме для несимметричного КЗ, изображенную на рис. 10.2, б.

Гис. 10.5. Схема замещения

и ее преобразование при

трехфазном КЗ в середине линии

Динамический переход в этом случае аналогичен переходу при I несимметричном КЗ.

10.5. РЕШЕНИЕ УРАВНЕНИЯ ДВИЖЕНИЯ РОТОРА ГЕНЕРАТОРА. МЕТОД ПОСЛЕДОВАТЕЛЬНЫХ ИНТЕРВАЛОВ

Уравнение движения ротора нелинейно и не может быть решено в общем виде. Исключением является полный сброс мощности в аварийном режиме, т. е. Р ав. max = 0, рассмотренный выше. Уравнеие (9.7) решается методами численного интегрирования . Одним из них является метод последовательных интервалов, иллюстрирующий физическую картину протекания процесса. В соответствии с этим методом весь процесс качания ротора генератора разбивается на ряд интервалов времени D t и для каждого из: них последовательно вычисляется приращение угла Dd. В момент КЗ отдаваемая генератором мощность падает и возникает некото­рый избыток мощности DР(о). Для малого интервала D t можно допустить, что избыток мощности в течение этого интервала остается неизменным. Интегрируя выражение (9.7), получаем в конце пер­вого интервала

https://pandia.ru/text/79/122/images/image047_9.gif" align="left" width="115" height="41 src=">

Относительная скорость ротора в момент КЗ равна нулю (с1 = 0), и поэтому относительная скорость ротора в конце первого интерва­ла равна DV(1). При t = 0 угол d = dо, поэтому с2 = d0. Ускорение а0 может быть вычислено из (9.4): а(1) = DР(о) / Т j отсюда следует

Здесь угол и время представлены в радианах. В практических рас­четах угол выражают в градусах, а время - в секундах:

, (10.8)

t(с)=t(рад)/w

Используя (10.8) и (10.9) и учитывая, что Tj(с) = Тj(рад)/w0 , полу­чаем

https://pandia.ru/text/79/122/images/image051_8.gif" width="92 height=49" height="49"> (10.10)

Ускорение, создаваемое во втором интервале, пропорциональ­но избытку мощности в конце первого интервала . При вычис­лении приращения угла в течение второго интервала необходимо учесть то, что кроме действующего в этом интервале ускорения a(1) ротор уже имеет в начале интервала скорость V(1):

(10.11)

где DР(1) = p (0) - Pmax sin (d1).

Значение скорости V 1 - неточное, так как ускорение a(0) не яв­ляется постоянным в течение первого интервала времени. Более точное значение скорости можно получить, если предположить, что на первом интервале действует среднее ускорение:

a(0)ср = (a(0) + a(1))/2.

Тогда относительная скорость будет выражена формулой

V(1)=a(0)cpDf =https://pandia.ru/text/79/122/images/image055.jpg" align="left" width="213 height=167" height="167">174">

или Dd(2) =Dd(i) + К D .Р(1).. Прира­щение угла на последующих ин-тервалах рассчитывается анало­гично: Dd(n) =Dd(n - i) + К D .Р(n - 1) .. Ес­ли в начале некоторого K-интервала происходит отключение КЗ, то избыток мощности внезап­но изменяется от некоторой ве­личины D .Р’(K - 1) .. (рис. 10.6) до D .Р’’(K - 1) . , что соответствует пере ходу с характеристики 1 на 2. Приращение угла на первом интервале после отключения КЗ определится как

Расчет методом последовательных интервалов ведется до тех пор, пока угол d не начнет уменьшаться либо не будет ясно, что угол неограниченно растет, т. е. устойчивость машины нарушается.

10.6. ДИНАМИЧЕСКАЯ УСТОЙЧИВОСТЬ СЛОЖНЫХ СИСТЕМ

Расчет динамической устойчивости сложных систем можно представить в виде следующего алгоритма:

1. Расчет нормального (предшествующего КЗ) режима электрической системы. Результатом расчета являются значения ЭДС электростанций (Е’ j ) и углы между ними.

2. Составление схем замещения обратной и нулевой последова­тельностей и определение их результирующих сопротивлений относительно точки КЗ и точки нулевого потенциала схемы. Вы­числение аварийных шунтирующих сопротивлений, соответст­вующих рассматриваемым КЗ.

3. Расчет собственных и взаимных проводимостей для всех станций системы в аварийном и послеаварийном режимах.

4. Расчет угловых перемещений роторов машин с помощью ме­тода последовательных интервалов. Определение значений отдаваемых машинами мощностей в начале первого интервала:

5. Определение избытков мощности в начале первого интервала:

где рш, pio и т. д. - мощность машин в момент, предшеству­ющий КЗ.

6. Вычисление угловых перемещений роторов генераторов в
течение первого интервала Dt

https://pandia.ru/text/79/122/images/image063_7.gif" width="179" height="25">,

Здесь коэффициенты К рассчитываются в соответствии с уравне­нием (10.10).

7. Определение новых значений углов в конце первого - начале
второго интервала:

https://pandia.ru/text/79/122/images/image066_6.gif" align="left" width="140" height="25 src=">

где d1(n-1), d2(n-1) значения углов в конце предшествующего интервала.

8. Нахождение новых значений взаимных углов расхождения
роторов:

Зная эти значения, можно перейти к расчету следующего ин­тервала, т. е. вычислить мощность в начале этого интервала, а затем повторить расчет, начиная с п. 5.

В момент отключения повреждения все собственные и взаим­ные проводимости ветвей меняются. Угловые перемещения рото­ров в первом интервале времени после момента отключения подсчитываются для каждой машины по выражению (10.12). В по­следующих интервалах расчет ведется по алгоритму, приведенно­му выше.

Расчет динамической устойчивости сложных систем выполня­ется для определенного времени отключения КЗ и продолжается не только до момента отключения КЗ, а до тех пор, пока не будет ус-

тановлен факт нарушения устой­чивости или ее сохранения. Об этом судят по характеру измене­ния относительных углов. Если хотя бы один угол неограниченно растет (например, угол d12 на рис. 10.7), то система считается динамически неустойчивой. Если все взаимные углы имеют тен­денцию к затуханию около ка­ких-либо новых значений, то

система устойчива. Если структура рассчитываемой системы тако­ва, что в ней есть какая-либо станция, мощность которой превос­ходит мощности остальных станций, то относительные углы отсчитываются относительно этой станции.

Если по характеру изменения относительных углов установле­но нарушение устойчивости при принятом в начале расчета време­ни отключения КЗ, то для определения предельного времени КЗ следует повторить расчет, уменьшая время отключения КЗ до тех пор, пока очередное его значение не даст устойчивого решения.

10.7. ДИНАМИЧЕСКАЯ УСТОЙЧИВОСТЬ ДВИГАТЕЛЕЙ НАГРУЗКИ

Двигатели нагрузки при больших возмущениях оказывают влияние не только на режим ее работы, но и на функционирование системы, питающей нагрузку. Можно выделить два типа возмуще­ний, характерных для систем электроснабжения:

1. Снижение напряжения на зажимах двигателя, вызванное:

Коротким замыканием в распределительной сети;

Кратковременным прекращением питания двигателей;

Пуском двигателей.



Рис. 10.8. Изменение напряжения на зажимах двигателя (а) и механического момента (б)

2. Изменение механического момента на валу двигателя, свя­занное с изменением режима работы приводимого механизма.

Предположим также, что это изменение происходит скачком в моменты времени t0 и t 1 так, как это показано на рис. 10.8, б. В обоих случаях в момент времени t 1 возмущение прекращается, а механический момент или напряжение восстанавливают свои прежние значения.

10.7.1. Динамическая устойчивость асинхронного двигателя

Снижение напряжения на зажимах двигателя или рост механи­ческого момента на его валу вызывает появление избыточного тормозящего момента DМ (рис. 10.9). Как при снижении напряже­ния, так и при увеличении механического момента (последний превосходит максимальное значение электромагнитного момента Ммех > Mmax) скольжение двигателя будет увеличиваться и он опро­кинется. Чтобы этого не произошло, надо своевременно восстано­вить напряжение или уменьшить механический момент. Если прежнее значение напряжения или момента будет восстановлено при скольжении S 1 (рис. 10.9), то на вал двигателя будет действо­вать ускоряющий избыточный момент DМ1, который вернет двига­тель в устойчивый режим работы со скольжением S0.

Если восстановление напряжения или момента произойдет при скольжении S 3 , то избыточный момент DM2 будет иметь тормозной характер и двигатель опрокинется. Как же определить время, в те­чение которого будет достигнуто то или иное значение скольжения?

Рис. 10.9. К расчету динамической устойчивости асинхронного двигателя:

а - снижение напряжения; б - увеличение механического момента

Для этого необходимо решить уравнение движения ротора двигателя.

При возникновении избыточного момента на валу двигателя ускорение ротора прямо пропорционально избыточному моменту и обратно пропорционально моменту инерции и может быть записа­но в виде

I https://pandia.ru/text/79/122/images/image073_6.gif" align="left" width="215" height="47 src="> (10,15)

где Т j = Jw2 1ном / Рном, а Рном - номинальная мощность двигателя.

Уравнение (10.15) описывает движение ротора двигателя при больших возмущениях и называ­ется уравнением движе­ния ротора асинхрон­ного двигателя. Это уравнение нелинейно, его реше­ние может быть получено с помощью любого из методов численного интегрирования. Наиболее просто это решение получается, если разбить ось абсцисс функции D M (S ) на ряд равных интервалов DS (рис. 10.10). Тогда уравнение движения на любом интервале будет иметь вид

и время от момента нарушения режима до конца любого п- го ин­тервала определится как

d и ЭДС Е". Характери­стика мощности двигателя без учета второй гармоники имеет си­нусоидальный характер (кривая 1 на рис. 10.11). При уменьшении напряжения на зажимах двигателя рабочая точка перемещается на характеристику мощности, соответствующую новому режиму (точка b на характеристике 2, рис. 10.11, а). При этом на валу дви­гатель - приводимый механизм возникает тормозной, избыточный момент DМторм, угол d начинает увеличиваться, а тормозной момент уменьшается и становится равным нулю в точке с. Кинетиче­ская энергия, запасенная ротором двигателя при его движении от точки b к точке с (величина ее пропорциональна площади abc ), не позволит ротору остановиться в точке нового устойчивого равно­весия с. Угол d будет увеличиваться до тех пор, пока площадь cde не станет равной площади abc . Точка d соответствует максималь­ному углу отклонения оси ротора от своего первоначального положения (d0).


Рис. 10.11. К анализу динамической устойчивости синхронного двигателя: а - снижение напряжения (характеристики момента UHOM (кривая /) и мощно­сти при пониженных напряжениях (кривые 2, 3)); d - наброс механического момента

В точке d скорость вращения ротора становится равной син­хронной, но, поскольку на вал двигателя действует избыточный ускоряющий момент DМуск, ротор начинает двигаться в сторону точки с. Около нее возникают затухающие колебания, аналогичные таковым при внезапном отключении линии (см. рис. 10.1, г).

Рассмотренное снижение напряжения (ему соответствует ха­рактеристика 2) не нарушает устойчивости двигателя, и он может нормально работать при пониженном напряжении (с меньшим запасом статической устойчивости). Если характеристика мощно­сти располагается так, что максимальный угол отклонения ротора превышает критическое значение dкр3 (характеристика 3), на валу двигателя возникает тормозной, избыточный момент и его устой­чивость нарушается. В этом случае для сохранения устойчивости необходимо восстановление напряжения Uо на зажимах двигателя в какой-либо момент времени, соответствующий углу dВОССТ.

При этом происходит переход рабочей точки на характеристи­ку 1, новая площадь ускорения mgh будет достаточной для пре­кращения торможения двигателя и возвращения его в устойчивое рабочее состояние. Предельное значение угла dВОССТ, при котором восстановление прежнего значения напряжения обеспечит сохра­нение динамической устойчивости, определится из равенства пло­щадей Fab c " + Fnmf = F c " d " n + Fmgh , или

https://pandia.ru/text/79/122/images/image079_5.gif" align="left" width="364" height="48 src=">

При набросе механического момента двигателя до значения P/0 (рис. 10.11, б) на валу возникает тормозной избыточный момент DМторм, вызывающий относительное движение ротора в сторону увеличения угла d. После того как угол ротора превысит значение d1 на валу двигателя появляется ускоряющий избыточный момент. Относительная скорость ротора, максимальная в точке с, становит­ся равной нулю в точке d . Двигатель начинает движение в обрат­ную сторону. В результате затухающих колебаний около точки с двигатель переходит в новый режим работы с углом d1.

При большем набросе механического момента (до величины p 0 " ) динамическая устойчивость в отличие от предыдущего случая не сохранится. При любом значении угла d избыточный момент будет иметь тормозной характер и двигатель выпадет из синхро­низма. В этом случае сохранение устойчивости возможно, если произойдет восстановление механического момента до его преж­него значения в какой-то точке f . На валу двигателя возникает ус­коряющий избыточный момент, пропорциональный отрезку fg . Устойчивость двигателя сохранится, если площадь торможения amkf будет меньше или, по крайней мере, равна предельно воз­можной площади ускорения fgh . В случае равенства этих площадей угол восстановления механического момента является предельным. Его значение может быть найдено из равенства

Famkf - Ffgh = 0 ИЛИ

Раскрыв интегралы и преобразовав полученное выражение, за­пишем

Время, в течение которого ротор двигателя достигнет угла dВосст. пр, определяется из зависимости d = f (t ), которая в свою оче­редь получается в результате решения уравнения движения ротора. При возникновении на валу двигателя избыточного момента его относительная скорость Dw будет определяться формулой d d / dt = d w = w 0 - w , где w - синхронная скорость.

Относительное значение Dw* найдем по формуле

Скольжение двигателя представим в виде

Ускорение ротора, соответствующее избыточному моменту DM, прямо пропорционально DM и обратно пропорционально по­стоянной инерции двигателя Т j .

(10.16)

Это уравнение называется уравнением движения ро­тора синхронного двигателя. Правая часть этого уравнения нелинейна, поэтому решение может быть получено с помощью какого-либо численного метода (в частности, метода последовательных интервалов). Результа­том решения является зависимость d=f (t ) (рис. 10.12). Определив графическим ме­тодом предельный угол восстановления dвосст..пр, находим соответствующее ему предельное время t восст. пр так, как это пока­зано на рис. 10.12.

Рис. 10.12. К определе­нию t восст. пр

Решение уравнения движения ротора двигапозволяет судить об устойчивости двигателя. Если зависимость d(t) име­ет нарастающий характер, то двигатель неустойчив. Если эта зави­симость отражает затухающие колебания, то двигатель устойчив.

10.8. ПУСК ДВИГАТЕЛЕЙ

Пуск двигателя - это процесс перехода двигателя и рабочих механизмов из неподвижного состояния (w = 0) в состояние вра­щения с нормальной скоростью (w = w0).

Процессы, протекающие при пуске синхронных и асинхронных двигателей, а также их схемы пуска очень похожи и отличаются лишь тем, что у синхронного двигателя на последней стадии пуска включается возбуждение. Пуск двигателей является нормальным переходным режимом который рассматривается с точки зрения обеспечения нормальной работы системы электроснабжения. При этом решаются такие задачи, как определение тока двигателей, на­пряжения на их зажимах при пуске, возможность группового пуска двигателей и т. п.

Во время пуска двигатель потребляет значительно большее ко­личество энергии, чем в нормальном режиме, что сопровождается увеличением пускового тока. Кратность пускового тока по отно­шению к номинальному достигает 5...8 для двигателей с короткозамкнутым ротором.

Условия пуска двигателей определяются механическим момен­том, который должен быть создан двигателем в начальный момент пуска.

Механические характеристики некоторых типов приводимых во вращение механизмов даны на рис. 10.13. Выделяют легкие, нормальные и тяжелые условия пуска.

Легкие условия возникают, когда начальный момент враще­ния двигателя Ммехнач = % Мном, где Мном - номинальный момент двигателя.

Вентилятор" href="/text/category/ventilyator/" rel="bookmark">вентиляторы

Нормальные условия возникают при Ммехнач = (50...75) % Мном.

Тяжелые условия пуска - это такие условия, при которых

Ммех. нач = 100 % и более МНОМ.

190" height="35">

Рис. 10.14. Схемы пуска двигателей: а - прямого; б - реакторного

Прямой пуск произво­дится по схеме, показанной на рис. 10.14, а. Двигатель включа­ется на полное напряжение сети выключателем. Это наиболее простая схема, применяемая для пуска двигателей малой мощности.

Реакторный пуск производится по схеме, показанной на рис. 10.14, б. В начале пуска шунтирующий выключатель В2 от­ключен. Двигатель подключается к сети через реактор, который ограничивает пусковой ток двигателя, снижая напряжение на его зажимах. По мере разгона двигателя потребляемый им ток снижа­ется, и при приближении скорости вращения двигателя к номи­нальной включается шунтирующий выключатель В2, выклю­чающий пусковой реактор. Сопротивление реактора определяется следующим образом:

https://pandia.ru/text/79/122/images/image090_4.gif" align="left" width="533" height="67">

Пусковой ток при этом

В выражениях (10.предполага­ется, что двигатель в режиме пуска может быть представлен только реактивным сопротивлени­ем. Это не вносит в расчет существенной по­грешности, так как активное сопротивление двигателя, обратно пропорциональное скольжению, в первый момент пуска (при S = 100 %) незначительно. Не­достатком реакторного пуска является необходимость в дополни­тельном оборудовании (реакторе и выключателе). Кроме того, увеличивается время пуска двигателя, снижается его пусковой электромагнитный момент. Достоинство реакторного пуска улучшение режима напряжений в питающей сети, смягченные тре­бования к ее оборудованию.

Пуск синхронных двигателей имеет свои особенности. Син­хронный двигатель подключается к сети невозбужденным. Его об­мотка возбуждения короткозамкнута или закорачивается на сопротивление rпуск = (5r f , где rf, - сопротивление обмотки возбуждения. Пусковой ток двигателя определится как

где Uм - напряжение на зажимах двигателя; x " d - сверхпереходное сопротивление двигателя. Как только скорость вращения ротора станет близкой к синхронной, ему подается возбуждение и он втягивается в синхронизм.

Расчет режима пуска производится с целью определения вре­мени пуска, допустимости нагрева обмоток, характера изменения напряжений в питающей сети. Как для асинхронных, так и для синхронных двигателей расчет режима пуска производится реше­нием уравнений движения ротора двигателя. Начальное значение скольжения при этом равно единице (Sпуск =100 %). Разбивая ин­тервал времени пуска на малые интервалы, находят зависимость

S (t ), по которой определяют время пуска (при S = So). Зная время существования токовых перегрузок и их величины, вычисляют на­грев двигателя. Зависимость U (t ) (необходимая, например, для оценки устойчивости работающих рядом двигателей) определится, если на каждом интервале времени рассчитывать режим напряже­ния в питающей сети и на зажимах двигателя.

Пример 10.2. От шин 6 кВ понижающей подстанции питаются два одина­ковых асинхронных двигателя Ml и М2, каждый из которых имеет параметры:

Рном = 2000 кВт, UHOM = 6 кВ, cosj = 0.83, h = 92 %, Iпуск = 5.2.

Остальные элементы схемы характеризуются следующими данными: Трансформатор Т-1: SHOM = 15 MBA, 115.5/37 кВ, UK = 10.5 %.

Трансформатор Т-2: SHOM = 7.5 MBA, 36.8/6.6 кВ, UK = 7.5 %.

Линия L: l = 15 км, x0 = 0.4 Ом/км.

Система S - источник бесконечной мощности с неизменным напряжени­ем 107кВ.

Требуется сравнить условия пуска двигателей для случаев, когда:

а) оба двигателя пускаются одновременно;

б) пускается один двигатель, в то время как другой работает при номиналь­
ном напряжении с нагрузкой 0.67Sном при cos j = 0.8.

Сравнение провести по значениям периодических слагающих пускового тока и пускового момента, имея в виду, что пусковой момент при номинальном напря­жении составляет 70 % номинального момента двигателя.


Решение. Примем Sб = 7.5 МВА и Uб1 = 6 кВ. Тогда базисные напряжения на других ступенях определим как

Относительные реактивности элементов схемы замещения, приведенной на рис. 2.21, б, при этом вычислим так:

https://pandia.ru/text/79/122/images/image101_3.gif" align="left" width="173" height="49 src=">

где номинальная мощность двигателя

Напряжение системы в относительных единицах https://pandia.ru/text/79/122/images/image104_3.gif" align="left" width="252" height="41">

Пусковой ток в каждом двигателе при базисных условиях

https://pandia.ru/text/79/122/images/image106_3.gif" width="152" height="41 src=">

Остаточное напряжение на выводах двигателя при его пуске U = 1.1*0.55 = 0.605, соответственно момент двигателя при пуске Mпуск = 0.6052 * 0.7MНОМ = 0.256MНОМ.

Случай в. Найдем вначале ЭДС двигателя, который работал под нагрузкой. Его рабочий ток при базисных условиях составляет

Следовательно, искомая ЭДС будет равна

https://pandia.ru/text/79/122/images/image109_3.gif" align="left" width="221" height="41">

Таким образом, пусковой ток двигателя при базисных условиях

при номинальных условиях

Остаточное напряжение UOCT =1.44*0.55 = 0.79 и развиваемый двигателем момент при пуске Мпуск = 0.792 * 0.7МН = 0.44МН.

Как видно, по сравнению с условиями, рассмотренными для случая «а», здесь пусковой ток больше в 0.44 / 0.256 = 1.72 раза.

10.9. САМОЗАПУСК ДВИГАТЕЛЕЙ

Самозапуск - это процесс восстановления нормального режима работы двигателей после кратковременного отключения источника питания. Задача самозапуска заключается в том, чтобы не допус­тить массового отключения электродвигателей. Самозапуск отли­чается от пуска тем, что:

Одновременно пускается целая группа двигателей;

В момент восстановления питания какая-то часть или все дви­гатели вращаются с некоторой скоростью;

Самозапуск происходит под нагрузкой.

По условиям самозапуска механизмы делятся на две группы:

1) механизмы, имеющие постоянный момент сопротивления и при кратковременном прекращении питания быстро теряющиескорость (шаровые мельницы, транспортеры, прокатные станы, подъемные краны и т. п.);

2) механизмы, имеющие вентиляторные характеристики мо­мента (центробежные насосы, вентиляторы, дымососы, центрифу­ги и др.). Самозапуск этой группы проходит легче, чем механизмов первой группы, так как момент сопротивления механизмов снижа­ется при уменьшении скорости.

Для обеспечения успешного самозапуска определяют суммар­ную мощность электродвигателей, которые могут быть запущены после перерыва питания. В соответствии с полученным значением выделяются те двигатели, отключение которых недопустимо по условиям технологического процесса или правилам техники безо­пасности. Суммарная не отключаемая мощность электродвигателей определяется при условии, что остаточное напряжение в режиме самозапуска обеспечивает вращающий момент, превышающий момент механизма.

Расчет самозапуска предполагает решение нескольких задач:

1. Рассчитывается момент вращения двигателей при понижен­ном напряжении и проверяется его превышение над моментами механизмов.

2. Устанавливается температура дополнительного нагрева двигателей из-за увеличения времени разгона.

Скольжение двигателей к моменту самозапуска может быть определено численным интегрированием уравнения движения ротора двигателя. Рассматривая самозапуск асинхронных двигателей, предположим, что питание двигателей осуществляется по наиболее характерной схеме, показанной на рис. 10.16, а.

Напряжение на зажимах двигателей при самозапуске

(10.21)

где, причем ZM - сопротивление эквивалентного

двигателя, замедляющего все п подключенных двигателей; х вн = xc + xt + xL - внешнее сопротивление.

Сопротивление двигателя в момент самозапуска:

Рис. 10.16. Схема питания нагрузки: а - принципиальная схема; б - схема замещения

где SC3 - суммарная мощность двигателей, самозапуск которых бу­дет успешным; UHOM - номинальное напряжение двигателей. Подставляя (10.22) в (10.21), найдем мощность SC 3 :

(10.23)

Мощность самозапуска связана с номинальной мощностью следующим образом (при КПД двигателей, равном 1):

где К - кратность пускового тока. Подставляя (10.24) в (10.23), по­лучаем выражение для мощности, которую можно назвать не от­ключаемой мощностью двигателей при самозапуске:

https://pandia.ru/text/79/122/images/image120_0.gif" align="left" width="180" height="27">

Для механизмов с характеристиками вентиляторного типа

где МMmin - минимальный момент вращения двигателя, который часто принимают равным пусковому; Мм mах - максимальный мо­мент вращения двигателя.

Самозапуск синхронных двигателей обладает рядом особенно­стей по сравнению с асинхронными. Если после кратковременного перерыва питания двигатель не выпал из синхронизма или не был отключен, то происходит самозапуск. Если двигатель выпадает из синхронизма и к моменту восстановления напряжения работает как асинхронный с определенным скольжением, то процесс его самозапуска нужно рассматривать как пуск асинхронного двигателя, но осуществляемый от достигнутого скольжения. При этом возбужденный двигатель включается на шины нагрузки без дополнительных сопротивлений в цепи статора.

Задачами расчета самозапуска являются:

1) проверка влияния самозапуска на режим работы потребителей, находящихся в электрической близости;

2) расчет остаточного напряжения на зажимах двигателей;

3) расчет момента двигателя;

4) определение времени пуска и перегрева двигателя.

Во время перерыва питания напряжение на зажимах двигателя определяется его ЭДС, которая уменьшается по мере выбега. При уменьшении скорости ротора на 20 % напряжение двигателя с форсировкой не превышает номинального, а без форсировки снижается до 60...70 % номинального.

Допустимое напряжение на шинах нагрузки во время самозапуска определяется следующими требованиями:

1. При совместном питании двигателей и освещения:

При частых и длительных пусках (U > 0.9);

При редких и кратковременных пусках и самозапусках
(U> 0.8...0.85).

2. При раздельном питании двигателей и освещения
(U>0.7...0.8).

3. При люминесцентном освещении (U> 0.9).

4. При питании двигателей через блок-трансформаторы напря­жение ограничивается минимальной величиной электромагнитногомомента.

В тех случаях, когда самозапуск неосуществим, можно приме­нять автоматическую ресинхронизацию двигателя. Вхождение в синхронизм обеспечивается действием форсировки возбуждения, повышающей максимум синхронного момента.

10.10. АВТОМАТИЧЕСКОЕ ПОВТОРНОЕ ВКЛЮЧЕНИЕ

И АВТОМАТИЧЕСКОЕ ВКЛЮЧЕНИЕ РЕЗЕРВНОГО ПИТАНИЯ

Короткие замыкания, возникающие в различных точках элек­трической системы, могут быть преходящими, т. е. исчезать через какой-то небольшой промежуток времени. В этом случае эффек­тивно применение автоматического повторного включения (АПВ) того элемента, который отключился защитой из-за КЗ. АПВ назы­вают трехфазным, если отключаются и вновь включаются все три фазы поврежденного элемента, или однофазным (пофазным) (ОАПВ), если отключаются только одна или две поврежденные фазы. АПВ считается успешным, если за время отключения корот­кое замыкание исчезает и после повторного включения может вос­становиться нормальная работа, и неуспешным, если повторное включение производится на сохранившееся КЗ. Существуют сис­темы АПВ однократного, двухкратного и многократного действия, обеспечивающие соответственно одно, два или несколько повтор­ных включений.

Интервал времени между моментом отключения КЗ и повтор­ным включением называется паузой АПВ. В течение паузы проис­ходит деионизация среды в месте КЗ и выключатель возвращается в исходное состояние. В системах электроснабжения (сети до 35 кВ) пауза АПВ принимается в пределах 0.3...0.5 с. При опреде­лении этих значений учитывалось, что время деионизации в сетях 6...10 кВ, например, составляет 0.07...0.09 с, а собственное время включения выключателя имеет порядок 0.25...0.3 с.

АПВ на воздушных линиях позволяет восстановить электро­снабжение в 60...90 % всех аварийных отключений. При установке систем АПВ на трансформаторах важно предусмотреть блокиров­ку, запрещающую работу АПВ, если отключение произошло от действия защиты, реагирующей на внутренние неисправности трансформатора (например, газовой). Для ответственных двигате-лей после их аварийного отключения пре­дусматривается АПВ, обеспечивающее их самозапуск.

133" height="36">

Рис. 10.17. Схема пита­ния с устройством АВР

10.11. МЕТОДИЧЕСКИЕ И НОРМАТИВНЫЕ УКАЗАНИЯ

К РАСЧЕТУ ДИНАМИЧЕСКОЙ УСТОЙЧИВОСТИ

Целью расчетов динамической устойчивости является определение характера динамического перехода системы от одного режима к другому. Если при этом ни одна станция не выпадает из синхронизма, то такой переход считается устойчивым.

Для определения динамической устойчивости принимаются расчетные возмущения, разделяемые на три группы.

Группа 1. Отключение элемента сети напряжением 500 кВ и ниже. Однофазное короткое замыкание при работе основной защиты с успешным и неуспешным ОАПВ.

Группа 2. Отключение любого элемента сети напряжением выше 500 кВ (для схемы связи атомной электростанции (АЭС) с энергосистемой выше 750 кВ). Однофазное КЗ на линии электро­передачи выше 500 кВ при работе основной защиты с неуспешным ОАПВ. Многофазные, короткие замыкания на линии электропере­дачи любого класса напряжения при работе основной защиты с успешным и неуспешным АПВ. Отключение генератора или блока генераторов, наибольших по мощности в данной ЭС.

Группа 3. Одновременное отключение двух цепей или двух ли­ний, идущих по одной трассе более чем на половине длины более короткой линии. Возмущения групп 1 и 2 с отключением элемента сети или генератора (блока генераторов), которые из-за ремонта одного из выключателей приводят к отключению второго элемента сети, подключенного к этому же распределительному устройству. Однофазное КЗ на линии электропередачи или шинах любого класса напряжения при отказе одного из выключателей. Отключе­ние части генераторов электростанции, связанное с полным от­ключением одной секции (системы) шин суммарной мощностью до 50 % мощности электростанции или возникновение такого же или большего аварийного небаланса мощности по любым причинам.

Переток в сечении

Группы возмущений, при которых должна обеспечиваться динамическая устойчивость

при нормальной схеме

при ремонтной схеме

Нормальный

Утяжеленный

При отключении линии высшего для данного сечения класса напряжения устойчивость может не сохраняться, если:

Предел статической устойчивости уменьшается более чем на 70 %;

Предел статической устойчивости по оставшимся связям не превышает утроенной расчетной амплитуды нерегулярных колеба­ний мощности в этом сечении.

КОНТРОЛЬНЫЕ ВОПРОСЫ

1. Перечислите основные методы расчета динамической устойчивости.

2. В чем суть графического метода анализа динамической устойчивости?

3. Что такое предельный угол отключения КЗ?

4. Какие методы решения уравнения движения ротора генератора использу­
ются при анализе динамической устойчивости?

5. Приведите алгоритм расчета динамической устойчивости сложных систем.

6. Как оценивается динамическая устойчивость двигателей нагрузки?

7. Каковы особенности режима пуска двигателей?

8. Что такое самозапуск и групповой запуск двигателей?