Домой / Игры / История развития микропроцессоров intel. История процессоров

История развития микропроцессоров intel. История процессоров

Процессор громоздких компьютеров середины XX века, основанный на механических реле, затем на электронных лампах, а потом на транзисторах, представлял собой целый шкаф (а то и не один), набитый электроникой. Каждое такое устройство было ненадежным, сложным и дорогим и потребляло огромное количество электроэнергии.

КОНСТРУКТОР ДЛЯ ЭНТУЗИАСТА

Первый ПК был разработан в 1974 году студентом Джонатаном Титусом. Дебютировавший на обложке журнала «Радиоэлектроника» компьютер Титуса, названный автором «Модель 8» (Mark 8), представлял собой проект для любителей­самодельщиков и распространялся в виде буклета, в котором были подробно расписаны конструкция и электрическая схема чудо­аппарата. Сам изобретатель попытался заработать на продаже набора печатных плат для всех желающих собрать собственный компьютер. Прочие компоненты, включая процессор Intel 8008, предлагалось приобретать в магазине.

Конечно, такой продукт не мог рассчитывать на коммерческий успех. Тем не менее он создал совершенно новую, доселе невиданную отрасль – полноценные компьютеры, доступные широкому кругу частных лиц.

Лишь при появлении полупроводниковых интегральных схем удалось объединить все компоненты, отвечающие за вычисления, в одном компактном чипе. Преимущества такого подхода разработчики осознали отнюдь не сразу, еще долго процессоры выпускались в виде целого набора микросхем.

В 1969 году японская компания Busicom заказала у корпорации Intel комплект из дюжины микросхем для своего нового настольного калькулятора. Один из разработчиков Intel предложил объединить часть их в микросхему, сочетающую в себе все необходимые функции. Руководство обеих фирм приняло новую идею благосклонно, так как она сулила немалую экономическую выгоду.

Дело в том, что стоимость производства слабо коррелирует со сложностью микросхемы, и двенадцать простых (то есть маленьких) чипов обойдутся гораздо дороже, нежели четыре больших, до которых сократился комплект для калькулятора Busicom. Причем основную, «вычислительную» микросхему, названную процессором, нетрудно сделать универсальной и применять в самых разных устройствах, где требуется выполнять какие-либо вычисления.

Именно этот чип, выпущенный в 1971 году под маркой Intel 4004, стал первым коммерческим однокристальным микропроцессором. Он работал с 4-разрядными двоичными числами и выполнял 60 тысяч операций в секунду. Правда, до персональных компьютеров Intel 4004 так и не добрался – в те годы такая концепция попросту отсутствовала.

Процессор для народа

Следующий процессор, Intel 8008, был 8-разрядным, умел адресовать до 16 кб памяти, состоял из 3,5 тысяч транзисторов и работал на тактовой частоте от 500 до 800 кГц. Именно он сделал возможным появление недорогого компактного компьютера, впоследствии названного персональным.

Отметим, что Intel 8008 имел мало общего с Intel 4004. Архитектуру и набор инструкций разрабатывал заказчик (компания Computer Terminal Corporation, CTC), причем исходя из его будущего применения в терминалах для «больших» компьютеров. Из-за срыва сроков поставки и недостаточной мощности процессора CTC отказалась от заказа. Стремясь хоть как-то компенсировать затраты на разработку, Intel выпустила свой продукт в широкую продажу. Мало кто ожидал, что частные умельцы не только оценят по достоинству недорогой процессор, но и смогут создать на его основе самые настоящие самодельные компьютеры. CTC же построила свой терминал по старинке, с применением комплекта специализированных микросхем.

Появление первых персональных компьютеров заставило специалистов Intel задуматься о перспективах микропроцессоров. Intel 8008 был тепло принят маленькими радиоэлектронными компаниями, разрабатывающими калькуляторы и специализированные цифровые устройства. Но «модель 8» и подобные ей показали, что у «легких» процессоров может быть и другое применение. Сделав ставку на призрачную пока новую отрасль, компания Intel пошла на риск – в 1974 году был выпущен новый процессор Intel 8080, более чем в десять раз превосходивший 8008 по производительности. Достигнуто это было как увеличением тактовой частоты до 2 МГц, так и более совершенной архитектурой, потребовавшей уже 6 тысяч транзисторов. Шина памяти была доведена до 16 разрядов, благодаря чему 8080 мог адресовать до 64 кб памяти, а система команд была значительно расширена по сравнению с Intel 8008.

ТЕМ ВРЕМЕНЕМ В СССР…

До конца 60­х годов XX века советская вычислительная техника развивалась быстрыми темпами. Множество НИИ разрабатывали ЭВМ самых разных типов, не уступавших лучшим западным образцам. Все это богатейшее хозяйство было совершенно несовместимо друг с другом, да такой задачи разработчикам и не ставилось.

Тем не менее ближе к 70­м годам руководство страны приняло решение унифицировать выпускаемую электронно­вычислительную технику и ввести аппаратную и программную совместимость между ЭВМ различного применения. Новая концепция получила название «Единое Семейство» (ЕС ЭВМ), причем за основу были взяты не отечественные разработки, а архитектура IBM 360. Чуть позже, в середине 70­х, для мини­ и микро­ЭВМ приняли архитектуру PDP­11 американской компании DEC.

Для отрасли это имело катастрофические последствия. Все многолетние наработки были выброшены на свалку. Отныне уделом разработчиков ЭВМ стало копирование западных образцов и освоение импортных технологий.

После отмирания PDP­11 советская промышленность перешла на копирование процессоров Intel и Zilog. Так, все персональные компьютеры 80­х годов, такие как «Радио 86РК», «Микроша», «Вектор­06Ц», «Корвет», «СМ­1800» и т.д., были построены на отечественных аналогах Intel 8080, а чуть позже большую популярность получили клоны ZX Spectrum, построенные на микросхемах КР1858ВМ1 и КР1858ВМ3, неотличимых от Zilog Z80.

Вынужденное следование «в хвосте» привело к неизбежному отставанию электронной промышленности Советского Союза от западных компаний. Постепенно отставание накапливалось и к 1991 году составляло уже около десятка лет.

Для калькуляторов новинка была дороговата, в розницу 8080 продавался за $360, но для применения в компьютерах цена была довольно приемлемой.

Хитрость таилась в скидках. При партиях от тысячи штук цена Intel 8080 составляла уже не $360, а $75. Этим и воспользовалась «калькуляторная» компания MITS, заключив OEM-контракт с Intel и выпустив персональный компьютер Altair-8800. Компьютер стоил всего $397 (что было совсем недалеко от розничной цены одного только процессора), при этом он поставлялся собранным и готовым к работе. Бешеный успех «Альтаира» положил начало буму персональных компьютеров, что заставило многие электронные компании начать разработку и выпуск собственных универсальных микропроцессоров.

Волна восьмиразрядных

Если разработка процессоров для мэйнфреймов была по плечу только крупным корпорациям, таким как Intel и Hewlett-Packard, то сконструировать и выпустить микропроцессор для ПК могла практически любая маломальски серьезная электронная компания. Перечислим самые известные чипы, появившиеся на волне успеха Intel 8080.

Motorola MC6800, 1974 год. Вышедший вскоре после Intel 8080 MC6800 предлагал несколько большую производительность примерно за те же деньги. Главными преимуществами процессора считались: питание всего по одной линии 5 В (вместо трех у большинства конкурентов), способность оперировать 16-битными числами и более солидное происхождение – архитектура MC6800 была прямым наследником архитектуры процессора компьютера DEC PDP-11.

Ключевой ошибкой Motorola стало уравнивание отпускной цены с главным конкурентом – Intel 8080. Большинство потенциальных заказчиков отказались переходить на совершенно новый процессор, не имевший, в отличие от процессоров Intel, наработанного парка ПО, без существенного экономического выигрыша. В результате Motorola MC6800 практически не получил применения в ПК (кроме собственного компьютера Motorola EXORciser) и использовался в основном как контроллер периферийных устройств, хотя какое-то время выпускался Altair 680 – аналог Altair 8800, но на другом процессоре.

Motorola MC6800 состоял из 4,5 тыс. транзисторов, работал на тактовой частоте от 1 до 2 МГц и адресовал до 64 кб памяти. Для применения в качестве микроконтроллера в последующие годы было разработано несколько вариаций процессора, оснащенных собственной памятью и тактовым генератором.

В середине 70-х годов США пережили кризис полупроводниковой индустрии, и микропроцессорный бум не оказал на это заметного влияния – слишком уж малы были объемы продаваемых персональных компьютеров. Многие электронные компании были вынуждены сократить штат. Так, Motorola покинуло 4,5 тысяч сотрудников, в том числе инженеры, разрабатывавшие MC6800.

MOS Technology 6502, 1975 год. Уволенная команда разработчиков Motorola MC6800 вскоре затеяла собственный проект, которым стала компания MOS Technology. Первым продуктом был MOS Technology 6501, электрически совместимый с 6800, что позволяло устанавливать его на ту же системную плату, что и мотороловский процессор. Получив вполне ожидаемый судебный иск от Motorola, MOS Technology была вынуждена спешно устранить скандальную совместимость. Так родился 6502, для популяризации которого был специально спроектирован компьютер KIM-1.

Главным преимуществом новинки была ее стоимость. Притом что в 1975 году Intel 8080 продавался в розницу за $179, MOS Technology 6502 стоил всего $25. Для небогатых одиночек – первопроходцев отрасли персональных компьютеров – это было как манна небесная. Несмотря на непререкаемый авторитет Intel 8080, процессор 6502 получил применение во многих ПК тех лет, включая неудачный Apple I и хитовый Apple II, давший путевку в жизнь фруктовой компании двух Стивов.

Как и все микропроцессоры того периода, 6502 был 8-разрядным и работал с 16-разрядной адресной шиной, что позволяло адресовать до 64 кб памяти. Тактовая частота была невысокой даже для тех лет – от 1 до 2 МГц, но благодаря продуманной архитектуре, во многом близкой к более поздним RISC-процессорам, 6502 работал наравне с более высокочастотными конкурентами.

НИЗКОЧАСТОТНЫЙ ТЕРМИНАТОР

В знаменитом фантастическом боевике «Терминатор» в те моменты, когда камера смотрит глазами главного героя – робота, на экране мелькают строчки какого­то ассемблерного кода. Дотошным фанатам фильма удалось установить источник – это оказалась программа для компьютеров семейства Apple II, основанных на 2­мегагерцевом процессоре MOS Technology 6502. Судя по всему, ресурсы Скайнет к 2029 году основательно истощились, вследствие чего враждебный к людям искусственный интеллект был вынужден строить роботов на основе антикварных процессоров, выпущенных за полвека до того…

Zilog Z80, 1976 год. Созданный бывшими сотрудниками Intel, 8-разрядный процессор основывался на архитектуре Intel 8080 и имел совместимую с ним систему команд. Благодаря этому часть программ, разработанных для интеловского процессора, работала на Z80 без изменений, что послужило залогом успеха – продукт Zilog был гораздо дешевле интеловского. Кроме того, Z80 требовал менее сложной обвязки, всего одну линию питания; также сыграло свою роль то, что компания Zilog свободно продавала лицензии на его выпуск.

Изначально работавший на тактовой частоте 2,5 МГц Z80 был впоследствии разогнан до 20 МГц. Процессор содержал 8,5 тыс. транзисторов и имел расширенный набор регистров, за счет чего при использовании в качестве микроконтроллера мог обходиться без оперативной памяти.

Отечественному читателю процессор может быть знаком по популярному в нашей стране в 90-е годы компьютеру ZX Spectrum. Кроме того, он широко использовался до последнего времени в качестве процессора для игровых приставок и игровых автоматов, в качестве микроконтроллера в электронных игрушках, автоматических определителях номера, пультах ДУ и даже в устройствах, предназначенных для военного применения.

Поколение 1979

Флагманом следующего технологического прорыва опять-таки стала Intel. Новейший 16-разрядный процессор Intel 8086 призван был наголову разгромить MOS Technology и Zilog. Новинка основывалась на усовершенствованной архитектуре и имела новую систему команд, не полностью совместимую с 8080. Размер шины адреса был увеличен с 16 до 20 разрядов, что позволяло адресовать до 1 Мб памяти. Шина данных была 16-разрядной, но делила одни и те же физические линии с шиной адреса, что позволило упростить число контактов процессора, но снизило производительность.

Новый процессор оказался почти в десять раз мощнее Intel 8080. Тем не менее успеха 8086 не имел. Увлекшись технологическим усовершенствованием, разработчики упустили из вида экономическую эффективность. 16-разрядная шина данных требовала использования дорогих 16-разрядных микросхем при построении системных плат для процессора. Это резко увеличивало себестоимость ПК на 8086, потому лишь несколько производителей рискнуло выпустить компьютеры на новом чипе, но заметного успеха они не добились. Intel 8086 задал новую планку производительности, послужил фундаментом для огромного семейства x86. Именно его потомки впоследствии целиком и полностью заняли весь рынок микропроцессоров для персональных компьютеров.

По пути, проложенному 8086, пошли его более успешные потомки и конкуренты.

Intel 8088, 1979 год. Своеобразная работа над ошибками, выполненная Intel, получила признание заказчиков. Этот процессор был аналогом 8086, но имел важное отличие: 8-разрядную шину данных. Таким образом, он стал связующим звеном между 8- и 16-разрядными процессорами.

Intel 8088 содержал 29 тысяч транзисторов, работал на тактовых частотах от 5 до 10 МГц, имел 20-разрядную шину адреса и 8-разрядную шину данных. Именно этот процессор лег в основу легендарного IBM PC. Множество компаний выпускали свои аналоги этого популярного процессора: NEC, Siemens, AMD и даже советские заводы освоили производство клонов 8088, на основе которых собирались ПЭВМ «Поиск», «Агат-П», «Искра-1030».

ДРУЗЬЯ МАТЕМАТИКА

Ранние микропроцессоры умели работать лишь с целыми числами. Естественно, для них не было ничего сложного и в вычислении дробей, программе надо было только представить дробные числа в виде нескольких целых и выполнить обратное преобразование после вычислений. Большинству пользователей этого было достаточно. Но многие программные пакеты для научных расчетов, работы с графикой и звуком производят огромное количество вычислений с числами с плавающей точкой (то есть с дробями). Постоянные преобразования из дробных в целые и обратно требуют выполнения многих «лишних» команд, в результате чего производительность резко падает.

При этом усложнять архитектуру процессора ради дробных чисел было расточительно: не каждый заплатит в полтора раза больше за ускорение научных расчетов. Потому практически все производители выпускали дополнительные процессоры, берущие на себя расчеты с дробными числами. Такие чипы называли математическими сопроцессорами, и продавались они отдельно от основных процессоров. Более того, докупить и установить сопроцессор пользователь мог и потом, после покупки ПК. Также можно было запросто комбинировать процессор одной фирмы с сопроцессором другой, лишь бы семейство совпадало. Впоследствии Intel начала выпускать процессоры с интегрированным сопроцессором, а начиная с Intel Pentium чипы получили встроенные возможности для работы с числами с плавающей точкой.

Motorola MC68000, 1979 год. Являвшийся на тот момент самым мощным и универсальным 16-разрядным процессором, он был прямым наследником «динозавра» PDP-11. Его разработчики не шли ни на какие компромиссы: 24-разрядная шина памяти (позволявшая адресовать до 64 Мб памяти), 16-разрядная шина данных, 32-битные регистры, тактовая частота от 8 до 16 МГц. В отличие от Intel 8086 инженеры Motorola не стали мультиплексировать шины данных и адреса, ввиду чего пришлось оснастить процессор 64 ножками.

Излишне говорить, что новинка была дорогой и требовала дорогих микросхем системной логики. Тем не менее высочайшая по тем временам производительность, удобная система команд, наличие встроенных средств отладки склонили многих заказчиков в пользу продукта Motorola: так, Apple выбрала MC68000 в качестве процессора для нового ПК, названного Apple Macintosh, также их применяли Commodore и Atari.

Zilog Z8000, 1979 год. Воодушевленная успехом Z80, Zilog выпустила новый, весьма претенциозный процессор. Подобно Intel 8086, Z8000 работал с 16-разрядной шиной данных, мультиплексированной c шиной адреса, ширина которой составляла от 16 до 23 разрядов. Работал процессор на частотах от 4 до 20 МГц, имел 16-битные регистры, которые можно было объединять попарно для работы с 32-битными числами.

Увы, Zilog допустила фатальную ошибку – Z8000 не был совместим с Z80 ни аппаратно, ни программно. Прямой конкурент, Intel 8088, был такого недостатка лишен. И если из-за ве сомого авторитета Motorola заказчики были готовы сменить парк ПО при переходе с MC6800 на MC68000, то Zilog была новичком в полупроводниковой индустрии.

Новые процессоры никто не хотел покупать. Благодаря встроенным средствам разделения процессорных ресурсов (так, операционная система и приложение работали с разными режимами процессора) Z8000 получил некоторое распространение в мини-серверах, работавших под управлением ОС UNIX. На этом его успехи и закончились. По иронии судьбы простенький Z80 надолго пережил своего потомка.

Чемпион на пьедестале

Intel 80286 практически уничтожил конкуренцию архитектур на рынке процессоров персональных компьютеров. Отныне Motorola выпускала процессоры для Apple, все же остальные производители компьютеров перешли на х86. Что же произошло?

Вышедший на рынок в 1982 году Intel 80286 имел важнейшую особенность. Будучи в пять раз быстрее 8086 и умея работать с многократно большим объемом памяти, новый процессор остался полностью программно совместимым с предыдущими моделями. Ни один из конкурентов такого весомого преимущества не имел. Покупая компьютер на основе Intel 80286, пользователь мог не менять ПО, стоимость которого, как известно, может превышать стоимость самого ПК в несколько раз. Как же это было достигнуто?

Очень просто. Инженеры Intel применили не слишком изящный, зато действенный способ: ввели новый режим работы процессора. При включении компьютера Intel 80286 запускался в базовом режиме, названном реальным. Для программ процессор 80286 в реальном режиме ничем не отличался от 8086, кроме производительности. Те же программы, которые нуждались в объеме оперативной памяти большем, чем 1 Мб, и многозадачности, переключали процессор в защищенный режим. В этом режиме 80286 мог адресовать уже до 16 Мб и обеспечивал одновременную работу нескольких приложений. Ради совместимости такой «костыль» присутствует в процессорах семейства x86 до сих пор.

Войны клонов

Дальновидная корпорация Intel не стремилась ограничивать доступ конкурирующих компаний к своим наработкам. Стремясь обеспечить доминирование архитектуры x86 на рынке, она подписывала лицензионные соглашения буквально со всеми желающими. Многие компании, не имея возможности разработать свой чип с нуля и продвинуть его на рынок, модернизировали процессоры х86 и выпускали под собственной маркой. Такие процессоры были зачастую быстрее и дешевле оригинала от Intel, ввиду чего получили большую популярность в сегменте домашних.

Основные производители х86-совместимых процессоров

Cyrix. В отличие от большинства копировщиков Cyrix всегда разрабатывала выпускаемые x86-процессоры самостоятельно, старательно создавая аналоги технологий Intel. Основанная в 1988 году компания Cyrix ориентировалась на выпуск математических сопроцессоров для Intel 80286 и 80386. Первых успехов компания добилась уже в 1989 году: ее FastMath 83D87, предназначенный для использования совместно с Intel 80386, обгонял аналог от Intel на 50%.

ПРОЦЕССОР ДЛЯ ЭКОНОМНЫХ

Конкуренция с AMD и Cyrix вынудила Intel принять меры для удержания за собой бюджетного сегмента рынка процессоров. Снижать цены было бы неразумно – на плечах Intel и так лежали расходы на совершенствование процессоров, конкуренты же шли проторенным путем. Было принято простое решение – выпуск «урезаных» версий популярных процессоров, названных Intel Celeron.

Первенец, выпущенный в 1998 году, основывался на ядре Pentium II без кэш­памяти L2. Эффект был вполне ожидаем, по производительности в большинстве приложений Celeron не мог конкурировать со «старшим братом», но при этом имел ту же архитектуру и поддерживал все новые технологии. Это и требовалось, чтобы насытить бюджетный сегмент рынка, не снижая цены на основные модели.

Первые «селероны» были восприняты настороженно: полное отсутствие кэша L2 слишком сильно било по производительности, что ставило новый процессор на ступеньку ниже, чем даже Pentium MMX. Intel учла критику и исправила свою ошибку в последующих моделях, оснащая их лишь меньшим объемом кэша L2, чем у Pentium. Эти усовершенствованные Celeron по­прежнему уступали Pentium в большинстве приложений, но уже не так сильно, а в играх и вовсе отставание было незаметно. После «развода» Intel и AMD последняя повторила этот трюк, выпустив Duron, урезаный аналог Athlon, правда, со значительно меньшим успехом.

Три года спустя Cyrix представила собственные центральные процессоры – 486SLC и 486DLC. Любопытно, что эти процессоры устанавливались в гнезда не для Intel 80486, а для 80386. Название символизировало то, что производительность новинок вплотную подбирается к мощности новейших 80486. Они имели успех у пользователей, желающих модернизировать свои старые компьютеры на Intel 80386. Впоследствии был выпущен Cx5x86, предназначенный для апгрейда с 80486 до уровня Pentium.

Впервые ЦП от Cyrix обогнал интеловский аналог лишь в 1995 году. Cyrix 6x86 работал на более низкой тактовой частоте, чем Intel Pentium, но в целом был эффективнее. Уступал он Pentium лишь в операциях с числами с плавающей точкой, вследствие чего меньше подходил для новейших игр с трехмерной графикой.

Увы, ввиду все усложнявшейся разработки более мощных процессоров, наметившееся лидирование Cyix сошло на нет в конце 90-х, и компания превратилась в производителя «лоу-энд» чипов. Впоследствии Cyrix была приобретена тайваньским производителем чипсетов VIA Technologies.

IDT. Не все производители х86-совместимых процессоров придерживались интеловской архитектуры. В 1997 году компания IDT выпустила процессор WinChip (IDT-C6), соответствовавший Intel Pentium. Изначально нацеленный на нижний сегмент рынка, WinChip отличался низкой себестоимостью производства, скромными энергопотреблением и тепловыделением. Достигнуто это было весьма изощренным способом: WinChip имел RISC-архитектуру и упрощенный набор команд и при помощи специального блока транслировал команды x86 в собственные команды. Естественно, такой подход обусловил откровенно позорную производительность.

ПЯТОЕ ПОКОЛЕНИЕ

В марте 1993 года Intel продемонстрировала процессор нового поколения P5. Вопреки ожиданиям, новинка обрела не традиционное обозначение 586, а более звучную марку Pentium. Архитектура x86 была кардинально переработана: процессор получил возможность выполнять две команды одновременно, механизм предсказания адреса перехода и радикально переработанный механизм кэширования данных. Кроме того, шина данных стала 64­разрядной, что вдвое повысило ее пропускную способность по сравнению с Intel 80486.

Первые модели Intel Pentium, работавшие на тактовых частотах 60 и 66 МГц, громкого успеха не получили. Мало того что они требовали замены системной платы из­за нового процессорного гнезда Socket 4, так еще и работали заметно медленнее топовых моделей 80486. Оптимизированных под новую архитектуру программ еще не было, а старые не могли использовать все преимущества P5.

AMD. Американская компания Advanced Micro Devices начала выпуск микропроцессоров еще в 1974 году. Первый продукт, AMD 9080, был полным клоном процессора Intel 8080, причем параллельно с ним выпускался собственный, ни с чем не совместимый 4-разрядный комплект микросхем Am2900, использовавшийся в разнообразных цифровых устройствах.

Продолжая производить клоны по лицензии Intel, AMD долгое время поддерживали свое семейство 32-разрядных RISC-процессоров Am29000, широко использовавшихся в лазерных принтерах. В 1995 году компания прекратила разработку Am29000 и перебросила освободившихся инженеров на x86-проекты. Вскоре это дало плоды, AMD начала уходить от копирования интеловских процессоров. Уже в следующем году был выпущен процессор AMD K5, имевший производительность большую, чем Intel Pentium, за счет четырехконвейерной архитектуры, позволявшей выполнять до четырех команд одновременно, причем новой технологии поддержка со стороны ПО не требовалась. Зато желательна была оптимизация программ под K5, за счет чего производительность повышалась на 30%.

В данный момент маятник качнулся в сторону Intel. Выпустив крайне удачный Intel Core второго поколения, компания стремительно увеличивает свою долю десктопного рынка, в то время как обещанный AMD Bulldozer задерживается. Вернет ли AMD позиции и сможет хотя бы немного потеснить Intel? Время покажет.

Человеческий ум может судить
о будущем не иначе, как обдумывая прошедшее.
А. Ферран

Процессор - важнейший элемент ЭВМ, поэтому производством процессоров занимаются многие фирмы. Наиболее массовое распространение в настоящее время получили процессоры, произведенные фирмой Intel (США).

По конструктивному признаку все процессоры делятся на разрядно-модульные (собираются из нескольких микросхем) и однокристальные (изготавливаются в виде одной микросхемы, на одной подложке, на одном кристалле). Однокристальные процессоры в настоящее время получили наибольшее распространение.

По способу представления команд (иногда говорят – инструкций) все микропроцессоры можно разделить на две группы:

  • процессоры типа CISC (Complex Instruction Set Computing) с полным набором команд;
  • процессоры типа RISC (Reduced Instruction Set Computing) с сокращенным набором команд. Эти процессоры нацелены на быстрое выполнение небольшого набора простых команд. При выполнении сложных команд RISC-процессоры работают медленнее, чем CISC-процессоры.

Заметим, что эти две архитектуры процессоров постоянно сближаются, отбирая лучшие свойства каждой. Тем не менее более перспективной считается RISC-архитектура.

Под термином «архитектура» понимается конструкция процессора и имеющаяся система команд процессора (набор инструкций).

Самым первым процессором, выпущенным фирмой Intel в 1971 году, был четырехразрядный процессор Intel 4004 (табл. 8.1).

В 1974 году был разработан восьмиразрядный процессор Intel 8080 (отечественный аналог КР580ВМ80А), а в 1978 году - процессор Intel 8086, который был совместим с микропроцессором Intel 8080. Система команд процессора насчитывала 134 команды. На базе микропроцессора 8086 и его модификации 8088 выпускались компьютеры IBM PC и IBM PC/XT.

Заметим, что в технической литературе порой используют термин «процессор», а иногда термин «микропроцессор». Различие указанных терминов заключается в уточнении технологии изготовления и габаритов процессора.

Микропроцессор (МП) изготавливается по полупроводниковой технологии и размещается на одном кристалле, в одной микросхеме (иногда говорят - в одном чипе).



Таблица 8.1. Иерархия процессоров и их характеристики

Модель МП Разрядность, бит Тактовая частота, МГц Число команд Число транзисторов, тыс. Год выпуска
Шины данных Шины адреса
4,77 2,3
4,77
4,77 и 8
8, 16 4,77 и 8
10...33
25...50
33...100
Pentium 50...150
Pentium Pro 66...200
Pentium MMX
Pentium II
Pentium III
Pentium 4
Pentium 4M

В 1980 году был анонсирован сопроцессор с плавающей точкой 8087, который расширил состав команд процессора 8086 почти на 60 новых команд.

Сопроцессор - это специальная микросхема (помощник), которая берет на себя часть важных функций процессора, чаще всего выполнение арифметических операций с плавающей точкой.

Сопроцессор реализует арифметические операции аппаратным способом, что осуществляется намного быстрее по сравнению с программным способом вычислений, которым реализуются операции процессором без использования сопроцессора. По этой причине его иногда называют математическим сопроцессором.

Разработанный в 1982 году микропроцессор Intel 80286 еще больше усовершенствовал конструкцию МП 8086. Была реализована защита памяти, расширено адресное пространство, а также добавлено несколько команд.

Заметим, что во многих литературных источниках вместо полного наименования марки процессоров используются их сокращенные названия. Например, вместо Intel 80286 пишут 286, а вместо Intel 80386 - 386. Порой для общего обозначения процессоров серий 80286, 80386, 80486 записывают 80`86 (и даже `86). Название фирмы Intel иногда сокращают до одной буквы, например i80486.

Процессор Intel 80286 может выполнять программы, разработанные для процессора Intel 8086. Способность процессора последующей модификации выполнять программы, разработанные для процессоров предыдущей конструкции, называется совместимостью процессоров снизу вверх. Другими словами, программы, разработанные для предыдущих конструкций процессоров, работают без исправлений и дополнений на процессорах новых конструкций.

Начиная с МП 80286, процессоры фирмы Intel поддерживают режим выполнения нескольких задач - так называемый многозадачный режим. При работе в многозадачном режиме процессор поочередно переключается от одной задачи к другой, но в каждый текущий момент времени обслуживается лишь одна программа.

Для процессора 80286 выпускался сопроцессор 80287. На базе этих микросхем, начиная с 1984 году, компания IBM производила персональные компьютеры IBM PC/AT.

В 1987 году появился микропроцессор 80386. Начиная с этого процессора, во всех процессорах используется конвейерное выполнение команд - одновременное выполнение в разных частях МП нескольких последовательно записанных в ОЗУ команд. Конвейерное выполнение команд увеличивает быстродействие ЭВМ в 2–3 раза.

МП 80386 может функционировать в двух основных режимах:

  • режиме реальной адресации, который характеризуется тем, что МП работает как очень быстрый процессор 8086 с 32-разрядными шинами;
  • режиме защищенной виртуальной адресации, который характеризуется параллельным выполнением нескольких задач, как бы несколькими процессорами 8086, по одному на каждую задачу.

Процессор 80486 разработан в 1989 году и содержит более миллиона транзисторов.

Процессоры i486SX и i486DX - это 32-разрядные процессоры, у которых внутренняя кэш-память первого уровня имеет емкость 8 Кбайт. Основное отличие одного от другого заключается в том, что в процессоре i486DX впервые сопроцессор размещен на общей подложке (на одном кристалле) с процессором. В МП i486SX отсутствует встроенный сопроцессор для выполнения операций с плавающей точкой. Поэтому он имеет меньшую цену и применяется в ЭВМ, для которых не очень важна производительность при обработке вещественных чисел. По желанию пользователя такие ЭВМ могут быть укомплектованы дополнительным сопроцессором i487SX, который изготовляется в виде отдельной микросхемы.

В процессоре i486DX2 применяется технология удвоения внутренней тактовой частоты. Это позволяет увеличить производительность процессора почти на 70%. Процессор i486DX4/100 использует технологию утроения тактовой частоты. Он работает с внутренней тактовой частотой 99 МГц, в то время как внешняя тактовая частота составляет 33 МГц (частота, на которой работает системная шина).

В процессоре Pentium (появился в 1993 году) стали использоваться элементы структуры RISC-процессоров. Он изготовлен по 0,8-микрометровой технологии и содержит 3,1 млн транзисторов. Процессор Pentium иногда обозначают P5 или 80586.

Термин «0,8-микронная технология» означает, что каждый транзистор размещается на кристалле внутри квадрата с указанным размером стороны.

Первоначальная реализация процессора Pentium была рассчитана на работу с тактовыми частотами 60 и 66 МГц. Впоследствии были разработаны процессоры Pentium, работающие с тактовыми частотами 75, 90, 100, 120, 133, 150, 166, 200 МГц.

Прогресс в области разработки и производства процессоров идет непрерывно.

1 ноября 1995 года появился первый процессор Pentium Pro (80686, Р6) с тактовой частотой 150 МГц.

Технология ММХ (Multimedia Extension мультимедийное расширение) предполагает включение в состав команд процессора Pentium набора из 57 новых команд. Новые команды предназначены в первую очередь для реализации алгоритмов обработки видео- и аудиоданных: фильтрации, преобразований Фурье, свертки и пр.

Технология Intel MMX позволяет обрабатывать несколько пакетов данных одинаковым образом, т. е. использует технологию SIMD.

Число транзисторов в процессоре Pentium MMX составляет 4,5 млн штук, а кэш-память первого уровня имеет объем 32 Кбайта. Как показали испытания, MMX-процессор увеличивает производительность по сравнению с обычным процессором Pentium на величину до 34%.

В 1995–1997 годах корпорация Intel выпустила еще несколько моделей: Pentium MMX 266 МГц и Pentium Pro 200 МГц.

15 апреля 1998 года фирма Intel представила модели Pentium II с тактовыми частотами 350 и 400 МГц.

Процессор Pentium II изготавлен по так называемой 0,25-микрометровой технологии. При этом каждый транзистор умещается в квадрате со сторонами в четверть микрометра. На срезе человеческого волоса можно уместить 30 000 таких транзисторов. В будущем предстоит переход на технологии 0,18 и 0,13 микрометра.

С целью завоевания рынка фирма Intel выпустила недорогой процессор Celeron, в котором первоначально отсутствовала кэш-память второго уровня.

24 августа 1998 года фирма Intel представила еще два процессора семейства Celeron - 300A и 333. Новые процессоры выполнены по 0,25-микрометровой технологии и содержат кэш-память второго уровня размером 128 Кбайт.

По сравнению с Pentium II в нем для увеличения быстродействия еще больше усилено распараллеливание процессов.

Кроме того, Pentium III отличается наличием уникального идентификационного номера, который может быть считан программно для определения личности пользователя (например, при совершении покупок через Интернет).

В ноябре 2000 года выпущен процессор Pentium 4 с тактовыми частотами 1,4 и 1,5 ГГц. Процессор Pentium 4 изготавливается по 0,18-микрометровой технологии. В процессоре используется 144 новых команд (инструкций), предназначенных для ускорения обработки видео-, мультимедиа, трехмерной графики и криптографии.

Рис. 8.1. Зависимость числа транзисторов в процессорах фирмы Intel от даты выпуска

В 1965 году один из будущих руководителей компании Intel Гордон Мур сделал предсказание, что плотность транзисторов на кристалле будет удваиваться каждые полтора-два года с соответствующим возрастанием производительности процессора. «Закон Мура» с некоторыми оговорками действует до сих пор. На гистограмме схематично показан процесс увеличения числа транзисторов в процессорах фирмы Intel.

История развития процессоров


Основные характеристики процессоров и ЭВМ

Характеристики ЭВМ:

· Быстродействие – количество операций в секунду.

· Ёмкость (объём памяти) – предельное количество информации.

· Точность вычислений – количество разрядов, используемых для представления одного числа.

· Система команд – перечень команд, которые способен выполнить процессор.

· Надёжность

Характеристики процессора:

· Тактовая частота

· Производительность

· Энергопотребление

· Нормы литографического процесса

· Архитектура

Базовая архитектура процессора (основные регистры и их назначение)

Счетчик команд (СК) служит для организации обращений к ячейкам памяти, в которых хранятся команды программы. После исполнения любой команды СК указывает адрес ячейки памяти, содержащей следующую команду программы. Так как команды могут размещаться в любой из 2048 = 211 ячеек памяти, то СК имеет 11 разрядов.

Регистр адреса (РА) 11-разрядный регистр, содержащий значение исполнительного адреса (адреса ячейки памяти, к которой обращается ЭВМ за командой или данными).

Регистр команд (РК). Этот 16-разрядный регистр используется для хранения кода команды, непосредственно выполняемой машиной.

Регистр данных (РД). Используется для временного хранения 16-рязрядных слов при обмене информацией между памятью и процессором.

Аккумулятор (А). 16-разрядный регистр, являющийся одним из главных элементов процессора. Машина может одновременно выполнять арифметические и логические операции только с одним или двумя операндами. Один из операндов находится в аккумуляторе, а второй (если их два) - в регистре данных. Результат помещается в А.

Регистр переноса (С) - это одноразрядный регистр, выступающий в качестве продолжения аккумулятора и заполняющийся при переполнении А. Этот регистр используется при выполнении сдвигов.

Арифметическо-логическое устройство (АЛУ) может выполнять такие арифметические операции, как сложение и сложение с учетом переноса, полученного в результате выполнения предыдущей операции. Кроме того, оно способно выполнять операции логического умножения, инвертирования, циклического сдвига.

Система команд базовой ЭВМ

Классификация команд. ЭВМ способна понимать и выполнять точно определенный набор команд. При составлении программы пользователь ограничен этими командами. В зависимости от того, к каким блокам базовой ЭВМ обращается команда или на какие блоки она ссылается, команды можно разделить на три группы:

· обращения к памяти (адресные команды);

· обращения к регистрам (регистровые или безадресные команды);

· команды ввода-вывода.

Команды обращения к памяти предписывают машине производить действия с содержимым ячейки памяти, адрес которой указан в адресной части команды.

Безадресные команды выполняют различные действия без ссылок на ячейку памяти. Например, команда CLA (табл. 1.1) предписывает ЭВМ очистить аккумулятор (записать в А код нуля). Это команда обработки операнда, расположенного в конкретном месте, "известном" машине. Другой пример безадресной команды - команда HLT.

Команды ввода-вывода осуществляют обмен данными между процессором и внешними устройствами ЭВМ.

Асинхронный обмен данными

Программа такого обмена строится так: сначала проверяется готовность ВУ к обмену и если оно готово, то дается команда на обмен. ВУ сообщает о готовности установкой флага.

Легко заметить, что при асинхронном обмене ЭВМ должна тратить время на ожидание момента готовности, а так как готовность проверяется командным путем (команда TSF), то в это время ЭВМ не может выполнять никакой другой работы по преобразованию данных.

Основные понятия защищенного режима

Защищенный режим предназначен для обеспечения независимости выполнения нескольких задач, что подразумевает защиту ресурсов одной задачи от возможного воздействия другой задачи (под задачами подразумеваются как прикладные, так и задачи операционной системы).

Основным защищаемым ресурсом является память, в которой хранятся коды, данные и различные системные таблицы (например, таблица прерываний). Защищать требуется и совместно используемую аппаратуру, обращение к которой обычно происходит через операции ввода-вывода и прерывания. В защищенном режиме процессор 80286 аппаратно реализует многие функции защиты, необходимые для построения супервизора многозадачной ОС, поддерживая и механизм виртуальной памяти.

Сегментация, дескрипторы

Защита памяти основана на использовании сегментации. Сегмент - это блок адресного пространства памяти определенного назначения. К элементам сегмента возможно обращение с помощью различных инструкций процессора, использующих разные режимы адресации для формирования адреса в пределах сегмента. Максимальный размер сегмента для процессоров 8086 и80286 составлял 64 Кб, в 32-разрядных процессорах этот предел отодвигается до 4 Гб. Сегменты памяти выделяются задачам операционной системой, но в реальном режиме любая задача может переопределить значение сегментных регистров, задающих положение сегмента в пространстве памяти, и “залезть” в чужую область данных или кода. В защищенном режиме сегменты тоже распределяются операционной системой, но прикладная программа сможет использовать только разрешенные для нее сегменты памяти, выбирая их с помощью селекторов из предварительно сформированныхтаблиц дескрипторов сегментов. Селекторы представляют собой 16-битные указатели, загружаемые в сегментные регистры процессора.

Дескрипторы - это структуры данных, используемые для определения свойств программных элементов (сегментов, вентилей и таблиц). Дескриптор определяет положение элемента в памяти, размер занимаемой им области (лимит), его назначение и характеристики защиты. Защита памяти с помощью сегментации не позволяет:

Использовать сегменты не по назначению (например, пытаться трактовать область данных как коды инструкций);

Нарушать права доступа (пытаться модифицировать сегмент, предназначенный только для чтения, обращаться к сегменту, не имея достаточных привилегий, и т. п.);

Адресоваться к элементам, выходящим за лимит сегмента;

Изменять содержимое таблиц дескрипторов (то есть параметров сегментов), не имея достаточных привилегий.

Переключение задач

Защищенный режим предоставляет средствапереключения задач. Состояние каждой задачи (значение всех связанных с ней регистров процессора) может быть сохранено в специальном сегменте состояния задачи (TSS), на который указывает селектор в регистре задачи. При переключении задач достаточно загрузить новый селектор в регистр задачи, и состояние предыдущей задачи автоматически сохранится в ее TSS, а в процессор загрузится состояние новой (возможно, и ранее прерванной) задачи и начнется (продолжится) ее выполнение.

Обмен данными по прерыванию

Аппаратные прерывания вызываются внешними устройствами и теми компонентами компьютера, которые требуют немедленной обработки своей информации и приходят асинхронно по отношению к исполняемой программе. Прерывание можно рассматривать как некоторое особое событие в системе, которое заставляет процессор приостановить выполнение своей программы для реализации некоторой затребованной деятельности. Программные обработчики аппаратных прерываний инициализируют блочный обмен или выполняют одиночную операцию пересылки по системной шине с внешним устройством. Практически это основной способ инициализации обмена. Прерывания существенно увеличивают эффективность вычислительной системы, поскольку они позволяют внешним устройствам "обращать на себя внимание" процессора только по мере надобности.

Основные понятия и концепции ввода-вывода. Режимы управления вводом-выводом

Программирование ввода-вывода является наиболее сложным и трудоемким, требующим очень высокой квалификации. Поэтому код, реализующий операции ввода-вывода, сначала стали оформлять в виде системных библиотечных процедур, а потом и вовсе вывели из систем программирования, включив в операционную систему. Это позволило не писать такой код в каждой программе, а только обращаться к нему - системы программирования стали генерировать обращения к системному коду ввода-вывода. Таким образом, управление вводом-выводом - это одна из основных функций любой операционной системы.

Самым главным является следующий принцип: любые операции по управлению вводом-выводом объявляются привилегированными и могут выполняться только кодом самой операционной системы. Для обеспечения этого принципа в большинстве процессоров даже вводятся режимы пользователя и супервизора. Последний еще называют привилегированным режимом, или режимом ядра. Как правило, в режиме супервизора выполнение команд ввода-вывода разрешено, а в пользовательском режиме - запрещено. Обращение к командам ввода-вывода в пользовательском режиме вызывает исключение, и управление через механизм прерываний передается коду операционной системы. Хотя возможны и более сложные схемы, в которых в ряде случаев пользовательским программам может быть разрешено непосредственное выполнение команд ввода-вывода.

Как известно, имеется два основных режима ввода-вывода: режим обмена с опросом готовности устройства ввода-вывода и режим обмена с прерываниями.

1)Режим обмена с прерываниями по своей сути является режимом асинхронного управления. Для того чтобы не потерять связь с устройством (после выдачи процессором очередной команды по управлению обменом данными и переключения его на выполнение других программ), может быть запущен отсчет времени, в течение которого устройство обязательно должно выполнить команду и выдать-таки сигнал запроса на прерывание. Максимальный интервал времени, в течение которого устройство ввода-вывода или его контроллер должны выдать сигнал запроса на прерывание, часто называют установкой тайм-аута. Если это время истекло после выдачи устройству очередной команды, а устройство так и не ответило, то делается вывод о том, что связь с устройством потеряна и управлять им больше нет возможности. Пользователь и/или задача получают соответствующее диагностическое сообщение.

2)Устройство ввода-вывода (или его устройство управления) выдает сигнал готовности, который сообщает процессору о том, что можно выдать новую команду для продолжения обмена данными. Однако поскольку быстродействие устройства ввода-вывода намного меньше быстродействия центрального процессора (порой на несколько порядков), то сигнал готовности приходится очень долго ожидать, постоянно опрашивая соответствующую линию интерфейса на наличие или отсутствие нужного сигнала. Посылать новую команду, не дождавшись сигнала готовности, сообщающего об исполнении предыдущей команды, бессмысленно. В режиме опроса готовности драйвер, управляющий процессом обмена данными с внешним устройством, как раз и выполняет в цикле команду «проверить наличие сигнала готовности». До тех пор пока сигнал готовности не появится, драйвер ничего другого не делает. При этом, естественно, нерационально используется время центрального процессора. Гораздо выгоднее, выдав команду ввода-вывода, на время забыть об устройстве ввода-вывода и перейти на выполнение другой программы. А появление сигнала готовности трактовать как запрос на прерывание от устройства ввода-вывода. Именно эти сигналы готовности и являются сигналами запроса на прерывание

Сигналы AWARD BIOS

Сигналов нет. Неисправен или не подключен к материнской плате блок питания.
Непрерывный сигнал. Неисправен блок питания.
1 короткий. Ошибок не обнаружено.
2 коротких. Обнаружены незначительные ошибки. На экране монитора появляется предложение войти в программу CMOS Setup Utility и исправить ситуацию. Проверьте надежность крепления шлейфов в разъемах жесткого диска и материнской платы.
3 длинных. Ошибка контроллера клавиатуры. Перегрузите компьютер.
1 длинный+1 короткий. Проблемы с оперативной памятью.
1 длинный+2 коротких. Проблема с видеокартой -- наиболее часто встречающаяся неисправность. Рекомендуется вытащить плату и заново вставить. Также проверьте подключение монитора.
1 длинный+3 коротких. Возникла ошибка инициализации клавиатуры. Проверьте качество соединения последней с разъемом на материнской плате.
1 длинный+9 коротких. Возникла ошибка при чтении данных из микросхемы постоянной памяти. Перегрузите компьютер или перепрошейте содержимое микросхемы.
1 длинный повторяющийся. Неправильная установка модулей памяти.
1 короткий повторяющийся. Проблемы с блоком питания. Попробуйте убрать накопившуюся в нем пыль.

Доступ к памяти

§ DMA - доступ к памяти, в этом режиме основной памятью считается встроенная видеопамять на карте, текстуры копируются туда перед использованием из системной памяти компьютера. Этот режим работы не был новым, по тому же принципу работают звуковые карты, некоторые контроллеры и т. п.

§ DME - в этом режиме основная и видеопамять находятся как бы в общем адресном пространстве. Общее пространство эмулируется с помощью таблицы отображения адресов блоками по 4 Кб. Таким образом копировать данные из основной памяти в видеопамять уже не требуется, этот процесс называют AGP-текстурированием.

Очередь запросов:

Передача данных из основной памяти в видеопамять карты осуществляется в два этапа, сначала передаётся 64-битный адрес, откуда данные нужно считать, затем идут сами данные. Шина AGP предусматривает два варианта передачи:

§ первый - совместим с шиной PCI - запросы данных и адреса происходят по одному каналу;

§ второй - в режиме SBA (SideBand Addressing), по отдельной боковой шине, таким образом, можно посылать запросы на новые данные, не дожидаясь получения предыдущих.

Первое поколение

Ранние компьютерные шины были группой проводников, подключающей компьютерную память и периферию к процессору. Почти всегда для памяти и периферии использовались разные шины, с разным способом доступа, задержками, протоколами.

Одним из первых усовершенствований стало использование прерываний. До их внедрения компьютеры выполняли операции ввода-вывода в цикле ожидания готовности периферийного устройства. Это было бесполезной тратой времени для программ, которые могли делать другие задачи. Также, если программа пыталась выполнить другие задачи, она могла проверить состояние устройства слишком поздно и потерять данные. Поэтому инженеры дали возможность периферии прерывать процессор. Прерывания имели приоритет, так как процессор может выполнять только код для одного прерывания в один момент времени, а также некоторые устройства требовали меньших задержек, чем другие.

Некоторое время спустя компьютеры стали распределять память между процессорами. На них доступ к шине также получил приоритеты.

Классический и простой способ обеспечить приоритеты прерываний или доступа к шине заключался в цепном подключении устройств.

Второе поколение

Компьютерные шины «второго поколения», например NuBus

Решали некоторые из вышеперечисленных проблем. Они обычно разделяли компьютер на две «части», процессор и память в одной и различные устройства в другой. Между частями устанавливался специальный контроллер шин (bus controller ). Такая архитектура позволила увеличивать скорость процессора без влияния на шину, разгрузить процессор от задач управления шиной. При помощи контроллера устройства на шине могли взаимодействовать друг с другом без вмешательства центрального процессора. Новые шины имели лучшую производительность, но также требовали более сложных карт расширения. Проблемы скорости часто решались увеличением разрядности шины данных, с 8-ми битных шин первого поколения до 16 или 32-х битных шин во втором поколении. Также появилась программная настройка устройств для упрощения подключения новых устройств, ныне стандартизованная как Plug-n-play.

Однако новые шины, так же как и предыдущее поколение, требовали одинаковых скоростей от устройств на одной шине. Процессор и память теперь были изолированы на собственной шине и их скорость росла быстрее, чем скорость периферийной шины. В результате, шины были слишком медленны для новых систем и машины страдали от нехватки данных.

Третье поколение

Шины «третьего поколения» обычно позволяют использовать как большие скорости, необходимые для памяти, видеокарт и межпроцессорного взаимодействия, так и небольшие при работе с медленными устройствами, например, приводами дисков. Также они стремятся к большей гибкости в терминах физических подключений, позволяя использовать себя и как внутренние и как внешние шины, например для объединения компьютеров. Это приводит к сложным проблемам при удовлетворении различных требований, так что большая часть работ по данным шинам связана с программным обеспечением, а не с самой аппаратурой. В общем, шины третьего поколения больше похожи на компьютерные сети, чем на изначальные идеи шин, с большими накладными расходами, чем у ранних систем. Также они позволяют использовать шину нескольким устройствам одновременно.

Прерывание (англ. interrupt ) - сигнал, сообщающий процессору о наступлении какого-либо события. При этом выполнение текущей последовательности команд приостанавливается и управление передаётся обработчику прерывания, который реагирует на событие и обслуживает его, после чего возвращает управление в прерванный код.

В зависимости от источника возникновения сигнала прерывания делятся на:

§ асинхронные или внешние (аппаратные) - события, которые исходят от внешних источников (например, периферийных устройств) и могут произойти в любой произвольный момент: сигнал от таймера, сетевой карты или дискового накопителя, нажатие клавиш клавиатуры, движение мыши. Факт возникновения в системе такого прерывания трактуется как запрос на прерывание

§ синхронные или внутренние - события в самом процессоре как результат нарушения каких-то условий при исполнении машинного кода: деление на ноль или переполнение, обращение к недопустимым адресам или недопустимый код операции;

§ программные (частный случай внутреннего прерывания) - инициируются исполнением специальной инструкции в коде программы. Программные прерывания как правило используются для обращения к функциям встроенного программного обеспечения (firmware), драйверов и операционной системы.

Термин «ловушка» (англ. trap ) иногда используется как синоним термина «прерывание» или «внутреннее прерывание». Как правило, словоупотребление устанавливается в документации производителя конкретной архитектуры процессора.

В зависимости от возможности запрета внешние прерывания делятся на:

§ маскируемые - прерывания, которые можно запрещать установкой соответствующих битов в регистре маскирования прерываний (в x86-процессорах - сбросом флага IF в регистре флагов);

§ немаскируемые (англ. Non maskable interrupt, NMI ) - обрабатываются всегда, независимо от запретов на другие прерывания. К примеру, такое прерывание может быть вызвано сбоем в микросхеме памяти.

Обработчики прерываний обычно пишутся таким образом, чтобы время их обработки было как можно меньшим, поскольку во время их работы могут не обрабатываться другие прерывания, а если их будет много (особенно от одного источника), то они могут теряться.

До окончания обработки прерывания обычно устанавливается запрет на обработку этого типа прерывания, чтобы процессор не входил в цикл обработки одного прерывания. Приоритезация означает, что все источники прерываний делятся на классы и каждому классу назначается свой уровень приоритета запроса на прерывание. Приоритеты могут обслуживаться как относительные и абсолютные.

§ Относительное обслуживание прерываний означает, что если во время обработки прерывания поступает более приоритетное прерывание, то это прерывание будет обработано только после завершения текущей процедуры обработки прерывания.

§ Абсолютное обслуживание прерываний означает, что если во время обработки прерывания поступает более приоритетное прерывание, то текущая процедура обработки прерывания вытесняется, и процессор начинает выполнять обработку вновь поступившего более приоритетного прерывания. После завершения этой процедуры процессор возвращается к выполнению вытесненной процедуры обработки прерывания.

Программное прерывание - синхронное прерывание, которое может осуществить программа с помощью специальной инструкции.

SCSI - представляет собой набор стандартов для физического подключения и передачи данных между компьютерами и периферийными устройствами. SCSI стандарты определяют команды, протоколы и электрические и оптические интерфейсы. Разработан для объединения на одной шине различных по своему назначению устройств, таких как жёсткие диски, накопители на магнитооптических дисках, приводы CD, DVD, стримеры, сканеры, принтеры и т. д.

SCSI широко применяется на серверах, высокопроизводительных рабочих станциях; RAID-массивы на серверах часто строятся на жёстких дисках со SCSI-интерфейсом (однако, в серверах нижнего ценового диапазона всё чаще применяются RAID-массивы на основе SATA). В настоящее время устройства на шине SAS постепенно вытесняют устаревшую шину SCSI.

Система команд SCSI на уровне программного обеспечения употребляется в единых стеках поддержки устройств хранения данных в ряде операционных систем, таких, как Microsoft Windows.

Существует реализация системы команд SCSI поверх оборудования (контроллеров и кабелей) IDE/ATA/SATA, называемая ATAPI - ATA Packet Interface. Все используемые в компьютерной технике подключаемые по IDE/ATA/SATA приводы CD/DVD/Blu-Ray используют эту технологию.

Также система команд SCSI реализована поверх протокола USB, что является частью спецификации класса Mass Storage device. Это позволяет подключать через интерфейс USB любые хранилища данных (от флеш-накопителей до внешних жёстких дисков), не разрабатывая для них собственного протокола обмена, а вместо этого используя имеющийся в операционной системе драйвер SCSI.

В терминологии SCSI взаимодействие идёт между инициатором и целевым устройством. Инициатор посылает команду целевому устройству, которое затем отправляет ответ инициатору.

Команды SCSI посылаются в виде блоков описания команды (англ. Command Descriptor Block, CDB ). Длина каждого блока может составлять 6, 10, 12, 16 или 32 байта. В последних версиях SCSI блок может иметь переменную длину. Блок состоит из однобайтового кода команды и параметров команды.

После получения команды целевое устройство возвращает значение 00h в случае успешного получения, 02h в случае ошибки или 08h в случае, если устройство занято. В случае, если устройство вернуло ошибку, инициатор обычно посылает команду запроса состояния. Устройство возвращает Key Code Qualifier (KCQ).

Все команды SCSI делятся на четыре категории: N (non-data), W (запись данных от инициатора целевым устройством), R (чтение данных) и B (двусторонний обмен данными). Всего существует порядка 60 различных команд SCSI, из которых наиболее часто используются:

§ Test unit ready - проверка готовности устройства, в том числе наличия диска в дисководе.

§ Inquiry - запрос основных характеристик устройства.

§ Send diagnostic - указание устройству провести самодиагностику и вернуть результат.

§ Request sense - возвращает код ошибки предыдущей команды.

§ Read capacity - возвращает ёмкость устройства.

§ Read (4 варианта) - чтение.

§ Write (4 варианта) - запись.

§ Write and verify - запись и проверка.

§ Mode select - установка параметров устройства.

§ Mode sense - возвращает текущие параметры устройства.

Каждое устройство на SCSI-шине имеет как минимум один номер логического устройства (LUN - англ. Logical Unit Number ). В некоторых более сложных случаях одно физическое устройство может представляться набором LUN.

Для возможности работы нескольких независимых целевых устройств SCSI, в UNIX-подобных операционных системах применяется адресация из произвольно назначаемого драйвером идентификатора целевого устройства (SCSI target id) и номера LUN, сконфигурированного на нём.

Для устройств типа приводов CD/DVD/Blu-Ray, в том числе их разновидностей с возможностью записи, разработан MMC - Multimedia Command Set. Некоторые приводы, например, производства Asus и Pioneer, используют конкурирующий стандарт Mt. Fuji, отличающийся от MMC в некоторых нюансах.

История развития процессоров

История развития производства процессоров полностью соответствует истории развития технологии производства прочих электронных компонентов и схем.

Первым этапом, затронувшим период с 40-х по конец 50-х годов, было создание процессоров с использованием электромеханических реле, ферритовых сердечников (устройств памяти) и вакуумных ламп. Они устанавливались в специальные разъёмы на модулях, собранных в стойки. Большое количество таких стоек, соединённых проводниками, в сумме представляли процессор. Отличительной особенностью была низкая надёжность, низкое быстродействие и большое тепловыделение.

Вторым этапом, с середины 50-х до середины 60-х, стало внедрение транзисторов. Транзисторы монтировались уже на близкие к современным по виду платам, устанавливаемым в стойки. Как и ранее, в среднем процессор состоял из нескольких таких стоек. Возросло быстродействие, повысилась надёжность, уменьшилось энергопотребление.

Третьим этапом, наступившим в середине 60-х годов, стало использование микросхем. Первоначально использовались микросхемы низкой степени интеграции, содержащие простые транзисторные и резисторные сборки, затем по мере развития технологии стали использоваться микросхемы, реализующие отдельные элементы цифровой схемотехники (сначала элементарные ключи и логические элементы, затем более сложные элементы - элементарные регистры, счётчики, сумматоры), позднее появились микросхемы, содержащие функциональные блоки процессора - микропрограммное устройство, арифметико-логическое устройство, регистры, устройства работы с шинами данных и команд.

Четвёртым этапом, в начале 70-х годов, стало создание, благодаря прорыву в технологии создания БИС и СБИС (больших и сверхбольших интегральных схем, соответственно), микропроцессора - микросхемы, на кристалле которой физически были расположены все основные элементы и блоки процессора. Фирма Intel в 1971 году создала первый в мире 4-х разрядный микропроцессор 4004, предназначенный для использования в микрокалькуляторах. Постепенно практически все процессоры стали выпускаться в формате микропроцессоров. Исключением долгое время оставались только малосерийные процессоры, аппаратно оптимизированные для решения специальных задач (например суперкомпьютеры или процессоры для решения ряда военных задач), либо процессоры, к которым предъявлялись особые требования по надёжности, быстродействию или защите от электромагнитных импульсов и ионизирующей радиации. Постепенно, с удешевлением и распространением современных технологий, эти процессоры также начинают изготавливаться в формате микропроцессора. Сейчас слова микропроцессор и процессор практически стали синонимами, но тогда это было не так, потому что обычные (большие) и микропроцессорные ЭВМ мирно сосуществовали ещё по крайней мере 10-15 лет, и только в начале 1980-х годов микропроцессоры вытеснили своих старших собратьев. Тем не менее, центральные процессорные устройства некоторых суперкомпьютеров даже сегодня представляют собой сложные комплексы, построенные на основе микросхем большой и сверхбольшой степени интеграции. Надо сказать, что переход к микропроцессорам позволил потом создать персональные компьютеры, которые теперь проникли почти в каждый дом.

Первым общедоступным микропроцессором был 4-разрядный Intel 4004, представленный 15 ноября 1971 года корпорацией Intel. Он содержал 2300 транзисторов, работал на тактовой частоте 92,6 кГц и стоил 300 долл.
Далее его сменили 8-разрядный Intel 8080 и 16-разрядный 8086, заложившие основы архитектуры всех современных настольных процессоров. Из-за распространённости 8-разрядных модулей памяти был выпущен дешевый 8088, упрощенная версия 8086, с 8-разрядной шиной памяти. Затем проследовала его модификация 80186. В процессоре 80286 появился защищённый режим с 24-битной адресацией, позволявший использовать до 16 Мб памяти. Процессор Intel 80386 появился в 1985 году и привнёс улучшенный защищённый режим, 32-битную адресацию, позволившую использовать до 4 Гб оперативной памяти и поддержку механизма виртуальной памяти. Эта линейка процессоров построена на регистровой вычислительной модели. Параллельно развиваются микропроцессоры, взявшие за основу стековую вычислительную модель.

За годы существования микропроцессоров было разработано множество различных их архитектур. Многие из них (в дополненном и усовершенствованном виде) используются и поныне. Например Intel x86, развившаяся вначале в 32-битную IA-32, а позже в 64-битную x86-64 (которая у Intel называется EM64T). Процессоры архитектуры x86 вначале использовались только в персональных компьютерах компании IBM (IBM PC), но в настоящее время всё более активно используются во всех областях компьютерной индустрии, от суперкомпьютеров до встраиваемых решений. Также можно перечислить такие архитектуры как Alpha, POWER, SPARC, PA-RISC, MIPS (RISC-архитектуры) и IA-64 (EPIC-архитектура).

В современных компьютерах процессоры выполнены в виде компактного модуля (размерами около 5×5×0,3 см), вставляющегося в ZIF-сокет. Большая часть современных процессоров реализована в виде одного полупроводникового кристалла, содержащего миллионы, а с недавнего времени даже миллиарды транзисторов.

История развития процессоров

Характеристики МП

Контрольные вопросы

История развития процессоров с 1971 года до наших дней

Интересен тот факт, что первый процессор был выпущен на 10 лет раньше первого ком­пьютера IBM PC. Компания Intel создала свой первый процессор в 1971 году, а компания IBM свой первый ПК - в 1981 году. Но даже теперь, спустя более четверти века, мы продол­жаем использовать системы, в той или иной мере сходные по архитектуре с первым ПК. Про­цессоры, установленные в наших компьютерах сегодня, большей частью имеют обратную совместимость с процессором 8088, который компания IBM выбрала для своего первого персо­нального компьютера в 1981 году.

15 ноября 2001 года микропроцессор отпраздновал свое 30-летие. За эти годы его быстро­действие увеличилось более чем в 18500 раз (с 0,108 МГц до 2 ГГц). Процессор 4004 был представлен 15 ноября 1971 года; он работал на частоте 108 кГц (108000 тактов в секунду, или всего 0,1 МГц). Про­цессор 4004 содержал 2300 транзисторов и производился с использованием 10-микронной технологии. Это означает, что все линии, дорожки и транзисторы располагались от других элементов на расстоянии около 10 микрон (миллионная часть метра). Данные передавались блоками по 4 бит за такт, а максимальный адресуемый объем памяти составлял 640 байт. Процессор 4004 предназначался для использования в калькуляторах, однако в конечном ито­ге нашел и другие применения в связи с широкими возможностями программирования. На­пример, процессор 4004 использовался для управления светофорами, при анализе крови и даже в исследовательской ракете Pioneer 10, запущенной NASA!

В апреле 1972 года Intel выпустила процессор 8008, который работал на частоте 200 кГц. Он содержал 3500 транзисторов и производился все по той же 10-микронной технологии. Шина данных была 8-разрядной, что позволяло адресовать 16 Кбайт памяти. Этот процессор предназначался для использования в терминалах и программируемых калькуляторах.

Следующая модель процессора, 8080, была анонсирована в апреле 1974 года. Этот процессор содержал 6000 транзисторов и мог адресовать уже 64 Кбайт памяти. На нем был собран первый персональный компьютер (не PC) Altair 8800. В этом компьютере использовалась операционная система CP/M, а Microsoft разработала для него интерпретатор языка BASIC. Это была первая массовая модель компьютера, для которого были написаны тысячи программ.

Со временем процессор 8080 стал настолько известен, что его начали копировать. В конце 1975 года несколько бывших инженеров Intel, занимавшихся разработкой процессора 8080, создали компанию Zilog. В июле 1976 года эта компания выпустила процессор Z-80, который представлял собой значительно улучшенную версию 8080. Этот процессор был несовместим с 8080 по контактным выводам, но сочетал в себе множество различных функций, например интерфейс памяти и схему обновления ОЗУ (RAM), что давало возможность разрабатывать более дешевые и простые компьютеры. В Z-80 был также включен расширенный набор ко­манд процессора 8080, позволяющий использовать его программное обеспечение. В этот про­цессор вошли новые команды и внутренние регистры, поэтому программное обеспечение, разработанное для Z-80, могло использоваться практически со всеми версиями 8080. Перво­начально процессор Z-80 работал на частоте 2,5 МГц (более поздние версии работали уже на частоте 10 МГц), содержал 8500 транзисторов и мог адресовать 64 Кбайт памяти.


Компания Intel не остановилась на достигнутом, и в марте 1976 года выпустила процессор 8085, который содержал 6500 транзисторов, работал на частоте 5 МГц и производился по 3-микронной технологии. Несмотря на то что он обогнал процессор Z-80 на несколько меся­цев, ему так и не удалось достичь популярности последнего. Он использовался в основном в качестве управляющей микросхемы различных компьютеризованных устройств.

В этом же году компания MOS Technologies выпустила процессор 6502, который был аб­солютно не похож на процессоры Intel. Он был разработан группой инженеров компании Mo­torola. Эта же группа работала над созданием процессора 6800, который в будущем трансфор­мировался в семейство процессоров 68000. Цена первой версии процессора 8080 достигала 300 долларов, в то время как 8-разрядный процессор 6502 стоил всего около 25 долларов. Та­кая цена была вполне приемлема для Стива Возняка (Steve Wozniak), и он встроил процессор- 6502 в новые модели Apple I и Apple II. Процессор 6502 использовался также в системах, соз­данных компанией Commodore и другими производителями. Этот процессор и его преемники с успехом работали в игровых компьютерных системах, в число которых вошла приставка Nintendo Entertainment System (NES). Компания Motorola продолжила работу над созданием серии процессоров 68000, которые впоследствии были использованы в компьютерах Apple Macintosh. Второе поколение компьютеров Mac использовало процессор PowerPC, являю­щийся преемником 68000. Сегодня компьютеры Mac снова перешли на архитектуру PC и ис­пользуют с ними одни процессоры, микросхемы системной логики и прочие компоненты.

В июне 1978 года Intel выпустила процессор 8086, который содержал набор команд под ко­довым названием х86. Этот же набор команд до сих пор поддерживается в самых современных процессорах Core 2 и AMD Athlon 64 X2. Процессор 8086 был полностью 16-разрядным - внут­ренние регистры и шина данных. Он содержал 29000 транзисторов и работал на частоте 5 МГц. Благодаря 20-разрядной шине адреса он мог адресовать 1 Мбайт памяти. При создании про­цессора 8086 обратная совместимость с 8080 не предусматривалась. Но в то же время значи­тельное сходство их команд и языка позволили использовать более ранние версии программ­ного обеспечения. Это свойство впоследствии сыграло важную роль для быстрого перевода программ системы CP/M (8080) на рельсы PC.

Несмотря на высокую эффективность процессора 8086 его цена была все же слишком вы­сока по меркам того времени и, что гораздо важнее, для его работы требовалась дорогая мик­росхема поддержки 16-разрядной шины данных. Чтобы уменьшить себестоимость процессо­ра, в 1979 году Intel выпустила процессор 8088 - упрощенную версию 8086. Процессор 8088 использовал те же внутреннее ядро и 16-разрядные регистры, что и 8086, мог адресовать 1 Мбайт памяти, но в отличие от предыдущей версии использовал внешнюю 8-разрядную шину данных. Это позволило обеспечить обратную совместимость с ранее разработанным 8-разрядным процессором 8085 и тем самым значительно снизить стоимость создаваемых системных плат и компьютеров. Именно поэтому IBM выбрала для своего первого ПК "урезанный" процессор 8088, а не 8086.

Это решение имело далеко идущие последствия для всей компьютерной индустрии. Про­цессор 8088 был полностью программно-совместимым с 8086, что позволяло использовать 16-разрядное программное обеспечение. В процессорах 8085 и 8080 использовался очень по­хожий набор команд, поэтому программы, написанные для процессоров предыдущих версий, можно было легко преобразовать для процессора 8088. Это, в свою очередь, позволяло разра­батывать разнообразные программы для IBM РС, что явилось залогом его будущего успеха. Не желая останавливаться на полпути, Intel была вынуждена обеспечить поддержку обратной совместимости 8088/8086 с большинством процессоров, выпущенных в то время.

В те годы еще поддерживалась обратная совместимость процессоров, что ничуть не меша­ло вводить различные новшества и дополнительные возможности. Одним из основных изме­нений стал переход от 16-разрядной внутренней архитектуры процессора 286 и более ранних версий к 32-разрядной внутренней архитектуре 386-го и последующих процессоров, относя­щихся к категории IA-32 (32-разрядная архитектура Intel). Эта архитектура была представ­лена в 1985 году, однако потребовалось еще 10 лет, чтобы на рынке появились такие операци­онные системы, как Windows 95 (частично 32-разрядные) и Windows NT (требующие ис­пользования исключительно 32-разрядных драйверов). И только еще через шесть лет появилась операционная система Windows XP, которая была 32-разрядной как на уровне драйверов, так и на уровне всех компонентов. Итак, на адаптацию 32-разрядных вычислений потребовалось 16 лет. Для компьютерной индустрии это довольно длительный срок.

Теперь наблюдается очередной "скачок" в развитии архитектуры ПК - компании Intel и AMD представили 64-разрядные расширения 32-разрядной архитектуры Intel IA-64 (Intel Archi­tecture, 64-bit - 64-разрядная архитектура Intel), выпустив процессоры Itanium и Itanium 2. Од­нако данная архитектура была абсолютно несовместима с существовавшей 32-разрядной. Архи­тектура IA-64 была анонсирована в 1994 году в рамках проекта по разработке компаниями Intel и HP нового процессора с кодовым именем Merced; первые технические детали были опубликованы в октябре 1997 года. В результате в 2001 году был выпущен процессор Itanium, поддерживающий архитектуру IA-64.

К сожалению, IA-64 не являлась расширением архитектуры IA-32, а была совершенно но­вой архитектурой. Это хорошо для рынка серверов (собственно, для этого IA-64 и разрабаты­валась), однако совершенно неприемлемо для мира ПК, который всегда требовал обратной совместимости. Хотя архитектура IA-64 и поддерживает эмуляцию IA-32, при этом обеспечи­вается очень низкая производительность.

Компания AMD пошла по другому пути и разработала 64-разрядные расширения для архи­тектуры IA-32. В результате появилась архитектура AMD64 (которая также называется x86-64). Через некоторое время Intel представила собственный набор 64-разрядных расширений, кото­рый назвала EM64T (IA-32e). Расширения Intel практически идентичны расширениям AMD, что означает их совместимость на программном уровне. В результате впервые в истории сложи­лась ситуация, когда Intel следовала за AMD в разработке архитектуры ПК, а не наоборот.

Для того чтобы 64-разрядные вычисления стали реальностью, необходимы 64-разрядные операционные системы и драйверы. В апреле 2005 года компания Microsoft начала распро­странять пробную версию Windows XP Professional x64 Edition, поддерживающую дополни­тельные инструкции AMD64 и EM64T. Основные производители компьютеров уже постав­ляют готовые системы с предустановленной Windows XP Professional x64 и с 64-разрядной системой Windows Vista; они также разработали 64-разрядные драйверы для достаточно со­временных моделей устройств. Выпускаются и 64-разрядные версии Linux, благодаря чему каких-либо серьезных препятствий для перехода к 64-разрядным вычислениям нет.

Последним достижением можно считать выпуск компаниями Intel и AMD двух- и четы-рехъядерных процессоров. Они содержат два или четыре полноценных ядра на одной под­ложке; в результате один процессор теоретически может выполнять работу двух или четырех процессоров. Хотя многоядерные процессоры не обеспечивают значительного увеличения быстродействия в играх (которые в основном предполагают выполнение данных в один по­ток), они просто незаменимы в многозадачной среде. Если вы когда-нибудь пытались одно­временно выполнять проверку компьютера на наличие вирусов, работать с электронной по­чтой, а также запускать какие-то другие приложения, то наверняка знаете, что такая нагрузка может "поставить на колени" даже самый быстрый одноядерный процессор. Поскольку двухъядерные процессоры сейчас выпускаются обеими компаниями, Intel и AMD, шансы на то, что вам удастся выполнить работу гораздо быстрее благодаря многозадачности, значи­тельно возрастают. Современные двухъядерные процессоры также поддерживают 64-разряд­ные расширения AMD64 или EM64T, что позволяет воспользоваться преимуществами как двухъядерности, так и 64-разрядных вычислений.

Персональные компьютеры прошли долгий путь развития. Первый используемый в ПК процессор 8088 содержал 29 тыс. транзисторов и работал с частотой 4,77 МГц. Процессор AMD Athlon 64 FX содержит больше 105 млн. транзисторов, процессор Pentium 4 670 (ядро Prescott) работает с частотой 3,8 ГГц и содержит 169 млн. транзисторов, преимущественно благодаря наличию кэш-памяти второго уровня L2 объемом 2 Мбайт. Двухъядерные процес­соры, содержащие два ядра и кэш-память на одной подложке, характеризуются еще большим количеством транзисторов. Процессор Intel Pentium D содержит 230 млн. транзисторов, а AMD Athlon 64 X2 - более 233 млн. Последние процессоры Core 2 Duo и Core 2 Quad содер­жат 291 и 582 млн. транзисторов соответственно; при этом в последний интегрирована кэш­память второго уровня объемом 8 Мбайт. Многоядерная архитектура и постоянно растущий объем кэш-памяти второго уровня приводят к постоянному росту количества транзисторов. Скоро эта отметка перевалит за один миллиард. Все это является практическим подтвержде­нием закона Мура, в соответствии с которым быстродействие процессоров и количество со­держащихся в них транзисторов удваивается каждые 1,5-2 года.

ПРИМЕЧАНИЕ В сфере выпуска микропроцессоров с фирмой Intel постоянно конкурирует фирма AMD. Микропроцессоры фирмы AMD выпуска 2003- 2004 годов (Athlon ХР, Athlon 64) мало в чем уступают процессорам Pentium 4, а в некоторых режимах работы даже превосходят последние по быстродействию. Но, как и прежде, МП AMD сильнее греются (их штатная температура - 55-80 °С, в то время, как у МП Pentium 30-60 °С), поэтому для них необходим мощный вентилятор и надежная система защиты от катастрофического перегрева. Все МП Pentium такой системой снабжены: у них имеется датчик, который при превышении температуры 120-130 °С мгновенно выключает МП, спасая его от «сгорания». У МП Pentium есть еще более совершенная система - Thermal Monitor, принудительно замедляющая работу микропроцессора при превышении допустимой температуры

Вступление

Сегодня мир без компьютера - это немыслимое явление. А ведь мало кто задумывается об устройстве этих "существ". И уж точно никто не знает, насколько умными стали данные аппараты за последние 50 лет. Для многих людей Искусственный интеллект и компьютер, который стоит на вашем столе, - это одно и тоже. Но как люди просвещенные, мы знаем, что до разума человека, или даже собаки любой, даже самой умной, машине еще далеко.

А ведь отличие все-таки есть: в мозге живых существ идет параллельная обработка видео, звука, вкуса, ощущений, и т. д., не говоря уже о такой элементарной вещи, как мыслительный процесс, который сопровождает многих от рождения и до самой смерти.

Сегодня любой прорыв в информационных технологиях встречается как нечто особо выдающееся. Люди хотят создать себе младшего брата, который, если еще не думает, то хотя бы соображает быстрее их. Понятно, что никакими гигагерцами не измеришь уникум человеческого мозга, но никто и не измеряет, и мы проведем краткую экскурсию в недалекое прошлое и, конечно, в непонятное настоящее развития главной части компьютера, его мозга, его сердца - его центрального процессора.

Экскурс в историю микропроцессоров

Самые первые электронно-вычислительные машины (ЭВМ) появились в 60-е годы ХХ столетия. Сначала эти машины были громоздки, и они были доступны только исследовательским центрам с огромным бюджетом. Компьютеры же, участвуя в современном сверхбыстром научно-техническом прогрессе, становятся все меньше и меньше. В настоящее время это машины, имеющие размеры дипломата и выполняющие любые мыслимые и не мыслимые операции.

Но обратимся к историческим справкам. С 1978 года был запущен в серийное производство один из первых процессоров из серии i86. Именно развитие этой серии и привело к появлению доступных и небольших по размером персональных компьютеров, так популярных в наше время.

Мы остановимся на IBM-совместимых компьютерах. Названы они так по имени фирмы производителя.

Мы остановимся на этих компьютерах лишь потому, что, к примеру, компьютеры Apple Computers можно назвать скорее специализированными, чем широко распространенными.

В1978 году фирма Intel совместно с фирмой IBM разрабатывает и выпускает в серию первые из процессоров семейства i86. Если присмотреться, то можно увидеть, что с фирмой Intel к ряду процессоров присоединяются и другие фирмы, которые производят свои устройства по зарекомендовавшей себя технологии.

Важно то, что почти с самого начала эти фирмы выливаются в конкурирующие между собой предприятия, что и приводит к резким темпам развития, снижениям цен и соответственно можно считать этот факт положительным для потребителя.

AMD - это отпочковавшийся от Intel младший брат, но пути эти фирм расходятся по всем параметрам. Сейчас наблюдается явное противостояние двух сильных конкурентов, у которых есть свои технологии, а так же сильные и слабые стороны. AMD по праву занимает свою долю на рынке процессоров, даже несмотря на то, что ее подход к развитию технологий скорее эволюционный, чем революционный. Поэтому не надо считать, что AMD просто клонирует Intel Pentium - это не так.

Сегодня многие эксперты говорят о том, что фирма Ciryx сдала позиции почти все свои позиции, хотя по-прежнему выпускает современные и недорогие процессоры, но уже и не стремится занять, хотя бы номинально, лидерство. Данную фирму всегда отличало то, что она самостоятельно разрабатывала процессоры, но не все модели были столь удачны, как у конкурентов.

Нельзя утверждать, что компания Intel с Pentium по Pentium 4 совершила что-то сверхреволюционное в области своих разработок. Однако считается, что эта фирма идет на шаг впереди своего младшего брата.

Это заблуждение было развеяно в 2000 – 2001 годах, когда из-за неправильной политики в маркетинге Intel не смогла продвинуть свой новый процессор Pentium 4 из-за большой стоимости не столько самого чипа, сколько периферии, в частности памяти RDIMM.

Компания AMD пользуется этой ситуацией и выходит в свет с процессором Athlon, а чуть погодя - Athlon XP, который по характеристикам даже превосходил Pentium 4, а по цене был гораздо ниже.

В прессе про процессоры AMD заговорили не просто как про дешевую альтернативу, но и как про более выгодное вложение средств, по крайней мере, для домашних пользователей.

Но Intel не сдается и, несмотря на провал в маркетинге, мы понимаем, что ее процессор был куда более технологически совершенен. Что мы и видим в ситуации на рынке, AMD опять входит в роль, к которой все привыкли в роль дешевой альтернативы более дорогим, но и более быстрым и современным Pentium.

Для пользователей персональных компьютеров мы скажем, что приобретение машины с процессором Pentium - это рискованное вложение средств. Мода на компьютерном рынке меняются так стремительно, что за ней почти невозможно уследить: 75, 90, 100, 120, 133, 150, 166, 200 МГц… Закончится ли когда-нибудь эта бешеная гонка? Решением может стать MMX (Multimedia eXtension - "мультимедиа — расширение") - технология, которая может превратить "простой" Pentium ПК в мощную мультимедийную систему.

Как известно, на кристалле процессора Pentium интегрирован математический сопроцессор. Этот функциональный блок, который отвечает за "перемалывание чисел", но… а практике, подобные возможности требуются все же достаточно редко, их используют в основном системы САПР и некоторые программы, решающие чисто вычислительные задачи. У большинства пользователей этот блок просто простаивает.

Создавая технологию MMX, фирма Intel стремилась решить две задачи: во-первых, задействовать неиспользуемые возможности, а во-вторых, увеличить производительность ЦП при выполнении типичных мультимедиа-программ. С этой целью в систему команд процессора были добавлены дополнительные инструкции (всего их 57) и дополнительные типы данных, а регистры блока вычислений с плавающей запятой выполняют функции рабочих регистров.

Дополнительные машинные команды предназначены для таких операций, как быстрое преобразование Фурье (функция, используемая в видеокодеках), которые зачастую выполняются специальными аппаратными средствами.

"Процессоры, использующие технологию MMX, совместимы с большинством прикладных программ, ведь для "старого" ПО регистры MMX выглядят точно так же, как обычные регистры математического сопроцессора. Однако встречаются и исключения. Например, прикладная программа может одновременно обращаться только к одному блоку - либо вычислений с плавающей запятой, либо MMX. В ином случае результат, как правило, не определен, и нередко происходит аварийное завершение прикладной программы.

Технология MMX - это генеральное направление развития архитектуры процессоров Intel на 1997 г. В первую очередь ее преимущества смогут оценить конечные пользователи - мультимедиа-компьютеры станут заметно мощнее и дешевле. Официальное объявление новой технологии запланировано на начало октября 1996 года, однако процессор, в котором реализована технология MMX, уже существует. Он известен под кодовым названием P55C, и Intel, видимо, сознательно оттягивает момент его выпуска, давая изготовителям ПК возможность ознакомиться с достоинствами этого ЦП.

Среди компаний, которые предполагают выпустить мультимедиа-ПК с процессором P55C, есть как признанные лидеры компьютерного рынка - Compaq, Dell, Acer, так и молодые, но динамичные фирмы, например, Compulink Research (CLR).

Ожидается, что большинство популярных прикладных программ будут использовать технологию MMX, причем к концу 1997 г. их количество более чем удвоится, и пользователи вновь столкнутся с проблемой выбора. Сегодня имеются три высокопроизводительных процессора - Pentium с тактовой частотой 200 МГц, Pentium Pro с той же тактовой частотой и 200-МГцовый вариант P55C. Результаты испытаний на производительность, которые предоставила фирма CLR, позволяют сделать вывод, что ПК с процессором P55C занимают промежуточное положение в этом ряду. При выполнении типичных задач результаты этого ЦП почти не отличаются от показателей "обычных" моделей Pentium с такой же тактовой частотой. Однако при исполнении фрагментов кода, который был оптимизирован для P55C (на видео-, аудио — и графических тестах), он не уступает процессору Pentium Pro, в зависимости от типа задачи выигрыш в быстродействии достигает от 70% до 400%. Как ожидается, мультимедиа-ПК с процессором P55C будет дешевле аналогичного по функциональным возможностям компьютера.

В статье использованы материалы, предоставленные фирмой CLR".

Кроме технологических решений по увеличению количества инструкций велась работа и по улучшению процесса производства. Ведь транзисторов для обработки информации становилось все больше и больше, и они, в конце концов, просто не помещались на кристалл, что приводило к более совершенным решениям. В настоящее время процессоры Intel выпускаются по техпроцессу с нормой в 0,13 мкм, и на одном квадратном миллиметре кристалла располагается миллионы транзисторов. Intel планирует перейти на 0,09 мкм уже в 2003 году.

Что такое техпроцесс 0,13 мкм

Попробую объяснить, не вдаваясь в технологию. Обычно приведенная цифра означает длину канала КМОП-транзистора. Скорость переключения каскада на КМОП зависит от крутизны ВАХ транзисторов и емкости нагрузки. Крутизна определяется током через транзистор и отношением (ширина канала - W) / (длинна канала - L). Основная емкость в КМОП технологии - емкость затворов транзисторов - пропорциональна площади затвора = ~W * L. Очевидно, что чем меньше длина канала, тем меньше площадь затвора (причем зависимость квадратичная), при том же отношении W/L. Следовательно, можно уменьшить ток, и не потерять быстродействие. А можно уменьшить W/L за счет уменьшения ширины канала и уменьшить размер транзисторов - увеличить количество элементов на кристалле (хотя в современных технологиях ширина канала, как правило, оптимальна с точки зрения минимизации размера топологического элемента).

Новый процессор от Intel

В конце мая корпорация Intel сообщила о том, что в течение ближайшего месяца производители компьютеров намерены представить первые серверы и рабочие станции на базе процессоров Itanium. Ожидается, что в этом году около 25 компаний выпустят более 35 таких моделей, а сотни поставщиков оборудования и программного обеспечения предложат продукты, работающие с данными системами. IDC прогнозирует, что в этом году будет продано 26 тыс. систем на базе Itanium, а к 2004 году их число возрастет до 540 тыс. Иными словами, сообщение Intel означало, что начался промышленный выпуск нового процессора корпорации.

Системы на основе процессоров Itanium будут поддерживаться четырьмя ОС, включая платформу Microsoft Windows (64-разрядную версию для рабочих станций - 64-bit Edition и 64-разрядную версию для серверов - 64-bit Windows Advanced Server Limited Edition 2002); HP-UX 11i v1.5 компании Hewlett-Packard, AIX-5L корпорации IBM и Linux. 64-разрядные версии последней планируют поставлять компании Caldera International, Red Hat, SuSE Linux и Turbolinux. Уже анонсировано более 500 приложений, которые предполагается портировать для архитектуры Itanium.

Буквально в день объявления Itanium о выпуске систем на его основе заявили несколько крупных компаний, в числе которых Bull, Compaq, Dell, Fujitsu-Siemens, Hewlett-Packard, IBM, NEC, SGI и Unisys. В частности, IBM анонсировала рабочую станцию IntelliStation Z Pro и сервер X380, Dell - четырехпроцессорный сервер PowerEdge 7150 и рабочую станцию Precision Workstation 730, Bull - 4 — и 16-процессорные модели серверов Escala IL. Особо хотелось бы отметить системы, представленные Hewlett-Packard: двухпроцессорную рабочую станцию HP Workstation i2000 и 4 — и 16-процессорные серверы HP Server rx4610 и HP Server rx9610. В настоящее время HP-UX - единственная 64-разрядная система UNIX, обеспечивающая переносимость на уровне двоичного кода программных приложений заказчиков при переходе с RISC (Reduced Instruction Set Computing) на архитектуру Itanium. HP-UX оптимизирована с тем, чтобы обеспечить высокий уровень производительности, масштабируемости и надежности. Кроме того, сейчас Hewlett-Packard - единственный производитель компьютеров на платформе RISC, чью технику можно перевести на платформу Itanium без повторной компиляции приложений и ПО. А дело здесь в следующем.

Путь процессоров Itanium к потребителю в Intel обычно делят на шесть этапов: завоевание поддержки отрасли, выпуск прототипов для партнеров, выпуск прототипов для разработчиков, выпуск пилотных систем, платформы и, наконец, массовое внедрение решений. Известно, что для тестирования и разработки производителям компьютеров и пользователям было поставлено более 6500 систем. Первый этап этого пути датируется ноябрем 1997 года. Однако хотелось бы напомнить, что история Itanium началась значительно раньше

Merced, он же Itanium

Еще в июне 1994г. компании Intel и Hewlett-Packard подписали соглашение о совместной разработке новой 64-разрядной архитектуры, ориентированной на применение в серверах и рабочих станциях. Преимущества микропроцессоров с большей разрядностью очевидны. Они позволяют адресовать больший объем памяти, дают возможность оперировать с большим диапазоном чисел, повышают эффективность параллельных и матричных вычислений и т. д. Заметим, что еще в 1983 г. в Hewlett-Packard было принято решение начать проект объединения различных процессоров и ОС, используемых в трех компьютерных линейках (HP1000, HP3000 и HP9000). Результаты этого решения сегодня хорошо известны: это семейство процессоров PA-RISC (Precision Architecture Reduced Instruction Set Computing) и ОС UP-UX, которые совместно применяются в высокопроизводительных рабочих станциях и Unix-серверах (N-, V-, L — и A-класса). Первый компьютер на базе PA-RISC был представлен еще в 1985 г. Исследования и разработки ведутся в лаборатории микропроцессоров, которая входит в подразделение System VLSI Technology Operation. В 1989 г. в поисках нового, наследующего PA-RISC решения Нewlett-Packard приступила к разработке архитектуры EPIC (Explicitly Parallel Instruction Computing), впоследствии переименованной в WideWorld Architecture, а затем в SuperParallel Processor Architecture (SP-PA). Но в 1993 г., когда эта 64-разрядная архитектура была практически готова, руководители проекта поняли, что компании одной не вынести огромных расходов на разработку и изготовление нового процессора. Тогда в Нewlett-Рackard впервые рассмотрели возможность привлечь к созданию высокопроизводительного процессора другую компанию.

К 1994 г. корпорация Intel, имеющая огромный опыт в области микропроцессоров, испытывала определенные трудности. Продолжавшаяся два года разработка 64-разрядной архитектуры Р7 натолкнулась на серьезные трудности. Впоследствии Intel отказалась от Р7 в пользу EPIC, хотя справедливости ради стоит отметить, что некоторые особенности Р7 реализованы в Itanium.

К предложению HP работать сообща в Intel отнеслись с большим энтузиазмом. Ведь открывалась реальная возможность заполучить масштабируемую ОС корпоративного уровня HP-UX, которую можно будет реализовать на новой платформе. В совместном контракте Нewlett-Рackard пришлось пойти на крупные уступки. Корпорация согласилась на то, что Intel будет принимать все конструктивные решения по новому процессору, даже те, которые затрагивают архитектуру EPIC, разработанную инженерами Нewlett-Рackard. Кстати, новый процессор получил название Merced в честь реки в Калифорнии.

Два года спустя, когда выяснилось, что мощности Merced недостаточно, чтобы при использовании HP-UX обойти архитектуру PA-RISC, в Нewlett-Рackard решили самостоятельно создавать новый процессор на том же фундаменте, что и Merced, но с иной реализацией внутренних функциональных блоков. Когда об этом проекте узнали в Intel, начались переговоры о распространении партнерства, которое первоначально ограничивалось созданием только процессора Merced, на 64-разрядную архитектуру в целом, с тем чтобы включить в соглашение и новый кристалл. Так Merced, в свое время рассматриваемый в качестве потенциального могильщика RISC-архитектуры, превратился в промежуточную ступеньку. Поскольку подписанное соглашение не имело жесткого срока, обе компании без труда расширили свое сотрудничество уже над новым 64-разрядным процессором McKinley (так называется высочайшая гора в Северной Америке). Кстати, первоначально предполагалось, что системы Merced появятся в 1997 или 1998 г. Но скоро только сказка сказывается.

Важность успеха Intel и НР в деле создания мощной 64-разрядной платформы для компьютерной индустрии невозможно переоценить. Свои ставки здесь есть у каждого. Почти все фирмы-производители компьютеров создают новые системы, а все разработчики ОС UNIX планируют перенести свои версии на новую платформу. Аналитики уверены, что Itanium заставит компании, выпускающие серверы и рабочие станции RISC/Unix, пересмотреть свой модельный ряд. Однако на очень широкий выбор компьютеров Itanium рассчитывать не приходится. Процессор разрабатывался слишком долго, к тому же с середины 1999 г. разработка то и дело наталкивалась на препятствия. В результате, большинство компаний сосредоточилось на создании компьютеров на базе McKinley.

Неудивительно, что выпуск Merced неоднократно задерживался, если учесть, что два гиганта индустрии преследовали общую цель, но использовали совершенно разные тактические подходы. Некоторые эксперты тогда утверждали, что компании оказались партнерами поневоле: их свели внешние силы рынка, разрабатываемые изделия и финансовые трудности, которые они решили преодолевать вместе.

Intel рассматривает Itanium в качестве родоначальника нового семейства процессоров, которое будет развиваться в ближайшие 25 лет. За первой моделью с кодовым названием Merced последуют McKinley, Madison, Deerfield и другие новые версии. По официальным данным, шесть моделей подобных кристаллов уже находятся на стадии разработки. Опытные партии процессора McKinley планируется выпустить в конце текущего года, а первые системы на его основе должны появиться в 2002 г. Ожидается, что этот процессор дебютирует с тактовой частотой в 1 ГГц или выше. По имеющейся информации, все 64-разрядные процессоры Intel будут содержать в своем названии слово Itanium, а McKinley, Madison и прочие имена так и останутся кодовыми названиями. Таким образом, скорее всего, официально анонсированы будут Itanium II, Itanium III и т. д.

Только через три года после подписания соглашения, в ноябре 1997 г. Intel и Hewlett-Packard представили архитектуру будущего процессора и планы разработки целого семейства IA-64 (Intel Architecture). Не полагаясь только на собственные ресурсы, в мае 1999 г. Intel объявила о создании инвестиционного фонда, получившего название Intel 64 Fund с капиталом 250 млн. долл. Эти средства должны были быть направлены на инвестиционную поддержку компаний, занимающихся разработкой Интернет-приложений и ПО уровня предприятий. В создании фонда, помимо Intel и Hewlett-Packard, приняли участие 16 компаний и организаций. Среди них не только компьютерные фирмы - Compaq, Dell, SGI, но и Reuters, Ford Motor Company, General Electric, Bank of America. На сегодняшний день более 150 млн. долл. инвестировано более чем в 40 компаний, работающих в сфере инфраструктуры Интернет, электронной торговли, производства и финансов на вертикальных рынках.

Тогда же, в 1997 г., Intel и Hewlett-Packard представили архитектуру и набор команд IA-64. В августе 1999 г. впервые появились опытные образцы процессора, а осенью Intel представила Itanium как коммерческое наименование своего первого 64-разрядного процессора, дотоле носившего рабочее название Merced. Введены были термины "семейство процессоров Itanium" (IPF, Itanium Processor Family) и "архитектура Itanium" (Itanium Architecture). Через год, в октябре 2000 г. появились пилотные образцы систем на основе Itanium. Примерно в то же время прошло второе промышленное тестирование программ и оборудования на платформе Itanium. Приоритетной задачей этого мероприятия было жесткое тестирование платформы перед пилотным выпуском, причем в программу тестирования входила проверка работы в сети и обеспечение телекоммуникаций. На территории Caesar’s Palace площадью 34 тыс. кв. футов, где проходило тестирование, было проложено более 3 миль кабеля, более ста 20-амперных силовых линий, установлены хранилища данных суммарной емкостью более 2 Тбайт. Активно проводились и другие мероприятия, включая широкое распространение ключевой технической информации и средств разработки, а также поставку более 6000 прототипов серверов, как в одно-, так и в многопроцессорной конфигурации. Кроме того, Intel открыла в разных странах мира более 30 центров разработки приложений, где инженеры Intel и разработчики программного и аппаратного обеспечения совместно работали над оптимизацией прикладных программ под системы на основе Itanium.

Особенности архитектуры

По мнению представителей Intel, архитектура процессора Itanium - это самая значительная разработка со времени презентации 386-го процессора в 1985 г. Первые образцы 64-разрядного процессора Intel представляют собой картридж размером примерно 10 х 6 см, который включает в себя кэш-память третьего уровня емкостью 2 либо 4 Мбайт и радиатор. Картридж монтируется в разъем типа Slot и имеет 418 выводов. Процессор имеет трехуровневую иерархию сверхоперативной памяти. Если кэш-память первого и второго уровней интегрирована на кристалле процессора, то микросхемы кэш-памяти третьего уровня расположены на самой плате картриджа. На реализацию процессора с соблюдением проектных норм 0,18 мкм потребовалось около 320 млн. транзисторов, из которых только 25 млн. пришлось на реализацию самого ядра, а остальные - на кэш-память. Самый большой модуль процессора - это блок вычислений с плавающей запятой, он занимает около 10% площади кристалла. Производительность Itanium составляет до 6,4 млрд. операций с плавающей запятой в секунду. Благодаря архитектуре EPIC и 15 исполнительным устройствам процессор может выполнять до 20 операций одновременно. При этом он может непосредственно адресовать до 16 Тбайт памяти при пропускной способности до 2,1 Гбайт/с. В процессоре реализована поддержка всех расширений Intel (технологий MMX, SIMD и симметричной мультипроцессорной обработки), за исключением SSE2.

Одна из самых интересных деталей в плане размещения узлов процессора - это система синхронизации работы узлов. Одновременная передача тактовых импульсов при большой площади процессора представляет сложную задачу для разработчиков, поскольку задержки в распространении импульсов тактового генератора могут вызывать рассинхронизацию узлов. Для этой цели по всей площади кристалла разместили большое число точек распространения тактовых импульсов.

Архитектура Itanium включает такие уникальные средства повышения надежности, как система расширенного самоконтроля EMCA (Enhanced Machine Check Architecture), обеспечивающая обнаружение, коррекцию и протоколирование ошибок, а также поддержку обработки кода ECC (Error Correcting Code) и контроля четности.

Для двух — и четырехпроцессорных систем Intel выпустила специальный набор микросхем Intel 460GX, которые могут включаться каскадно, увеличивая число одновременно используемых процессоров. Поскольку конфигурация таких систем изначально предусматривает объемы оперативной памяти в несколько гигабайт, то в системах Itanium применяются сравнительно недорогие микросхемы памяти типа SDRAM. При этом для увеличения производительности, по словам представителей Intel, используются такие методы, как буферирование, чередование и деление памяти на несколько банков. Набор микросхем реально поддерживает работу с 64 Гбайт памяти при максимальной пропускной способности 4,2 Гбайт/с, хотя 64-разрядная адресация памяти теоретически позволяет обращаться к гораздо большему количеству адресов.

Процессоры Itanium будут работать на тактовой частоте 800 или 733 МГц, а их стоимость в зависимости от объема кэш-памяти составит от 1177 до 4227 долл.

Современные тенденции развития микропроцессоров связаны с выполнением большего числа команд за один такт. Разработчики IA-64 полагают, что добиваться более высокого уровня суперскалярности (распараллеливания) в процессоре можно, только если отказаться от обычных последовательных кодов и ввести параллелизм прямо на уровень системы команд. В этом случае задача распараллеливания ложится не на аппаратуру процессора, а на компилятор. Как уже отмечалось, в основе IA-64 лежит технология EPIC, главная идея которой - введение явного параллелизма. Преимущества такого подхода понятны. В схемотехнических решениях процессоров исчезает сложная логика, отвечающая за внеочередное суперскалярное выполнение команд, и можно отвести больше места на кристалле под кэш-память, файл регистров и исполнительные устройства. Однако, с другой стороны, возникает необходимость разрабатывать сложные и эффективно распараллеливающие компиляторы.

Несомненно, что между технологиями EPIC и VLIW (Very Long Instruction Word) много общего. VLIW обычно рассматривают как статическую суперскалярную архитектуру. Имеется в виду, что распараллеливание кода происходит на этапе компиляции, а не динамически во время исполнения. Иными словами, в машинном коде VLIW присутствует явный параллелизм. В свою очередь, к основным особенностям EPIC относят:

большое количество регистров,

масштабируемость архитектуры до большого количества исполнительных функциональных устройств,

параллелизм в машинном коде,

предсказание ветвлений (предикацию),

спекулятивное выполнение (загрузку по предположению).

Основная особенность EPIC та же, что и у VLIW, - распараллеливанием потока команд занимается компилятор, а не процессор. Достоинства данного подхода заключаются в том, что упрощается архитектура процессора, причем он не тратит время на анализ потока команд. Кроме того, в отличие от процессора, компилятор способен проводить анализ по всей программе, а не по сравнительно небольшому ее участку. Поскольку практически любая программа должна запускаться многократно, выгоднее распараллелить ее один раз (при компиляции), а не каждый раз, когда она исполняется на процессоре.

В архитектуре Itanium насчитывается по 128 64-разрядных целочисленных регистров общего назначения и 80-разрядных регистров вещественной арифметики, а также 64 одноpазpядных пpедикатных pегистpа. Все они доступны для программирования; кроме того, имеется множество недоступных внутренних служебных регистров, используемых самим процессором. 64 одноразрядных регистра используются для организации логики предсказания ветвления и выполнения команд в порядке, отличном от последовательного.

Для достижения явного параллелизма в формат команд IA-64 введены дополнительные разряды маски, которые явно указывают на зависимости между командами. До сих пор задача определения таких зависимостей полностью ложилась на аппаратуру процессора. Здесь же вводится понятие групп команд. Все они независимы, и их следует выдавать на выполнение в разные исполнительные устройства. Разряды маски указывают на зависимости не только внутри нескольких команд, но и между группами команд. По три команды IA-64 объединяются в так называемую связку, имеющую емкость 128 разрядов. Связка содержит три команды и шаблон, в котором указано, какие есть зависимости между командами (например, можно ли с первой командой запустить параллельно вторую или же она должна выполниться только после первой и т. п.).

Заключение

В заключение отметим, что в современных процессорах активно используются методики предсказания ветвлений и спекулятивного выполнения.

Сегодня очень много времени уходит на вычисление ветвей программы, которые впоследствии не используются - и это проблема, которую решает Itanium.

При наличии в программе условного ветвления команды из разных ветвей помечаются разными предикатными регистрами (команды имеют для этого предикатные поля); далее они выполняются совместно, но их результаты не записываются, пока значения предикатных регистров не определены. При вычислении условия ветвления предикатный регистр, соответствующий правильной ветви, устанавливается в 1, а другой - в 0, и перед записью результатов процессор проверяет предикатное поле, записывает результаты только тех команд, предикатное поле которых содержит предикатный разряд, установленный в единицу.

Архитектура Itanium предсказывает и исполняет по предположению. Этот механизм является еще одной особенностью данной технологии и должен снизить простои процессора, связанные с ожиданием выполнения команд загрузки из относительно медленной основной памяти. Компилятор перемещает команды загрузки данных из памяти так, чтобы они выполнились как можно раньше. Следовательно, когда данные из памяти понадобятся какой-либо команде, процессор не будет простаивать.

Командами загрузки в данном случае называются перемещенные таким образом инструкции по предположению; они помечаются особым образом. Перед командой, использующей загружаемые по предположению данные, компилятор вставит команду проверки предположения. При возникновении исключительной ситуации во время загрузки, процессор сгенерирует исключение только тогда, когда встретит команду проверки предположения.

Например, команда загрузки выносится из ветвления, а ветвь, из которой она вынесена, не запускается. В этом случае возникшая исключительная ситуация игнорируется.

Важно отметить тот факт, что с выходом Itanium сравнение процессоров по частоте практически теряет смысл. Придется применять новые методики, учитывающие не только количество реально выполненных за один такт инструкций, но и качество анализа компилятором исполняемой программы, поскольку результирующая производительность будет сильно зависеть от этого (процессор ведь может работать с огромной скоростью, вычисляя ненужные ветви программы).

Процессор Itanium полностью совместим с современными 32-разрядными приложениями, но вряд ли эти программы будут работать на 64-разрядном кристалле быстрее.

Как полагают некоторые специалисты, возможно, придется привыкать и к более медленным темпам работы. В альтернативе то, что новые, специализированные приложения оставят всех позади. Например, уже на этапе опытного производства кристаллов архитектура процессора Itanium продемонстрировала высокое быстродействие алгоритмов защиты информации, интенсивно использующих вычислительные мощности.

Корпорация AMD тоже обнародовала свои планы создания 64-разрядных кристаллов. Она добавила 32 разряда к уже имеющимся 32, и регистры расширились до 64 разрядов, появились команды манипуляции с 64-разрядными данными, да и шина адреса увеличилась до 64 разрядов. В итоге родилась архитектура x86-64. Первоначально подобный процессор был назван Sledgehammer. Команды нового кристалла отличаются от команд процессоров x86 только наличием префикса, указывающего на их разрядность.

Здесь имеются восемь 64-разрядных регистров для операций вещественной арифметики. И это в прибавке к шестнадцати регистрам общего назначения.

Восемь первых регистров Sledgehammer обозначаются названиями, отражающими их x86-происхождение: RAX, RBX, RCX, RDX, RSP, RBP, RSI, RDI.

Восемь младших разрядов RAX фактически эквивалентны регистру A аккумулятору процессора i8080 и регистру AL i8086. Разряды 8 – 15 эквивалентны регистру AH i8086. Если объединить эти два поля, то получится регистр AX i8086. Битовое поле 0 – 31 - полный эквивалент регистра EAX в 32-разрядных 80 x 86.

А вот архитектуру нового процессора дополняют шестнадцать 128-разрядных регистров для хранения операндов SIMD-инструкций.

Итак, корпорацией AMD была обеспечена полная аппаратная поддержка выполнения инструкций x86-32 на уровне ядра. В отличие от процессора Itanium, здесь должна обеспечиваться полноценная реализация 8-, 16 — и 32-разрядных приложений без потери производительности, т. е. на одном процессоре смогут одновременно и независимо работать 16 — и 32-разрядные приложения. Данное обстоятельство должно сделать переход пользователей на новую платформу безболезненным, ведь процессоры смогут работать в двух режимах:.

в технологии Long кристалл будет работать как x86-64;

в технологии Legacy Mode кристалл будет работать как x86-процессор, совместимый с 16 — и 32-разрядными приложениями и поддерживающий расширение SSE.

В ближайшем будущем планируется выпустить две модели 64-разрядного микропроцессора: собственно Sledgehammer и младшую модель - Clawhammer. Главные отличия состоят главным образом в размере кэш-памяти второго уровня:

Clawhammer позиционируется как процессор для рабочих станций и будет поддерживать двухпроцессорные системы. Причем размер кристалла не должен превысить 100 кв. мм, что сделает его в достаточной мере дешевым;

Sledgehammer же, как планируется, будет поддерживать до восьми процессоров.

Оба процессора будут содержать интегрированный контроллер памяти, совместимый с технологией HyperTransport. Данный факт позволит напрямую работать с системной памятью, минуя системную шину и набор микросхем.

Для возможности обращения к одному и тому же сегменту памяти в мультипроцессорных системах будет использоваться архитектура NUMA (Non-Uniform Memory Access).

Каждому процессору будет отведен отдельный сегмент памяти, но при необходимости будет доступен и сегмент памяти другого процессора. AMD разрабатывает два набора микросхем с поддержкой HyperTransport. Первый чипсет Golem предназначен для серверов и оснащен мостом HyperTransport-PCI-X, а второй - Lokar для рабочих станций, имеет встроенную поддержку интерфейса AGP 8X и мост HyperTransport-AGP.

В заключение отметим, что новые процессоры будут изготавливаться с учетом проектных норм 0,13 мкм и технологии SOI (Silicon On Insulator - "кремний на изоляторе"). Т. к. массовое производство кристаллов начнется не ранее 2002 г., то говорить о конкуренции между семействами Itanium и Hammer пока рановато.

Библиографический список

http://www.bytemag.ru/.

http://www.maxwolf.ru/faq/cpu.html.

http://www.intel.com/ .

http://www.amd.com .