Домой / Faq / Индуктивное сопротивление закон ома. Закона ома и применение его на практике

Индуктивное сопротивление закон ома. Закона ома и применение его на практике

Были выведены соотношения, связывающие амплитуды переменных токов и напряжений на резисторе, конденсаторе и катушке индуктивности: R I R = U R ; 1 ω C I C = U C ; ω L I L = U L .

Эти соотношения во виду напоминают закон Ома для участка цепи постоянного тока, но только теперь в них входят не значения постоянных токов и напряжений на участке цепи, а амплитудные значения переменных токов и напряжений .

Соотношения (*) выражают закон Ома для участка цепи переменного тока, содержащего один из элементов R , L и C . Физические величины R , 1 ω C и ωL называются активным сопротивлением резистора, емкостным сопротивлением конденсатора и индуктивным сопротивлением катушки.

При протекании переменного тока по участку цепи электромагнитное поле совершает работу, и в цепи выделяется джоулево тепло. Мгновенная мощность в цепи переменного тока равна произведению мгновенных значений тока и напряжения: p = J ċ u . Практический интерес представляет среднее за период переменного тока значение мощности P = P ср = I 0 U 0 cos ω t cos (ω t + φ) ¯ .

Здесь I 0 и U 0 – амплитудные значения тока и напряжения на данном участке цепи, φ – фазовый сдвиг между током и напряжением. Черта означает знак усреднения. Если участок цепи содержит только резистор с сопротивлением R , то фазовый сдвиг φ = 0 : P R = I R U R cos 2 ω t ¯ = I R U R 2 = I R 2 R 2 .

Для того, чтобы это выражение по виду совпадало с формулой для мощности постоянного тока, вводятся понятия действующих или эффективных значений силы тока и напряжения: I д = I 0 2 ; U д = U 0 2 .

Средняя мощность переменного тока на участке цепи, содержащем резистор, равна P R = I д U д.

Если участок цепи содержит только конденсатор емкости C , то фазовый сдвиг между током и напряжением φ = π 2 . Поэтому P C = I C U C cos ω t cos (ω t + π 2) ¯ = I C U C cos ω t (- sin ω t) ¯ = 0.

Аналогично можно показать, что P L = 0 .

Таким образом, мощность в цепи переменного тока выделяется только на активном сопротивлении. Средняя мощность переменного тока на конденсаторе и катушке индуктивности равна нулю.

Рассмотрим теперь электрическую цепь, состоящую из последовательно соединенных резистора, конденсатора и катушки. Цепь подключена к источнику переменного тока частоты ω. На всех последовательно соединенных участках цепи протекает один и тот же ток. Между напряжением внешнего источника e (t) и током J (t) возникает фазовый сдвиг на некоторый угол φ. Поэтому можно записать J (t) = I 0 cos ωt; e (t) = 0 cos (ωt + φ) .

Такая запись мгновенных значений тока и напряжения соответствует построениям на векторной диаграмме (рис. 2.3.2). Средняя мощность, развиваемая источником переменного тока, равна P = I 0 ℰ 0 cos ω t cos (ω t + φ) ¯ = I 0 ℰ 0 2 cos φ = I д ℰ д cos φ .

Как видно из векторной диаграммы, U R = 0 · cos φ , поэтому P = I 0 U R 2 . Следовательно, вся мощность, развиваемая источником, выделяется в виде джоулева тепла на резисторе, что подтверждает сделанный ранее вывод.

В § 2.3 было выведено соотношение между амплитудами тока I 0 и напряжения ℰ 0 для последовательной RLC -цепи: I 0 = ℰ 0 R 2 + (ω L - 1 ω C) 2 .

Величину Z = R 2 + (ω L - 1 ω C) 2 называют полным сопротивлением цепи переменного тока. Формулу, выражающую связь между амплитудными значениями тока и напряжения в цепи, можно записать в виде ZI 0 = 0 .

Это соотношение называют законом Ома для цепи переменного тока. Формулы (*), приведенные в начале этого параграфа, выражают частные случаи закона Ома (**).

Понятие полного сопротивления играет важную роль при расчетах цепей переменного тока. Для определения полного сопротивления цепи во многих случаях удобно использовать наглядный метод векторных диаграмм. Рассмотрим в качестве примера параллельный RLC -контур, подключенный к внешнему источнику переменного тока (рис. 2.4.1).

Параллельный RLC -контур

При построении векторной диаграммы следует учесть, что при параллельном соединении напряжение на всех элементах R , C и L одно и то же и равно напряжению внешнего источника. Токи, текущие в разных ветвях цепи, отличаются не только по значениям амплитуд, но и по фазовым сдвигам относительно приложенного напряжения. Поэтому полное сопротивление цепи нельзя вычислить по законам параллельного соединения цепей постоянного тока . Векторная диаграмма для параллельного RLC -контура изображена на рис. 2.4.2.

Векторная диаграмма для параллельного RLC-контура

Из диаграммы следует: I 0 = ℰ 0 (1 R) 2 + (ω L - 1 ω C) 2 .

Поэтому полное сопротивление параллельного RLC -контура выражается соотношением Z = 1 (1 R) 2 + (ω L - 1 ω C) 2 .

При параллельном резонансе (ω 2 = 1 / LC ) полное сопротивление цепи принимает максимальное значение, равное активному сопротивлению резистора: Z = Z max = R .

Фазовый сдвиг φ между током и напряжением при параллельном резонансе равен нулю.

Фундаментальным положением, описывающим зависимость тока, сопротивления и напряжения друг от друга является закон Ома для цепи переменного тока. Основное его отличие от одноимённого положения для участка цепи заключается в учёте полного сопротивления. Эта величина зависит от активной и реактивной составляющей линии, то есть учитывает ёмкость и индуктивность. Поэтому и расчёт параметров для полной цепи по сравнению с участком выполнить будет сложнее.

Основные понятия

Вся наука электротехника построена на оперировании такими понятиями, как заряд и потенциал. Кроме этого, важными явлениями в цепи являются электрические и магнитные поля. Для того чтобы разобраться в сущности закона Ома, необходимо понимать, что представляют собой эти величины, и от чего зависят те или иные электромагнитные процессы.

Электричеством называется явление, обусловленное взаимодействием зарядов между собой и их движением. Это слово было введено в обиход Уильямом Гилбертом в 1600 году после открытия им способности некоторых тел наэлектризовываться. Так как свои эксперименты он проводил с кусочками янтаря, то и свойство притягивать или отталкивать ими другие вещества им было названо «янтарностью», что в переводе с греческого звучит как электричество.

В дальнейшем различными ученными, такими как Эрстед, Ампер, Джоуль, Фарадей, Вольт, Ленц и Ом был открыт ряд явлений. Благодаря их исследованиям в обиходе появились понятия: электромагнитная индукция и поле, гальванический элемент, ток и потенциал. Ими была открыта связь между электричеством и магнетизмом, что привело к появлению науки, изучающей теорию электромагнитных явлений.

В 1880 году русский инженер Лачинов теоретически указал, какие условия необходимы для передачи электричества на расстояния. А через 8 лет Генрих Рудольф Герц во время экспериментов зарегистрировал электромагнитные волны.

Таким образом было установлено, что электрические заряды способны создавать вокруг себя электрическое излучение. Условно их разделили на частицы с положительным и отрицательным знаком заряда. Было установленно, что одноимённого знака заряды притягиваются, а разноимённого - отталкиваются. Для возникновения их движения к физическому телу необходимо приложить какую-либо энергию. При их перемещении возникает магнитное поле.

Свойство материалов обеспечивать движение зарядов получило название проводимость, а величина, обратная ей, - сопротивление. Способность пропускать через себя заряды зависит от структуры кристаллической решётки вещества, её связей, дефектов и содержания примесей.

Определение напряжения

Учёными было установлено, что существует два вида перемещения зарядов - хаотичное и направленное. Первый тип не приводит ни к каким процессам, так как энергия находится в сбалансированном состоянии. Но если к телу приложить силу, заставляющую заряды следовать в одну сторону, то возникнет электрический ток. Существует два вида:

  1. Постоянный - сила и направление которого остаются постоянными во времени.
  2. Переменный - имеющий разную величину в определённой точке времени и изменяющий своё движение, при этом повторяющий через равные интервалы времени своё изменение (цикл). Эта переменчивость описывается по гармоническому закону синуса или косинуса.

Заряд характеризуется таким понятием, как потенциал, то есть количеством энергии, которой он обладает. Необходимая сила для перемещения заряда из одной точки тела в другую называется напряжением.

Определяется она относительно изменения потенциала заряда. Сила тока определяется отношением количества заряда, прошедшего через тело за единицу времени, к величине этого периода. Математически она описывается выражением: Im = ΔQ/ Δt, измеряется в амперах (A).

Относительно переменного сигнала вводится дополнительная величина - частота f, которая определяет цикличность прохождения сигнала f = 1/T, где T - период. За её единицу измерения принят герц (Гц). Исходя из этого синусоидальный ток выражается формулой:

I = Im * sin (w*t+ Ψ), где:

  • Im - это сила тока в определённый момент времени;
  • Ψ - фаза, определяемая смещением волны тока по отношению к напряжению;
  • w - круговая частота, эта величина зависит от периода и равна w = 2*p*f.

Напряжение же характеризуется работой, которую совершает электрическое поле для переноса заряда из одной точки в другую. Определяется она как разность потенциалов: Um = φ1 - φ2. Затрачиваемая работа же складывается из двух сил: электрических и сторонних, называется электродвижущей (ЭДС). Зависит она от магнитной индукции. Потенциал же равен отношению энергии взаимодействия заряда окружающего поля к значению его величины.

Поэтому для гармонического изменения сигнала значение напряжения выражается как:

U = Um * sin (w*t + Ψ).

Где Um - амплитудное значение напряжения. Измеряется переменное напряжение в вольтах (В).

Импеданс цепи

Каждое физическое тело имеет своё сопротивление. Обусловлено оно внутренним строением вещества. Характеризуется эта величина свойством проводника препятствовать прохождению тока и зависит от удельного электрического параметра. Определяется по формуле: R = ρ*L/S, где ρ - удельное сопротивление, являющееся скалярной величиной, Ом*м; L - длина проводника; м; S - площадь сечения, м 2 . Таким выражением определяется постоянное сопротивление, присущее пассивным элементам.

В то же время импеданс, полное сопротивление, находится как сумма пассивной и реактивной составляющей. Первая определяется только активным сопротивлением, состоящим из резистивной нагрузки источника питания и резисторов: R = R0 + r. Вторая находится как разность между ёмкостным и индуктивным сопротивлением: X = XL-Xc.

Если в электрическую цепь поместить идеальный конденсатор (без потерь), то после того, как на него поступит переменный сигнал, он зарядится. Ток начнёт поступать далее, в соответствии с периодами его заряда и разряда. Количество электричества, протекающее в цепи, равно: q = C * U, где С - ёмкость элемента, Ф; U - напряжение источника питания или на обкладках конденсатора, В.

Так как скорости изменения тока и напряжения прямо пропорциональны частоте w, то будет справедливым следующее выражение: I = 2* p * f * C * U. Отсюда получается, что ёмкостной импеданс вычисляется по формуле:

Xc = 1/ 2* p * f * C = 1/ w * C, Ом.

Индуктивное же сопротивление возникает вследствие появления в проводнике собственного поля, называемого ЭДС самоиндукции EL. Зависит она от индуктивности и скорости изменения тока. В свою очередь индуктивность зависит от форм и размеров проводника, магнитной проницаемости среды: L =Ф / I, измеряется в теслах (Тл). Поскольку напряжение, приложенное к индуктивности, по своей величине равно ЭДС самоиндукции, то справедливо EL = 2* p * f * L * I. При этом скорость изменения тока пропорциональна частоте w. Исходя из этого индуктивное сопротивление равно:

Xl = w * L, Ом.

Таким образом, импеданс цепи рассчитывается как: Z = (R 2 +(X c-X l) 2) ½ , Ом.

Закон для переменного тока

Классический закон был открыт физиком из Германии Симоном Омом в 1862 году. Проводя эксперименты, он обнаружил связь между током и напряжением. В результате ученый сформулировал утверждение, что сила тока пропорциональна разности потенциалов и обратно пропорциональна сопротивлению. Если в электрической цепи ток уменьшится в несколько раз, то и напряжение в ней станет меньше на столько же.

Математически закон Ома был описан как:

Поэтому закон Ома для переменного тока описывается формулой:

I = U / Z, где:

  • I - сила переменного тока, А;
  • U - разность потенциалов, В;
  • Z - полное сопротивление цепи, Ом.

Полное сопротивление зависит от частоты гармоничного сигнала и вычисляется по следующей формуле:

Z = ((R+r) 2 + (w*L - 1/w*C) 2) ½ = ((R+r) 2 +X 2) ½ .

При прохождении тока переменной величины электромагнитное поле совершает работу, при этом из-за сопротивления, оказываемого в цепи, выделяется тепло. То есть электрическая энергия переходит в тепловую. Мощность же пропорциональна току и напряжению. Формула, описывающая мгновенное значение, выглядит как: P = I*U.

В то же время для переменного сигнала необходимо учитывать амплитудную и частотную составляющую. Поэтому:

P = I *U*cosw*t*cos (w*t+ Ψ), где I, U - амплитудные значения, а Ψ - фазовый сдвиг.

Для анализа процессов в электрических цепях переменного тока вводится понятие комплексного числа. Связанно это со смещением фаз, появляющихся между током, и разностью потенциалов. Обозначается это число латинской буквой j и состоит из мнимой Im и вещественной Re частей.

Так как на активном сопротивлении происходит трансформирование мощности в тепло, а на реактивном она преобразуется в энергию электромагнитного поля, возможны её переходы из любой формы в любую. Можно записать: Z = U / I = z * e j* Ψ.

Отсюда полное сопротивление цепи: Z = r + j * X, где r и x - соответственно активное и реактивное сопротивление. Если же сдвиг фаз принимается равный 90 0 , то комплексное число можно не учитывать.

Использование формулы

Использование закона Ома позволяет построить временные характеристики различных элементов. С помощью него несложно рассчитать нагрузки для электрических схем, выбрать нужное сечение проводов, правильно подобрать защитные автоматы и предохранители. Понимание закона даёт возможность применить правильный источник питания.

Использование Закона Ома можно применить на практике для решения задачи. Например, пускай есть электрическая линия, состоящая из последовательно соединённых элементов, таких как: ёмкость, индуктивность и резистор. При этом ёмкость C = 2*Ф, индуктивность L=10 мГн, а сопротивление R = 10 кОм. Требуется вычислить импеданс полной цепи и рассчитать силу тока. При этом блок питания работает на частоте равной f = 200 Гц и выдаёт сигнал с амплитудой U = 12 0 В. Внутреннее сопротивление источника питании составляет r = 1 кОм.

Индуктивное сопротивление находится из выражения: XL = 2*p*F* L. На f = 200 Гц и оно оставляет: X*L = 1,25 Ом. Полное сопротивление RLC цепи будет: Z = ((10 *10 3 +1*10 3) 2 + (588−1,25) 2) ½ = 11 кОм.

Разность потенциалов, изменяющаяся по гармоническому закону синуса, будет определяться: U (t) = U * sin (2* p *f*t) = 120*sin (3,14*t). Ток будет равен: I (t) = 10* 10 −3 + sin (3,14*t+p/2).

По рассчитанным данным можно построить график тока, соответствующий частоте 100 Гц. Для этого в декартовой системе координат отображается зависимость тока от времени.

Следует отметить, закон Ома для переменного сигнала отличается от использующегося для классического расчёта лишь учётом полного сопротивления и частоты сигнала. А учитывать их важно, так как любой радиокомпонент обладает как активным, так и реактивным сопротивлением, что в итоге сказывается на работе всей схемы, особенно на высоких частотах. Поэтому при проектировании электронных конструкций, в частности импульсных устройств, для расчётов используется именно полный закон Ома.

Закон Ома был открыт немецким физиком Георгом Омом в 1826 году и с тех пор начал широко применяться в электротехнической области в теории и на практике. Он выражается известной формулой, с посредством которой можно выполнить расчеты практически любой электрической цепи. Тем не менее, закон Ома для переменного тока имеет свои особенности и отличия от подключений с постоянным током, определяемые наличием реактивных элементов. Чтобы понять суть его работы, нужно пройти по всей цепочке, от простого к сложному, начиная с отдельного участка электрической цепи.

Закон ома для участка цепи

Закон Ома считается рабочим для различных вариантов электрических цепей. Более всего он известен по формуле I = U/R, применяемой в отношении отдельного отрезка цепи постоянного или переменного тока.

В ней присутствуют такие определения, как сила тока (I), измеряемая в амперах, напряжение (U), измеряемое в вольтах и сопротивление (R), измеряемое в Омах.

Широко распространенное определение этой формулы выражается известным понятием: сила тока прямо пропорциональна напряжению и обратно пропорциональна сопротивлению на конкретном отрезке цепи. Если увеличивается напряжение, то возрастает и сила тока, а рост сопротивления, наоборот, снижает ток. Сопротивление на этом отрезке может состоять не только из одного, но и из нескольких элементов, соединенных между собой .

Формулу закона Ома для постоянного тока можно легко запомнить с помощью специального треугольника, изображенного на общем рисунке. Он разделяется на три секции, в каждой из которых помещен отдельно взятый параметр. Такая подсказка дает возможность легко и быстро найти нужное значение. Искомый показатель закрывается пальцем, а действия с оставшимися выполняются в зависимости от их положения относительно друг друга.

Если они расположены на одном уровне, то их нужно перемножить, а если на разных - верхний параметр делится на нижний. Данный способ поможет избежать путаницы в расчетах начинающим электротехникам.

Закон ома для полной цепи

Между отрезком и целой цепью существуют определенные различия. В качестве участка или отрезка рассматривается часть общей схемы, расположенная в самом источнике тока или напряжения. Она состоит из одного или нескольких элементов, соединенных с источником тока разными способами.

Система полной цепи представляет собой общую схему, состоящую из нескольких цепочек, включающую в себя батареи, разные виды нагрузок и соединяющие их провода. Она также работает по закону Ома и широко используется в практической деятельности, в том числе и для переменного тока.

Принцип действия закона Ома в полной цепи постоянного тока можно наглядно увидеть при выполнении несложного опыта. Как показывает рисунок, для этого потребуется источник тока с напряжением U на его электродах, любое постоянное сопротивление R и соединительные провода. В качестве сопротивления можно взять обычную лампу накаливания. Через ее нить будет протекать ток, создаваемый электронами, перемещающимися внутри металлического проводника, в соответствии с формулой I = U/R.

Система общей цепи будет состоять из внешнего участка, включающего в себя сопротивление, соединительные проводки и контакты батареи, и внутреннего отрезка, расположенного между электродами источника тока. По внутреннему участку также будет протекать ток, образованный ионами с положительными и отрицательными зарядами. Катод и анод станут накапливать заряды с плюсом и минусом, после чего среди них возникнет .

Полноценное движение ионов будет затруднено внутренним сопротивлением батареи r, ограничивающим выход тока в наружную цепь, и понижающим его мощность до определенного предела. Следовательно, ток в общей цепи проходит в пределах внутреннего и внешнего контуров, поочередно преодолевая общее сопротивление отрезков (R+r). На размеры силы тока влияет такое понятие, как электродвижущая сила - ЭДС, прилагаемая к электродам, обозначенная символом Е.

Значение ЭДС возможно измерить на выводах батареи с использованием вольтметра при отключенном внешнем контуре. После подключения нагрузки на вольтметре появится наличие напряжения U. Таким образом, при отключенной нагрузке U = E, в при подключении внешнего контура U < E.

ЭДС дает толчок движению зарядов в полной цепи и определяет силу тока I = E/(R+r). Данная формула отражает закон Ома для полной электрической цепи постоянного тока. В ней хорошо просматриваются признаки внутреннего и наружного контуров. В случае отключения нагрузки внутри батареи все равно будут двигаться заряженные частицы. Это явление называется током саморазряда, приводящее к ненужному расходу металлических частиц катода.

Под действием внутренней энергии источника питания сопротивление вызывает нагрев и его дальнейшее рассеивание снаружи элемента. Постепенно заряд батареи полностью исчезает без остатка.

Закон ома для цепи переменного тока

Для цепей переменного тока закон Ома будет выглядеть иначе. Если взять за основу формулу I = U/R, то кроме активного сопротивления R, в нее добавляются индуктивное XL и емкостное ХС сопротивления, относящиеся к реактивным. Подобные электрические схемы применяются значительно чаще, чем подключения с одним лишь активным сопротивлением и позволяют рассчитать любые варианты.

Сюда же включается параметр ω, представляющий собой циклическую частоту сети. Ее значение определяется формулой ω = 2πf, в которой f является частотой этой сети (Гц). При постоянном токе эта частота будет равной нулю, а емкость примет бесконечное значение. В данном случае электрическая цепь постоянного тока окажется разорванной, то есть реактивного сопротивления нет.

Цепь переменного тока ничем не отличается от постоянного, за исключением источника напряжения. Общая формула остается такой же, но при добавлении реактивных элементов ее содержание полностью изменится. Параметр f уже не будет нулевым, что указывает на присутствие реактивного сопротивления. Оно тоже оказывает влияние на ток, протекающий в контуре и вызывает резонанс. Для обозначения полного сопротивления контура используется символ Z.

Отмеченная величина не будет равной активному сопротивлению, то есть Z ≠ R. Закон Ома для переменного тока теперь будет выглядеть в виде формулы I = U/Z. Знание этих особенностей и правильное использование формул, помогут избежать неправильного решения электротехнических задач и предотвратить выход из строя отдельных элементов контура.

Закон Ома часто называют основным законом электричества. Открывший его в 1826 г. известный немецкий физик Георг Симон Ом установил зависимость между основными физическими величинами электрической цепи – сопротивлением, напряжением и силой тока.

Электрическая цепь

Чтобы лучше понять смысл закона Ома, нужно представлять, как устроена электрическая цепь.

Что же такое электрическая цепь? Это путь, который проходят электрически заряженные частицы (электроны) в электрической схеме.

Чтобы в электрической цепи существовал ток, необходимо наличие в ней устройства, которое создавало бы и поддерживало разность потенциалов на участках цепи за счёт сил неэлектрического происхождения. Такое устройство называется источником постоянного тока , а силы - сторонними силами .

Электрическую цепь, в которой находится источник тока, называют полной электрической цепью . Источник тока в такой цепи выполняет примерно такую же функцию, что и насос, перекачивающий жидкость в замкнутой гидравлической системе.

Простейшая замкнутая электрическая цепь состоит из одного источника и одного потребителя электрической энергии, соединённых между собой проводниками.

Параметры электрической цепи

Свой знаменитый закон Ом вывел экспериментальным путём.

Проведём несложный опыт.

Соберём электрическую цепь, в которой источником тока будет аккумулятор, а прибором для измерения тока – последовательно включенный в цепь амперметр. Нагрузкой служит спираль из проволоки. Напряжение будем измерять с помощью вольтметра, включенного параллельно спирали. Замкнём с помощью ключа электрическую цепь и запишем показания приборов.

Подключим к первому аккумулятору второй с точно таким же параметрами. Снова замкнём цепь. Приборы покажут, что и сила тока, и напряжение увеличились в 2 раза.

Если к 2 аккумуляторам добавить ещё один такой же, сила тока увеличится втрое, напряжение тоже утроится.

Вывод очевиден: сила тока в проводнике прямо пропорциональна напряжению, приложенному к концам проводника .

В нашем опыте величина сопротивления оставалась постоянной. Мы меняли лишь величину тока и напряжения на участке проводника. Оставим лишь один аккумулятор. Но в качестве нагрузки будем использовать спирали из разных материалов. Их сопротивления отличаются. Поочерёдно подключая их, также запишем показания приборов. Мы увидим, что здесь всё наоборот. Чем больше величина сопротивления, тем меньше сила тока. Сила тока в цепи обратно пропорциональна сопротивлению .

Итак, наш опыт позволил нам установить зависимость силы тока от величины напряжения и сопротивления.

Конечно, опыт Ома был другим. В те времена не существовало амперметров, и, чтобы измерить силу тока, Ом использовал крутильные весы Кулона. Источником тока служил элемент Вольта из цинка и меди, которые находились в растворе соляной кислоты. Медные проволоки помещались в чашки со ртутью. Туда же подводились концы проводов от источника тока. Проволоки были одинакового сечения, но разной длины. За счёт этого менялась величина сопротивления. Поочерёдно включая в цепь различные проволоки, наблюдали за углом поворота магнитной стрелки в крутильных весах. Собственно, измерялась не сама сила тока, а изменение магнитного действия тока за счёт включения в цепь проволок различного сопротивления. Ом называл это «потерей силы».

Но так или иначе эксперименты учёного позволили ему вывести свой знаменитый закон.

Георг Симон Ом

Закон Ома для полной цепи

Между тем, формула, выведенная самим Омом, выглядела так:

Это не что иное, как формула закона Ома для полной электрической цепи: « Сила тока в цепи пропорциональна действующей в цепи ЭДС и обратно пропорциональна сумме сопротивлений внешней цепи и внутреннего сопротивления источника ».

В опытах Ома величина Х показывала изменение величины тока. В современной формуле ей соответствует сила тока I , протекающего в цепи. Величина а характеризовала свойства источника напряжения, что соответствует современному обозначению электродвижущей силы (ЭДС) ε . Значение величины l зависело от длины проводников, соединявших элементы электрической цепи. Эта величина являлась аналогией сопротивления внешней электрической цепи R . Параметр b характеризовал свойства всей установки, на которой проводился опыт. В современной обозначении это r – внутреннее сопротивление источника тока.

Как выводится современная формула закона Ома для полной цепи?

ЭДС источника равна сумме падений напряжений на внешней цепи (U ) и на самом источнике (U 1 ).

ε = U + U 1 .

Из закона Ома I = U / R следует, что U = I · R , а U 1 = I · r .

Подставив эти выражения в предыдущее, получим:

ε = I · R + I · r = I · (R + r) , откуда

По закону Ома напряжение во внешней цепи равно произведению силы тока на сопротивление. U = I · R . Оно всегда меньше, чем ЭДС источника. Разница равна величине U 1 = I · r .

Что происходит при работе батарейки или аккумулятора? По мере того, как разряжается батарейка, растёт её внутренне сопротивление. Следовательно, увеличивается U 1 и уменьшается U .

Полный закон Ома превращается в закон Ома для участка цепи, если убрать из него параметры источника.

Короткое замыкание

А что произойдёт, если сопротивление внешней цепи вдруг станет равно нулю? В повседневной жизни мы можем наблюдать это, если, например, повреждается электрическая изоляция проводов, и они замыкаются между собой. Возникает явление, которое называется коротким замыканием . Ток, называемый током короткого замыкания , будет чрезвычайно большим. При этом выделится большое количество теплоты, которое может привести к пожару. Чтобы этого не случилось, в цепи ставят устройства, называемые предохранителями. Они устроены так, что способны разорвать электрическую цепь в момент короткого замыкания.

Закон Ома для переменного тока

В цепи переменного напряжения кроме обычного активного сопротивления встречается реактивное сопротивление (ёмкости, индуктивности).

Для таких цепей U = I · Z , где Z - полное сопротивление, включающее в себя активную и реактивную составляющие.

Но большим реактивным сопротивлением обладают мощные электрические машины и силовые установки. В бытовых приборах, окружающих нас, реактивная составляющая настолько мала, что её можно не учитывать, а для расчётов использовать простую форму записи закона Ома:

I = U / R

Мощность и закон Ома

Ом не только установил зависимость между напряжением, током и сопротивлением электрической цепи, но и вывел уравнение для определения мощности:

P = U · I = I 2 · R

Как видим, чем больше ток или напряжение, тем больше мощность . Так как проводник или резистор не является полезной нагрузкой, то мощность, которая приходится на него, считается мощностью потерь. Она идёт на нагревание проводника. И чем больше сопротивление такого проводника, тем больше теряется на нём мощности. Чтобы уменьшить потери от нагревания, в цепи используют проводники с меньшим сопротивлением. Так делают, например, в мощных звуковых установках.

Вместо эпилога

Небольшая подсказка для тех, кто путается и не может запомнить формулу закона Ома.

Разделим треугольник на 3 части. Причём, каким образом мы это сделаем, совершенно неважно. Впишем в каждую из них величины, входящие в закон Ома - так, как показано на рисунке.

Закроем величину, которую нужно найти. Если оставшиеся величины находятся на одном уровне, то их нужно перемножить. Если же они располагаются на разных уровнях, то величину, расположенную выше, необходимо разделить на нижнюю.

Закон Ома широко применяется на практике при проектировании электрических сетей в производстве и в быту.

Пусть источник тока создает переменное гармоническое напряжение (рисунок)

U(t) = U o sinωt . (1)

Согласно закону Ома сила тока на участке цепи, содержащем только резистор сопротивлением R , подключенный к этому источнику, изменяется со временем также по синусоидальному закону:

I(t) = U(t)/R = (U o /R)sinωt = I o sinωt ,

Где I o = U o /R ? амплитудное значение силы тока в цепи.
Как видно, сила тока в такой цепи также меняется с течением времени по синусоидальному закону.
Величины U o и I o = U o /R называются амплитудными значениями напряжения и силы тока. Значения напряжения U(t) и силы тока I(t) , зависящие от времени, называют мгновенными.
Зная мгновенные значения U(t) и I(t) , можно вычислить мгновенную мощность P(t) = U(t)I(t) , которая, в отличие от цепей постоянного тока, изменяется с течением времени.
С учетом зависимости силы тока от времени в цепи перепишем выражение для мгновенной тепловой мощности на резисторе в виде

P(t) = U(t)I(t) = I 2 (t)R = I o 2 Rsin 2 ωt .

Поскольку мгновенная мощность меняется со временем, то использовать эту величину в качестве характеристики длительно протекающих процессов на практике крайне неудобно.
Перепишем формулу для мощности по-другому:

P = UI = U o I o sin 2 ωt = (1/2)U o I o (1 ? cos2ωt) = U o I o /2 ? (U o I o /2)cos2ωt .

Первое слагаемое не зависит от времени. Второе слагаемое? переменная составляющая? функция косинуса двойного угла и ее среднее значение за период колебаний равно нулю (см. рисунок).
Поэтому среднее значение мощности переменного электрического тока за длительный промежуток времени можно найти по формуле

P cp = U o I o /2 = I o 2 /R .

Это выражение позволяет ввести действующие (эффективные) значения силы тока и напряжения, которые используются в качестве основных характеристик переменного тока.
Действующим (эффективным) значением силы переменного тока называется сила такого постоянного тока, который, проходя по цепи, выделяет в единицу времени такое же количество теплоты, что и данный переменный ток.
Поскольку для постоянного тока

P пост =I 2 R ,

То с учетом ранее полученного выражения для среднего значения мощности переменного тока действующее значение силы тока

I д = I o /?2 .

Аналогично можно ввести действующее значение и для напряжения

U д = U o /?2 .

Таким образом, выражения для расчета мощности, потребляемой в цепях постоянного тока, остаются справедливыми и для переменного тока, если использовать в них действующие значения силы тока и напряжения:

P = U д I д = I д 2 R = U д 2 /R, I д = U д /R .

41.1. Треугольники напряжений и сопротивлений.

Амплитуды составляющих общего напряжения:

Действующие значения:

Вектор общего напряжения:

Для того, чтобы найти значение вектора U, построим векторную диаграмму (рис. а). За исходный вектор диаграммы принимаем вектор тока I. Направление этого вектора совпадает с положительнымнаправлением оси, от которой отсчитываются фазовые углы.

Вектор по направлению совпадает с вектором тока I, а вектор направлен перпендикулярно вектору I с положительным углом.

Из диаграммы видно, что вектор общего напряжения U опережает вектор тока I на угол >0, но < , а по величине равен гипотенузе прямоугольного треугольника, катетами которого являются векторы падений напряжения вактивном и индуктивном сопротивлениях и : =Ucos

Проекция вектора напряжения U на направление вектора тока называется активной составляющей вектора напряжения и обозначается Ua. Ua =

Проекция вектора напряжения U на направление, перпендикулярное вектору тока называется реактивной составляющей вектора напряжения и обозначается Up. Up =

Стороны треугольника напряжений, выраженные в единицах напряжения, разделим на ток I. Получим подобный треугольник сопротивлений (рис. б), катетами которого являются активное и индуктивное сопротивления, а гипотенузой – величина .

Отношение действующего напряжения к действующему току данной цепи называется полным сопротивлением цепи. Стороны треугольника сопротивлений нельзя считать векторами, так как сопротивления не являются функциями времени.

Из треугольника сопротивлений следует:

41.2. Полное сопротивление.

Полное сопротивление (Z) - это векторная сумма всех сопротивлений: активного, емкостного и индуктивного.

Полное сопротивление цепи.

41.3. Угол сдвига фаз между напряжением и током.

Аргумент комплексного сопротивления j есть разность начальных фаз напряжения и тока, но его можно также определить по вещественной и мнимой составляющим комплексного сопротивления как j = arctg(X /R ). Следовательно, сдвиг фаз между напряжением и током определяется только параметрами нагрузки и не зависит от параметров тока и напряжения в цепи . Из выражения следует, что положительные значения j соответствуют отставанию тока по фазе, а отрицательные - опережению.

41.4. Закон Ома для действующих и амплитудных значений тока и напряжения.

В активном элементе r происходит необратимое преобразование электрической

энергии в тепловую энергию. Мгновенные значения тока i и напряжения u связаны

законом Ома:

Если ток изменяется по синусоидальному закону тогда напряжение:

С другой стороны мгновенное значение напряжения:

Отсюда получен закон Ома для амплитудных значений: , и закон Ома для действующих значений:

42. Энергетический процесс. Мгновенная, активная, реактивная и полная мощности. Треугольник мощностей. Коэффициент мощности .

Мгновенной мощностью называется произведение мгновенных значений напряжения и силы тока на каком-либо участке электрической цепи
По определению, электрическое напряжение - это отношение работы электрического поля, совершенной при переносе пробного электрического заряда из точки A в точку B, к величине пробного заряда. То есть можно сказать, что электрическое напряжение равно работе по переносу единичного заряда из точки А в точку B. Другими словами, при движении единичного заряда по участку электрической цепи он совершит работу, численно равную электрическому напряжению, действующему на участке цепи. Умножив работу на количество единичных зарядов, мы, таким образом, получаем работу, которую совершают эти заряды при движении от начала участка цепи до его конца. Мощность, по определению, - это работа в единицу времени. Введём обозначения: U - напряжение на участке A-B (принимаем его постоянным на интервале Δt ), Q - количество зарядов, прошедших от А к B за время Δt . А - работа, совершённая зарядом Q при движении по участку A-B, P - мощность. Записывая вышеприведённые рассуждения, получаем:

Для всех зарядов:

Полагая время бесконечно малым, можно принять, что величины напряжения и тока за это время тоже изменятся бесконечно мало. В итоге получаем следующее определение мгновенной электрической мощности:

мгновенная электрическая мощность p (t ), выделяющаяся на участке электрической цепи, есть произведение мгновенных значений напряжения u (t ) и силы тока i (t ) на этом участке:

Активная мощность
Измеряется в W [Вт] Ватт.
Среднее за период T значение мгновенной мощности называется активной мощностью: В цепях однофазного синусоидального тока где U иI - среднеквадратичные значения напряжения и тока, φ - угол сдвига фаз между ними. Для цепей несинусоидального тока электрическая мощность равна сумме соответствующих средних мощностей отдельных гармоник. Активная мощность характеризует скорость необратимого превращения электрической энергии в другие виды энергии (тепловую и электромагнитную). Активная мощность может быть также выражена через силу тока, напряжение и активную составляющую сопротивления цепи r или её проводимость g по формуле В любой электрической цепи как синусоидального, так и несинусоидального тока активная мощность всей цепи равна сумме активных мощностей отдельных частей цепи, для трёхфазных цепей электрическая мощность определяется как сумма мощностей отдельных фаз. С полной мощностью S активная связана соотношением

Реактивная мощность

Единица измерения - вольт-ампер реактивный (var, вар)

Реактивная мощность - величина, характеризующая нагрузки, создаваемые в электротехнических устройствах колебаниями энергии электромагнитного поля в цепи синусоидального переменного тока, равна произведению среднеквадратичных значений напряжения U и тока I , умноженному на синус угла сдвига фаз φ между ними: (если ток отстаёт от напряжения, сдвиг фаз считается положительным, если опережает - отрицательным). Реактивная мощность связана с полной мощностью S и активной мощностью Р соотношением: .

Физический смысл реактивной мощности - это энергия, перекачиваемая от источника на реактивные элементы приёмника (индуктивности, конденсаторы, обмотки двигателей), а затем возвращаемая этими элементами обратно в источник в течение одного периода колебаний, отнесённая к этому периоду.

Необходимо отметить, что величина sin φ для значений φ от 0 до плюс 90° является положительной величиной. Величина sin φ для значений φ от 0 до −90° является отрицательной величиной. В соответствии с формулой Q = UI sin φ, реактивная мощность может быть как положительной величиной (если нагрузка имеет активно-индуктивный характер), так и отрицательной (если нагрузка имеет активно-ёмкостный характер). Данное обстоятельство подчёркивает тот факт, что реактивная мощность не участвует в работе электрического тока. Когда устройство имеет положительную реактивную мощность, то принято говорить, что оно её потребляет, а когда отрицательную - то производит, но это чистая условность, связанная с тем, что большинство электропотребляющих устройств (например, асинхронные двигатели), а также чисто активная нагрузка, подключаемая через трансформатор, являются активно-индуктивными.

Синхронные генераторы, установленные на электрических станциях, могут как производить, так и потреблять реактивную мощность в зависимости от величины тока возбуждения, протекающего в обмотке ротора генератора. За счёт этой особенности синхронных электрических машин осуществляется регулирование заданного уровня напряжения сети. Для устранения перегрузок и повышения коэффициента мощности электрических установок осуществляется компенсация реактивной мощности.

Применение современных электрических измерительных преобразователей на микропроцессорной технике позволяет производить более точную оценку величины энергии возвращаемой от индуктивной и емкостной нагрузки в источник переменного напряжения.

Измерительные преобразователи реактивной мощности, использующие формулу Q = UI sin φ, более просты и значительно дешевле измерительных преобразователей на микропроцессорной технике.

Полная мощность

Единица полной электрической мощности - вольт-ампер (V·A, В·А)

Полная мощность - величина, равная произведению действующих значений периодического электрического тока I в цепи и напряжения U на её зажимах: S = U·I ; связана с активной и реактивной мощностями соотношением: где Р - активная мощность, Q - реактивная мощность (при индуктивной нагрузке Q > 0, а при ёмкостной Q < 0).

Векторная зависимость между полной, активной и реактивной мощностью выражается формулой:

Полная мощность имеет практическое значение, как величина, описывающая нагрузки, фактически налагаемые потребителем на элементы подводящей электросети (провода, кабели,распределительные щиты, трансформаторы, линии электропередачи), так как эти нагрузки зависят от потребляемого тока, а не от фактически использованной потребителем энергии. Именно поэтому номинальная мощность трансформаторов и распределительных щитов измеряется в вольт-амперах, а не в ваттах.