Домой / Основные настройки / Виртуальная память. Архитектурные средства поддержки виртуальной памяти. Оценка объема оборудования

Виртуальная память. Архитектурные средства поддержки виртуальной памяти. Оценка объема оборудования

Памятьс ассоциативным доступом или ассоциативная память отличается от остальных типов памяти тем, что обращение к ее ячейкам осуществляется не по определенному адресу, а по содержимому ячеек памяти. Фактически ассоциативная память работает как поисковая система, способная найти информацию по заданному образцу. Основу ассоциативной памяти составляют ассоциативные запоминающие устройства (АЗУ) , которые, как и большинство оперативных ЗУ, являются энергозависимыми и реализуются в виде полупроводниковых микросхем (наборов микросхем).

Принцип работы АЗУ поясняет схема, представленная на рис. 3.8.Запоминающий массив, как и в адресных ЗУ, разделен на m -разрядные ячейки, число которых n . Как правило, в состав АЗУ входят:

· запоминающий массив (ЗМ);

· регистр ассоциативных признаков (РгАП);

· регистр маски (РгМ);

· регистр индикаторов адреса со схемами сравнения на входе.

В АЗУ могут быть и другие элементы, наличие и функции которых определяются способом использования АЗУ.

Рис. 3.8. Ассоциативное запоминающее устройство

Выборка информации из АЗУ происходит следующим образом. В регистр ассоциативных признаков из устройства управления передается образец для поиска - код признака искомой информации (иногда его называют компарандом ). Код может иметь произвольное число разрядов – от 1 до m . Если код признаков используется полностью, то он без изменения поступает на схему сравнения, если же необходимо использовать только часть кода, тогда ненужные разряды маскируются с помощью регистра маски. Перед началом поиска информации в АЗУ все разряды регистра индикаторов адреса устанавливаются в состояние 1 .После этого производится опрос первого разряда всех ячеек запоминающего массива, и содержимое сравнивается с первым разрядом регистра ассоциативных признаков. Если содержимое первого разряда i -й ячейки не совпадает с содержимым первого разряда РгАП, то соответствующий этой ячейке разряд регистра индикаторов адреса Т i сбрасывается в состояние 0 , если совпадает – разряд Т i остается 1 . Затем эта операция повторяется со вторым, третьим и последующими разрядами до тех пор, пока не будет произведено сравнение со всеми разрядами РгАП. После поразрядного опроса и сравнения в состоянии 1 останутся те разряды регистра индикаторов адреса, которые соответствуют ячейкам, содержащим информацию, совпадающую с записанной в регистре ассоциативных признаков. Эта информация может быть считана в той последовательности, которая определяется устройством управления.



Заметим, что время поиска информации в ЗМ по ассоциативному признаку зависит только от числа разрядов признака и от скорости опроса разрядов, но совершенно не зависит от числа ячеек ЗМ. Этим и определяется главное преимущество АЗУ перед адресными ЗУ: в адресных ЗУ при операции поиска необходим перебор всех ячеек запоминающего массива. Кроме того, существуют реализации АЗУ, выполняющих поиск одновременно над всеми разрядами всех слов, записанных в память, т.е. время поиска в подобных устройствах не превышает времени цикла памяти.

Запись новой информации в ЗМ производится без указания номера ячейки. Обычно один из разрядов каждой ячейки используется для указания ее занятости, т.е. если ячейка свободна для записи, то в этом разряде записан 0 , а если занята, – 1 . Тогда при записи в АЗУ новой информации устанавливается признак 0 в соответствующем разряде регистра ассоциативных признаков, и определяются все ячейки ЗМ, которые свободны для записи. В одну из них устройство управления помещает новую информацию.

Нередко АЗУ строятся таким образом, что кроме ассоциативной допускается и прямая адресация данных, что представляет определенные удобства при работе.

Необходимо отметить, что запоминающие элементы АЗУ, в отличие от элементов адресуемых ЗУ, должны не только хранить информацию, но и выполнять определенные логические функции, поэтому позволяют осуществить поиск не только по равенству содержимого ячейки заданному признаку, но и по другим условиям: содержимое ячейки больше (меньше) компаранда, а также больше или равно (меньше или равно).

Отмеченные выше свойства АЗУ характеризуют преимущества АЗУ для обработки информации. Формирование нескольких потоков идентичной информации с помощью АЗУ осуществляется быстро и просто, а с большим числом операционных элементов можно создавать высокопроизводительные системы. Надо учитывать еще и то, что на основе ассоциативной памяти легко реализуется изменение места и порядка расположения информации. Благодаря этому АЗУ является эффективным средством формирования наборов данных.

Исследования показывают, что целый ряд задач, таких, как обработка радиолокационной информации, распознавание образов, обработка различных снимков и других задач с матричной структурой данных, эффективно решается ассоциативными системами. К тому же программирование таких задач для ассоциативных систем гораздо проще, чем для традиционных.

К сожалению, устройства памяти с ассоциативным доступом имеют высокие сложность изготовления и стоимость, превышающие аналогичные показатели как динамических, так и статических ОЗУ. Ассоциативная память является основой для построения параллельных ассоциативных систем, а также для ВС, управляемых потоком данных. Наиболее же широко ассоциативный доступ применяется в подсистемах кэш-памяти.

Кэш-память

Впервые двухуровневое построение памяти было предложено М.Уилксом в 1965 году при построении ЭВМ Atlas. Суть подхода заключалась в размещении между ЦП и ОП быстродействующей буферной памяти небольшого размера. В процессе работы ЭВМ те участки ОП, к которым ведется обращение, копируются в буферную память. За счет соблюдения принципа локальности по обращению получается существенный выигрыш в производительности.

Новый вид памяти получил название кэш-память (от англ. cache – «тайник, убежище»), поскольку такая память скрыта, «невидима» для ЦП, который не может непосредственно обратиться к ней. В свою очередь, программист может вообще не знать о существовании кэш-памяти. В серийных ЭВМ кэш-память впервые была применена в системах модели 85 семейства IBMS/360. Сегодня кэш-память наличествует в любом классе ЭВМ, причем зачастую имеет многоуровневую структуру.

Все термины, которые были определены раньше, могут быть использованы и для кэш-памяти, хотя слово «строка » (line ) часто употребляется вместо слова «блок » (block ).

Как правило, кэш-память строится на основе сверхбыстродействующих и дорогостоящих ОЗУ статического типа, при этом ее быстродействие в 5-10 раз превышает быстродействие ОП, а объем – в 500-1000 раз меньше. Заметим, что увеличению объема кэш-памяти по отношению к емкости ОП препятствует не только и не столько высокая стоимость статических ОЗУ. Дело в том, что при увеличении емкости кэш-памяти возрастает сложность схем управления, что, в свою очередь, ведет к падению быстродействия. Многочисленные исследования показали, что указанное соотношение объемов кэш-памяти и ОП является оптимальным и будет сохраняться в процессе развития ЭВМ при увеличении быстродействия обоих видов памяти.

Как уже было сказано, ЦП не имеет непосредственного доступа к кэш-памяти. За организацию взаимодействия ЦП, ОП и кэш-памяти отвечает специальный контроллер. Вся ОП разбивается на блоки фиксированного объема, при этом старшая часть адреса ОП определяет адрес блока , а младшая часть – адрес слова внутри блока . Обмен информации между ОП и кэш-памятью осуществляется блоками. Кэш-память также имеет свою внутреннюю адресацию, и каждый считанный из ОП блок размещается в кэш-памяти по определенному адресу блока в кэш-памяти . Часто блоки кэш-памяти называются строками или кэш-строками .

Если блок, к которому осуществляется запрос со стороны ЦП, уже находится в кэш-памяти, то его считывание завершается уже при обращении к кэш-памяти. Таким образом, обеспечивая доступ к некоторому адресу, контроллер должен сначала определить, имеется ли в кэш-памяти копия блока, содержащего этот адрес, и, если имеется, то определить, с какого адреса кэш-памяти начинается этот блок. Эту информацию контроллер получает с помощью механизма преобразования адресов . Сложность этого механизма зависит от стратегии размещения , определяющей, в какое место кэш-памяти следует поместить каждый блок ОП.

Не менее важным является вопрос о том, в какой момент нужно помещать в кэш-память копию блока из ОП. Данный вопрос решается с помощью стратегии выборки .

При записи в кэш-память существует несколько методов замещения старой информации, которые определяются стратегией обновления основной памяти .

Часто возникает ситуация, когда несмотря на выборку из ОП необходимого блока, в кэш-памяти нет места для его размещения. В этом случае необходимо выбрать одну из кэш-строк и заменить ее новым блоком. Способ определения удаляемой кэш-строки называется стратегией замещения .

Стратегии размещения

Существуетследующие способы размещения данных в кэш-памяти:

· прямое распределение;

· полностью ассоциативное распределение;

· частично (множественно) ассоциативное распределение.

Допустим, разрядность шины адреса n , тогда емкость ОП V ОП = 2 n слов. Без ограничения общности определим размер кэш-строки в 256 слов, таким образом, вся ОП будет поделена на 2 n-8 блоков. В адресе ОП старшие n-8 битов будут определять адрес блока, а младший байт – адрес слова в блоке. Пусть емкость кэш-памяти V кэш в 1024 раза меньше емкости ОП, т.е. V кэш = 2 n-10 слов или 2 n-18 блоков (кэш-строк).

Прямое распределение

Если каждый блок основной памяти имеет только одно фиксированное место, на котором он может появиться в кэш-памяти, то такая кэш-память называется кэшем с прямым распределением (direct mapped cache). Это наиболее простая организация кэш-памяти, при которой для отображения адресов блоков ОП на адреса кэш-памяти просто используются младшие разряды адреса блока. Таким образом, все блоки ОП, имеющие одинаковые младшие разряды в своем адресе, попадают в одну кэш-строку, т.е.

(адрес кэш-строки) = (адрес блока ОП) mod (число блоков в кэш-памяти)

В нашем примере адрес кэш-строки c будут составлять младшие n-18 бит адреса блока ОП (см. рис. 3.9). Преобразование адреса блока ОП в адрес кэш-строки осуществляется путем выборки этих младших n-18 бит. По этому адресу кэш-строки может быть помещен любой из 1024 блоков ОП, имеющих одинаковые n-18 младших бит. Между собой эти блоки будут различаться старшими 10-ю битами t , называемыми тегом . Для того, чтобы определить, какой именно блок ОП хранится в данное время в кэш-памяти, используется еще одна память – так называемая память тегов(теговая память) . Теговая память адресуется пословно, причем каждое слово имеет размер, равный размеру тега. Емкость памяти тегов – это произведение размера тега на общее число кэш-строк, для нашего примера составляет 10·2 n-18 бит. Адресом памяти тегов является адрес кэш-строки с . В отличие от памяти тегов, память, в которой хранятся блоки, помещенные в кэш, называется памятью данных . Память данных адресуется пословно, ее адрес образуется из адреса кэш-строки и адреса слова внутри блока (кэш-строки).

Рис. 3.9. Структура адреса памяти при прямом распределении

Рис. 3.10. Организация кэш-памяти с прямым распределением

При доступе к A -му адресу ОП (рис. 3.10) младшие n-18 бит адреса блока (поле c ), где содержится этот адрес, используются в качестве адреса кэш-строки. По адресу кэш-строки из теговой памяти считывается тег (поле t ). Параллельно этому осуществляется доступ к памяти данных с помощью n-10 младших бит адреса A (поля c и w ). Если считанный тег и старшие 10 бит адреса A совпадают, то это означает, что блок, содержащий адрес A , существует в памяти данных, и в слове, к которому осуществляется доступ, хранится копия A -го адреса ОП.

Если тег отличается от старших 10 бит адреса A , то из основной памяти считывается блок, содержащий адрес A , а из кэш-памяти удаляется кэш-строка, чей адрес определяется полем c (младшими n-18 битами) адреса считываемого блока. На место удаленной кэш-строки помещается считанный из ОП блок, при этом обновляется соответствующий тег в памяти тегов.

Достоинством прямого распределения является простота реализации, однако из-за того, что адрес кэш-строки однозначно определяется адресом блока ОП, высока вероятность сосредоточения областей блоков в некоторой части кэш-памяти. Замена блоков в этой части будет происходить довольно часто, в то же время другие области кэш-памяти могут простаивать. В такой ситуации эффективность кэш-памяти заметно снижается.

Материал из Википедии - свободной энциклопедии

Ассоциативная память (АП) или (АЗУ) является особым видом машинной памяти, используемой в приложениях очень быстрого поиска. Известна также как память, адресуемая по содержимому , ассоциативное запоминающее устройство , контентно-адресуемая память или ассоциативный массив , хотя последний термин чаще используется в программировании для обозначения структуры данных. (Hannum и др., 2004)

Аппаратный ассоциативный массив

В отличие от обычной машинной памяти (памяти произвольного доступа, или RAM), в которой пользователь задает адрес памяти и ОЗУ возвращает слово данных, хранящееся по этому адресу, АП разработана таким образом, чтобы пользователь задавал слово данных, и АП ищет его во всей памяти, чтобы выяснить, хранится ли оно где-нибудь в нем. Если слово данных найдено, АП возвращает список одного или более адресов хранения, где слово было найдено (и в некоторых архитектурах, также возвращает само слово данных, или другие связанные части данных). Таким образом, АП - аппаратная реализация того, что в терминах программирования назвали бы ассоциативным массивом.

Промышленные стандарты адресуемой содержанием памяти

Определение основного интерфейса для АП и других Сетевых Элементов Поиска (Network Search Elements, NSE) было специфицировано в Соглашении о возможности взаимодействий (Interoperability Agreement), названном Интерфейс предысторий (Look-Aside Interface) (LA-1 и LA-1B ), который был разработан Форумом Сетевой Обработки, который позже был объединен с Оптическим Межсетевым Форумом (Optical Internetworking Forum, OIF). Многочисленные устройства были произведены компаниями Integrated Device Technology, Cypress Semiconductor, IBM, Netlogic Micro Systems и другими по этим соглашениям LA. 11 декабря 2007, OIF издал соглашение об интерфейсе последовательной предыстории (Serial Lookaside, SLA ).

Реализация на полупроводниках

Из-за того, что АП разработана, чтобы искать во всей памяти одной операцией, это получается намного быстрее, чем поиск в RAM фактически во всех приложениях поиска. Однако, есть и минус в большей стоимости АП. В отличие от чипа RAM, у которого хранилища простые, у каждого отдельного бита памяти в полностью параллельной АП должна быть собственная присоединенная схема сравнения, чтобы обнаружить совпадение между сохраненным битом и входным битом. К тому же, выходы сравнений от каждой ячейки в слове данных должны быть объединены, чтобы привести к полному результату сравнения слова данных. Дополнительная схема увеличивает физический размер чипа АП, что увеличивает стоимость производства. Дополнительная схема также увеличивает рассеиваемую мощность, так как все схемы сравнений активны на каждом такте. Как следствие, АП используется только в специализированных приложениях, где скорость поиска не может быть достигнута, используя другие, менее дорогостоящие, методы.

Альтернативные реализации

Для того, чтобы достигнуть другого баланса между скоростью, размером памяти и стоимостью, некоторые реализации эмулируют функции АП путём использования стандартного поиска по дереву или алгоритмов хеширования, реализованных аппаратно, также используя для ускорения эффективной работы такие аппаратные трюки, как репликация и конвейерная обработка. Эти проекты часто используются в маршрутизаторах.

Троичная ассоциативная память

Двоичная АП - простейший тип ассоциативной памяти, который использует слова поиска данных, состоявшие полностью из единиц и нулей. В троичной АП (Ternary Content Addressable Memory, TCAM ) добавляется третье значение для сравнения «X» или «не важно», для одного или более битов в сохраненном слове данных, добавляя дополнительную гибкость поиску.

Например, в троичной АП могло бы быть сохранено слово «10XX0», которое выдаст совпадение на любое из четырех слов поиска «10000», «10010», «10100», или «10110». Добавление гибкости к поиску приходит за счет увеличения сложности памяти, поскольку внутренние ячейки теперь должны кодировать три возможных состояния вместо двух. Это дополнительное состояние обычно осуществляется добавлением бита маски «важности» («важно»/«не важно») к каждой ячейке памяти.

Голографическая ассоциативная память обеспечивает математическую модель для интегрированного ассоциативного воспоминания бита «не важно», используя комплекснозначное представление. [ ] предположительно www.mit.edu/~9.54/fall14/Classes/class07/Plate.pdf and www.mit.edu/~9.54/fall14/Classes/class07/Plate.pdf

Примеры приложений

Адресуемая содержанием память часто используется в компьютерных сетевых устройствах. Например, когда сетевой коммутатор (switch) получает фрейм данных на один из его портов, это обновляет внутреннюю таблицу с источником MAC-адреса фрейма и порта, на который он был получен. Потом он ищет MAC-адрес назначения в таблице, чтобы определить, на какой порт фрейм должен быть отправлен, и отсылает его на этот порт. Таблица MAC- адресов обычно реализована на двоичной АП, таким образом порт назначения может быть найден очень быстро, уменьшая время ожидания коммутатора.

Троичные АП часто используются в тех сетевых маршрутизаторах, в которых у каждого адреса есть две части: (1) адрес сети, который может измениться в размере в зависимости от конфигурации подсети, и (2) адрес хоста, который занимает оставшиеся биты. У каждой подсети есть маска сети, которая определяет, какие биты - адрес сети и какие биты - адрес хоста. Маршрутизация делается путём сверки с таблицей маршрутизации, которую поддерживает маршрутизатор (router). В ней содержатся все известные адреса сети назначения, связанная с ними маска сети и информация, необходимая пакетам, маршрутизируемым по этому назначению. Маршрутизатор, реализованный без АП, сравнивает адрес назначения пакета, который будет разбит, с каждым входом в таблице маршрутизации, выполняя при этом логическое И с маской сети и сравнивая результаты с адресом сети. Если они равны, соответствующая информация направления используется, чтобы отправить пакет. Использование троичной АП для таблицы маршрутизации делает процесс поиска очень эффективным. Адреса хранятся с использованием бита «не важно» в части адреса хоста, таким образом поиск адреса назначения в АП немедленно извлекает правильный вход в таблице маршрутизации; обе операции - применения маски и сравнения - выполняются аппаратно средствами АП.

Другие приложения АП включают

Библиография

  • Кохонен Т. Ассоциативные запоминающие устройства. М.: Мир, 1982. - 384 с.

На английском языке

  • Anargyros Krikelis, Charles C. Weems (editors) (1997) Associative Processing and Processors , IEEE Computer Science Press. ISBN 0-8186-7661-2
  • Pagiamtis, K. & Sheikholeslami, A. (2006, March). IEEE J. of Solid-State Circuits , 41(3), 712–727.
  • . U.S. Patent 6,823,434.

Напишите отзыв о статье "Ассоциативная память"

Примечания

Ссылки

  • Ассоциативное запоминающее устройство - статья из Большой советской энциклопедии .

На английском:

См. также

  • Процессор в памяти , Processor-in-memory (PIM), или Вычисляющее ОЗУ или Computational RAM, C-RAM, также, «Вычисления в памяти»
  • Вычисления с памятью , концепция и реализация в виде разновидности ПЛИС

Отрывок, характеризующий Ассоциативная память

– У графини просите, а я не распоряжаюсь.
– Ежели затруднительно, пожалуйста, не надо, – сказал Берг. – Мне для Верушки только очень бы хотелось.
– Ах, убирайтесь вы все к черту, к черту, к черту и к черту!.. – закричал старый граф. – Голова кругом идет. – И он вышел из комнаты.
Графиня заплакала.
– Да, да, маменька, очень тяжелые времена! – сказал Берг.
Наташа вышла вместе с отцом и, как будто с трудом соображая что то, сначала пошла за ним, а потом побежала вниз.
На крыльце стоял Петя, занимавшийся вооружением людей, которые ехали из Москвы. На дворе все так же стояли заложенные подводы. Две из них были развязаны, и на одну из них влезал офицер, поддерживаемый денщиком.
– Ты знаешь за что? – спросил Петя Наташу (Наташа поняла, что Петя разумел: за что поссорились отец с матерью). Она не отвечала.
– За то, что папенька хотел отдать все подводы под ранепых, – сказал Петя. – Мне Васильич сказал. По моему…
– По моему, – вдруг закричала почти Наташа, обращая свое озлобленное лицо к Пете, – по моему, это такая гадость, такая мерзость, такая… я не знаю! Разве мы немцы какие нибудь?.. – Горло ее задрожало от судорожных рыданий, и она, боясь ослабеть и выпустить даром заряд своей злобы, повернулась и стремительно бросилась по лестнице. Берг сидел подле графини и родственно почтительно утешал ее. Граф с трубкой в руках ходил по комнате, когда Наташа, с изуродованным злобой лицом, как буря ворвалась в комнату и быстрыми шагами подошла к матери.
– Это гадость! Это мерзость! – закричала она. – Это не может быть, чтобы вы приказали.
Берг и графиня недоумевающе и испуганно смотрели на нее. Граф остановился у окна, прислушиваясь.
– Маменька, это нельзя; посмотрите, что на дворе! – закричала она. – Они остаются!..
– Что с тобой? Кто они? Что тебе надо?
– Раненые, вот кто! Это нельзя, маменька; это ни на что не похоже… Нет, маменька, голубушка, это не то, простите, пожалуйста, голубушка… Маменька, ну что нам то, что мы увезем, вы посмотрите только, что на дворе… Маменька!.. Это не может быть!..
Граф стоял у окна и, не поворачивая лица, слушал слова Наташи. Вдруг он засопел носом и приблизил свое лицо к окну.
Графиня взглянула на дочь, увидала ее пристыженное за мать лицо, увидала ее волнение, поняла, отчего муж теперь не оглядывался на нее, и с растерянным видом оглянулась вокруг себя.
– Ах, да делайте, как хотите! Разве я мешаю кому нибудь! – сказала она, еще не вдруг сдаваясь.
– Маменька, голубушка, простите меня!
Но графиня оттолкнула дочь и подошла к графу.
– Mon cher, ты распорядись, как надо… Я ведь не знаю этого, – сказала она, виновато опуская глаза.
– Яйца… яйца курицу учат… – сквозь счастливые слезы проговорил граф и обнял жену, которая рада была скрыть на его груди свое пристыженное лицо.
– Папенька, маменька! Можно распорядиться? Можно?.. – спрашивала Наташа. – Мы все таки возьмем все самое нужное… – говорила Наташа.
Граф утвердительно кивнул ей головой, и Наташа тем быстрым бегом, которым она бегивала в горелки, побежала по зале в переднюю и по лестнице на двор.
Люди собрались около Наташи и до тех пор не могли поверить тому странному приказанию, которое она передавала, пока сам граф именем своей жены не подтвердил приказания о том, чтобы отдавать все подводы под раненых, а сундуки сносить в кладовые. Поняв приказание, люди с радостью и хлопотливостью принялись за новое дело. Прислуге теперь это не только не казалось странным, но, напротив, казалось, что это не могло быть иначе, точно так же, как за четверть часа перед этим никому не только не казалось странным, что оставляют раненых, а берут вещи, но казалось, что не могло быть иначе.
Все домашние, как бы выплачивая за то, что они раньше не взялись за это, принялись с хлопотливостью за новое дело размещения раненых. Раненые повыползли из своих комнат и с радостными бледными лицами окружили подводы. В соседних домах тоже разнесся слух, что есть подводы, и на двор к Ростовым стали приходить раненые из других домов. Многие из раненых просили не снимать вещей и только посадить их сверху. Но раз начавшееся дело свалки вещей уже не могло остановиться. Было все равно, оставлять все или половину. На дворе лежали неубранные сундуки с посудой, с бронзой, с картинами, зеркалами, которые так старательно укладывали в прошлую ночь, и всё искали и находили возможность сложить то и то и отдать еще и еще подводы.
– Четверых еще можно взять, – говорил управляющий, – я свою повозку отдаю, а то куда же их?
– Да отдайте мою гардеробную, – говорила графиня. – Дуняша со мной сядет в карету.
Отдали еще и гардеробную повозку и отправили ее за ранеными через два дома. Все домашние и прислуга были весело оживлены. Наташа находилась в восторженно счастливом оживлении, которого она давно не испытывала.
– Куда же его привязать? – говорили люди, прилаживая сундук к узкой запятке кареты, – надо хоть одну подводу оставить.
– Да с чем он? – спрашивала Наташа.
– С книгами графскими.
– Оставьте. Васильич уберет. Это не нужно.
В бричке все было полно людей; сомневались о том, куда сядет Петр Ильич.
– Он на козлы. Ведь ты на козлы, Петя? – кричала Наташа.
Соня не переставая хлопотала тоже; но цель хлопот ее была противоположна цели Наташи. Она убирала те вещи, которые должны были остаться; записывала их, по желанию графини, и старалась захватить с собой как можно больше.

Во втором часу заложенные и уложенные четыре экипажа Ростовых стояли у подъезда. Подводы с ранеными одна за другой съезжали со двора.
Коляска, в которой везли князя Андрея, проезжая мимо крыльца, обратила на себя внимание Сони, устраивавшей вместе с девушкой сиденья для графини в ее огромной высокой карете, стоявшей у подъезда.
– Это чья же коляска? – спросила Соня, высунувшись в окно кареты.
– А вы разве не знали, барышня? – отвечала горничная. – Князь раненый: он у нас ночевал и тоже с нами едут.
– Да кто это? Как фамилия?
– Самый наш жених бывший, князь Болконский! – вздыхая, отвечала горничная. – Говорят, при смерти.
Соня выскочила из кареты и побежала к графине. Графиня, уже одетая по дорожному, в шали и шляпе, усталая, ходила по гостиной, ожидая домашних, с тем чтобы посидеть с закрытыми дверями и помолиться перед отъездом. Наташи не было в комнате.
– Maman, – сказала Соня, – князь Андрей здесь, раненый, при смерти. Он едет с нами.
Графиня испуганно открыла глаза и, схватив за руку Соню, оглянулась.
– Наташа? – проговорила она.
И для Сони и для графини известие это имело в первую минуту только одно значение. Они знали свою Наташу, и ужас о том, что будет с нею при этом известии, заглушал для них всякое сочувствие к человеку, которого они обе любили.
– Наташа не знает еще; но он едет с нами, – сказала Соня.
– Ты говоришь, при смерти?
Соня кивнула головой.
Графиня обняла Соню и заплакала.
«Пути господни неисповедимы!» – думала она, чувствуя, что во всем, что делалось теперь, начинала выступать скрывавшаяся прежде от взгляда людей всемогущая рука.
– Ну, мама, все готово. О чем вы?.. – спросила с оживленным лицом Наташа, вбегая в комнату.
– Ни о чем, – сказала графиня. – Готово, так поедем. – И графиня нагнулась к своему ридикюлю, чтобы скрыть расстроенное лицо. Соня обняла Наташу и поцеловала ее.
Наташа вопросительно взглянула на нее.
– Что ты? Что такое случилось?
– Ничего… Нет…
– Очень дурное для меня?.. Что такое? – спрашивала чуткая Наташа.

Ассоциативная память (АП) или (АЗУ) является особым видом машинной памяти, используемой в приложениях очень быстрого поиска. Известна также как память, адресуемая по содержимому , ассоциативное запоминающее устройство , контентно-адресуемая память или ассоциативный массив , хотя последний термин чаще используется в программировании для обозначения структуры данных (Hannum и др., 2004).

Аппаратный ассоциативный массив

В отличие от обычной машинной памяти (памяти произвольного доступа, или RAM), в которой пользователь задает адрес памяти и ОЗУ возвращает слово данных, хранящееся по этому адресу, АП разработана таким образом, чтобы пользователь задавал слово данных, и АП осуществляла его поиск, чтобы выяснить, хранится ли оно где-либо в памяти. Если слово данных найдено, АП возвращает список одного или более адресов хранения, где слово было найдено (и в некоторых архитектурах также возвращает само слово данных или другие связанные части данных). Таким образом, АП - аппаратная реализация того, что в терминах программирования назвали бы ассоциативным массивом.

Промышленные стандарты адресуемой содержанием памяти

Определение основного интерфейса для АП и других Сетевых Элементов Поиска (Network Search Elements, NSE) было специфицировано в Соглашении о возможности взаимодействий (Interoperability Agreement), названном Интерфейс предысторий (Look-Aside Interface) (LA-1 и LA-1B ), который был разработан Форумом Сетевой Обработки, который позже был объединен с Оптическим Межсетевым Форумом (Optical Internetworking Forum, OIF). Многочисленные устройства были произведены компаниями Integrated Device Technology, Cypress Semiconductor, IBM, Netlogic Micro Systems и другими по этим соглашениям LA. 11 декабря 2007, OIF издал соглашение об интерфейсе последовательной предыстории (Serial Lookaside, SLA ).

Реализация на полупроводниках

Из-за того, что АП разработана, чтобы искать во всей памяти одной операцией, это получается намного быстрее, чем поиск в RAM фактически во всех приложениях поиска. Однако, есть и минус в большей стоимости АП. В отличие от чипа RAM, у которого хранилища простые, у каждого отдельного бита памяти в полностью параллельной АП должна быть собственная присоединенная схема сравнения, чтобы обнаружить совпадение между сохраненным битом и входным битом. К тому же, выходы сравнений от каждой ячейки в слове данных должны быть объединены, чтобы привести к полному результату сравнения слова данных. Дополнительная схема увеличивает физический размер чипа АП, что увеличивает стоимость производства. Дополнительная схема также увеличивает рассеиваемую мощность, так как все схемы сравнений активны на каждом такте. Как следствие, АП используется только в специализированных приложениях, где скорость поиска не может быть достигнута, используя другие, менее дорогостоящие, методы.

Альтернативные реализации

Для того, чтобы достигнуть другого баланса между скоростью, размером памяти и стоимостью, некоторые реализации эмулируют функции АП путём использования стандартного поиска по дереву или алгоритмов хеширования, реализованных аппаратно, также используя для ускорения эффективной работы такие аппаратные трюки, как репликация и конвейерная обработка. Эти проекты часто используются в маршрутизаторах.

Троичная ассоциативная память

Двоичная АП - простейший тип ассоциативной памяти, который использует слова поиска данных, состоявшие полностью из единиц и нулей. В троичной АП (ternary content-addressable memory, TCAM ) добавляется третье значение для сравнения «X», или «не важно», для одного или более битов в сохраненном слове данных, добавляя дополнительную гибкость поиску.

Например, в троичной АП могло бы быть сохранено слово «10XX0», которое выдаст совпадение на любое из четырёх слов поиска «10000», «10010», «10100» или «10110». Добавление гибкости к поиску приходит за счёт увеличения сложности памяти, поскольку внутренние ячейки теперь должны кодировать три возможных состояния вместо двух. Это дополнительное состояние обычно осуществляется добавлением бита маски «важности» («важно»/«не важно») к каждой ячейке памяти.

Примеры приложений

Адресуемая содержанием память часто используется в компьютерных сетевых устройствах. Например, когда сетевой коммутатор (switch) получает фрейм данных на один из его портов, это обновляет внутреннюю таблицу с источником MAC-адреса фрейма и порта, на который он был получен. Потом он ищет MAC-адрес назначения в таблице, чтобы определить, на какой порт фрейм должен быть отправлен, и отсылает его на этот порт. Таблица MAC- адресов обычно реализована на двоичной АП, таким образом порт назначения может быть найден очень быстро, уменьшая время ожидания коммутатора.

Троичные АП часто используются в тех сетевых маршрутизаторах, в которых у каждого адреса есть две части: (1) адрес сети, который может измениться в размере в зависимости от конфигурации подсети, и (2) адрес хоста, который занимает оставшиеся биты. У каждой подсети есть маска сети, которая определяет, какие биты - адрес сети и какие биты - адрес хоста. Маршрутизация делается путём сверки с таблицей маршрутизации, которую поддерживает маршрутизатор (router). В ней содержатся все известные адреса сети назначения, связанная с ними маска сети и информация, необходимая пакетам, маршрутизируемым по этому назначению. Маршрутизатор, реализованный без АП, сравнивает адрес назначения пакета, который будет разбит, с каждым входом в таблице маршрутизации, выполняя при этом логическое И с маской сети и сравнивая результаты с адресом сети. Если они равны, соответствующая информация направления используется, чтобы отправить пакет. Использование троичной АП для таблицы маршрутизации делает процесс поиска очень эффективным. Адреса хранятся с использованием бита «не важно» в части адреса хоста, таким образом поиск адреса назначения в АП немедленно извлекает правильный вход в таблице маршрутизации; обе операции - применения маски и сравнения - выполняются аппаратно средствами АП.

Ассоциативная память

Ассоциативная память (АП) или Ассоциативное запоминающее устройство (АЗУ) является особым видом машинной памяти, используемой в приложениях очень быстрого поиска. Известна также как память, адресуемая по содержимому , ассоциативное запоминающее устройство , контентно-адресуемая память или ассоциативный массив , хотя последний термин чаще используется в программировании для обозначения структуры данных. (Hannum и др., 2004)

Аппаратный ассоциативный массив

В отличие от обычной машинной памяти (памяти произвольного доступа, или RAM), в которой пользователь задает адрес памяти и ОЗУ возвращает слово данных, хранящееся по этому адресу, АП разработана таким образом, чтобы пользователь задавал слово данных, и АП ищет его во всей памяти, чтобы выяснить, хранится ли оно где-нибудь в нем. Если слово данных найдено, АП возвращает список одного или более адресов хранения, где слово было найдено (и в некоторых архитектурах, также возвращает само слово данных, или другие связанные части данных). Таким образом, АП - аппаратная реализация того, что в терминах программирования назвали бы ассоциативным массивом.

Промышленные стандарты адресуемой содержанием памяти

Определение основного интерфейса для АП и других Сетевых Элементов Поиска (Network Search Elements, NSE) было специфицировано в Соглашении о возможности взаимодействий (Interoperability Agreement), названном Интерфейс предысторий(Look-Aside Interface) (LA-1 и LA-1B ) который был разработан Форумом Сетевой Обработки, который позже был объединен с Оптическим Межсетевым Форумом (Optical Internetworking Forum, OIF). Многочисленные устройства были произведены компаниями Integrated Device Technology, Cypress Semiconductor, IBM, Netlogic Micro Systems и другими по этим соглашениям LA. 11 декабря 2007, OIF издал соглашение об интерфейсе последовательной предыстории (Serial Lookaside, SLA ).

Реализация на полупроводниках

Из-за того, что АП разработана, чтобы искать во всей памяти одной операцией, это получается намного быстрее чем поиск в RAM фактически во всех приложениях поиска. Однако, есть и минус в большей стоимости АП. В отличие от чипа RAM, у которого хранилища простые, у каждого отдельного бита памяти в полностью параллельной АП должна быть собственная присоединенная схема сравнения, чтобы обнаружить совпадение между сохраненным битом и входным битом. К тому же, выходы сравнений от каждой ячейки в слове данных должны быть объединены, чтобы привести к полному результату сравнения слова данных. Дополнительная схема увеличивает физический размер чипа АП, что увеличивает стоимость производства. Дополнительная схема также увеличивает рассеиваемую мощность, так как все схемы сравнений активны на каждом такте. Как следствие, АП используется только в специализированных приложениях, где скорость поиска не может быть достигнута используя другие менее дорогостоящие методы.

Альтернативные реализации

Для того, чтобы достигнуть другого баланса между скоростью, размером памяти и стоимости, некоторое реализации эмулируют функции АП путем использования стандартного поиска по дереву или алгоритмов хеширования реализованных аппаратно, также используя для ускорения эффективной работы такие аппаратные трюки как репликация и конвейерная обработка. Эти проекты часто используются в маршрутизаторах.

Троичная Ассоциативная память

Двоичная АП - простейший тип ассоциативной памяти, который использует слова поиска данных, состоявшие полностью из единиц и нулей. В троичной АП добавляется третье значение для сравнения «X» или «не важно», для одного или более битов в сохраненном слове данных, добавляя таким образом большей гибкости поиску. Например, в троичной АП могло бы быть сохранено слово «10XX0», которое выдаст совдпадение на любое из четырех слов поиска «10000», «10010», «10100», или «10110». Добавление гибкости к поиску приходит за счет увеличения цены двоичной АП, поскольку внутренняя ячейка памяти должна теперь закодировать три возможных состояния вместо двух. Это дополнительное состояние обычно осуществляется добавлением бита маски «важности»(«важно»/«не важно») к каждой ячейке памяти.

Голографическая ассоциативная память обеспечивает математическую модель для интегрированного ассоциативного воспоминания бита «не важно», используя комплекснозначное представление.

Примеры приложений

Адресуемая содержанием память часто используется в компьютерных сетевых устройствах. Например, когда сетевой коммутатор (switch) получает фрейм данных на один из его портов, это обновляет внутреннюю таблицу с источником MAC-адреса фрейма и порта, на который он был получен. Потом он ищет MAC-адрес назначения в таблице, чтобы определить, на какой порт фрейм должен быть отправлен, и отсылает его на этот порт. Таблица MAC- адресов обычно реализована на двоичной АП, таким образом порт назначения может быть найден очень быстро, уменьшая время ожидания коммутатора.

Троичные АП часто используются в тех сетевых маршрутизаторах, в которых у каждого адреса есть две части: (1) адрес сети, который может измениться в размере в зависимости от конфигурации подсети, и (2) адрес хоста, который занимает оставшиеся биты. У каждой подсети есть маска сети, которая определяет, какие биты - адрес сети и какие биты - адрес хоста. Маршрутизация делается путем сверки с таблицей маршрутизации, которую поддерживает маршрутизатор (router). В ней содержатся все известные адреса сети назначения, связанная с ними маска сети и информация, необходимая пакетам, маршрутизируемым по этому назначению. Маршрутизатор, реализованный без АП, сравнивает адрес назначения пакета, который будет разбит, с каждым входом в таблице маршрутизации, выполняя при этом логическое И с маской сети и сравнивая результаты с адресом сети. Если они равны, соответствующая информация направления используется, чтобы отправить пакет. Использование троичной АП для таблицы маршрутизации делает процесс поиска очень эффективным. Адреса хранятся с использованием бита «не важно» в части адреса хоста, таким образом поиск адреса назначения в АП немедленно извлекает правильный вход в таблице маршрутизации; обе операции - применения маски и сравнения - выполняются аппаратно средствами АП.

Другие приложения АП включают

  • Диспетчеры кэша центрального процессора и ассоциативные буфера трансляции (TLB)

Библиография

  • Кохонен Т. Ассоциативные запоминающие устройства. М.: Мир, 1982. - 384 с.

На английском языке

  • Anargyros Krikelis, Charles C. Weems (editors) (1997) Associative Processing and Processors , IEEE Computer Science Press. ISBN 0-8186-7661-2
  • Hannum et al. (2004) System and method for resetting and initializing a fully associative array to a known state at power on or through machine specific state . U.S. Patent 6,823,434.

Ссылки


Wikimedia Foundation . 2010 .

Смотреть что такое "Ассоциативная память" в других словарях:

    В информатике безадресная память, в которой поиск информации производится по ее содержанию (ассоциативному признаку). См. также: Память компьютера Прикладное программное обеспечение Финансовый словарь Финам … Финансовый словарь

    ассоциативная память - Память, в которой адресация определяется не местом расположения объекта, а его содержанием. Для нахождения адреса проводится анализ объекта и совпадение его названия (по определенным словам) с другими адресами. Использование ассоциативной памяти… … Справочник технического переводчика

    ассоциативная память - ассоциативное запоминающее устройство; ассоциативная память Запоминающее устройство, в котором место обращения определяется содержанием хранящейся информации … Политехнический терминологический толковый словарь

    ассоциативная память - asociatyvioji atmintis statusas T sritis automatika atitikmenys: angl. associative memory vok. assoziativer Speicher, m; Durchsuchspeicher, m rus. ассоциативная память, f pranc. mémoire associative, f … Automatikos terminų žodynas

Этот цикл статей описывает волновую модель мозга, серьезно отличающуюся от традиционных моделей. Настоятельно рекомендую тем, кто только присоединился, начинать чтение с .

В предыдущей части мы показали как может выглядеть распределенная память. Основная идея заключается в том, что общий волновой идентификатор может объединить нейроны, которые своей активностью формируют запоминаемую картину. Чтобы воспроизвести конкретное событие достаточно запустить по коре соответствующий идентификатор воспоминания. Его распространение восстановит ту же картину активности, что была на коре на момент фиксации этого воспоминания. Но главный вопрос - это как нам получить требуемый идентификатор? Ассоциативность памяти подразумевает, что по набору признаков мы можем отобрать события, в описании которых присутствовали эти признаки. То есть должен существовать нейронный механизм, который позволит по описанию в определенных признаках, получить идентификатор подходящего под эти признаки воспоминания.

Когда мы говорили о распространении нейронных волн, мы исходили из того, что нейрон хранит на внесинаптической мембране те волновые картины, участником которых он является. Встретив знакомую картину, нейрон своим спайком создает продолжение уникального узора. И тут важно, что нейрон не просто в состоянии узнать волновую картину, а то, что он сам – часть распространяющегося узора. Только будучи сам частью уникальной волны нейрон способен участвовать в ее распространении.

Чтобы не запутаться в последующих рассуждениях, еще раз повторим основные свойства волновой модели коры. Если отметить нейроны, относящиеся к одному волновому узору или – другими словами – идентификатору, то получится что-то вроде набора точек, изображенного на рисунке ниже.

Взяв любое место коры и активировав элементы идентификатора, мы получим волну, распространяющуюся от активного места, повторяющую характерный для идентификатора узор (рисунок ниже).

Проходя через каждое место коры, волна будет «высвечивать» фрагмент своего уникального узора. Так, стартовав из области 1, волна, дойдя до области 2, создаст там свой предопределенный идентификатором уникальный узор (рисунок ниже).

По уникальности узора можно в каждом месте коры определить, какие идентификаторы составляют волну.

Если мы на спокойной коре в области 2 воспроизведем уже знакомый нам узор, то он также создаст волну, которая, распространившись до области 1, создаст там все тот же паттерн, характерный именно для этого идентификатора.

Из всего этого следует, что для узнавания идентификатора достаточно в любом месте коры запомнить, какой узор именно в этом месте создает волна. Это можно запомнить либо на синапсах нейрона, либо на внесинаптической части мембраны. Запоминание на синапсах приводит к вызванной активности (пакету импульсов) при узнавании, запоминание на метаботропных рецептивных кластерах позволяет получать единичные спайки при появлении знакомой волны.

Сложнее, если нам надо воспроизвести идентификатор. Для этого нам надо активировать хотя бы единичными спайками группу близко расположенных нейронов, относящихся к требуемому идентификатору. Описывая обратную проекцию и вводя несколько медиаторов, мы как раз показывали механизм, реализующий нечто подобное.

Говоря об ассоциативности понятий, мы показали, что запрос, построенный на волнах идентификаторов, возвращает набор идентификаторов понятий, ассоциативно связанных с понятиями, содержащимися в запросе.

Чтобы показать механизм извлечения воспоминаний из ассоциативной событийной памяти нам надо показать, как волновой запрос, состоящий из понятий-признаков, может выдать уникальные гиппокамповские идентификаторы воспоминаний, подходящих под этот запрос. Если мы сможем получить такой набор идентификаторов и отобрать из них один, то, запустив этот идентификатор обратно по коре, мы получим активность нейронов-детекторов, содержащих этот идентификатор на внесинаптической мембране, а это будет равносильно восстановлению всей описательной картины требуемого воспоминания.

Напомню, про нашу упрощенность и схематичность описания. Далее я изложу возможный нейронный механизм ассоциативной памяти, не утверждая при этом, что мозг работает именно так.

Опять ненадолго обратимся к строению реальных нейронов. Тело нейрона – сома – имеет ограниченную площадь и не может обеспечить места для всех синаптических контактов. Большая часть синапсов приходится на разветвленную структуру, называемую дендритом или дендритным деревом (рисунок ниже). Количество синапсов, располагающихся на дендрите, в 10-20 раз превышает количество синапсов на соме.


Формы дендритных деревьев (Greg Stuart, ‎Nelson Spruston, ‎Michael Häusser)

Было обнаружено, что нейрон ведет себя по-разному в зависимости от того, приходят ли сигналы на синапсы на одну или на разные дендритные ветки (Shepherd G.M., Brayton R.K., Miller J.P., Segev I., Rinzel J., Rall W., 1985). Одновременный приход импульсов на синапсы одной ветки вызывает значительно более сильный ответ нейрона, чем сигнал, распределенный по разным веткам.

На основе наблюдений такого рода родилась гипотеза о том, что дендритные ветки могут играть роль детекторов совпадений (Softky, 1994). Ее суть в том, что сигналам, рождающимся в удаленных ветках дендритного дерева, для генерации спайка нейрона необходимо, чтобы были активны сегменты дендритного дерева, лежащие по дороге сигнала к соме.

Такой эффект был показан для пирамидальных нейронов (Jarsky T., Alex Roxin A., Kath W.L., Spruston N., 2005), но можно полагать, что что-то подобное свойственно и нейронам других типов.


Фазы распространения сигнала в апикальных и наклонных сегментах пирамидального нейрона гиппокампа. Сигнал возникает в апикальном пучке (красная точка) и распространяется до коллатерали Шаффера (зеленая точка). Сигнал в более близком к соме месте дендрита не позволяет далекому сигналу угаснуть и способствует возникновению спайка (Jarsky T., Alex Roxin A., Kath W.L., Spruston N., 2005)

Распространение импульса по дендриту сопровождается его значительным затуханием. По идее, влияние удаленных (дистальных) синапсов должно быть значительно меньше, чем влияние близких (проксимальных). Однако были показаны механизмы, выравнивающие вклад таких синапсов, что вылилось в концепцию «демократии синапсов» (Clifton C. Rumsey, L. F. Abbott, 2006). Выравнивание вклада синапсов вдоль ветки дендрита позволяет рассматривать ветки как самостоятельные логические элементы, сигналы которых каким-то образом далее обрабатываются нейроном. Это означает, что теоретически, меняя конфигурацию дендрита и реакцию сомы, можно получить нейроны с различными логическими свойствами.

Например, в популярной концепции «иерархической темпоральной памяти» Джеффа Хокинса применяются нейроны, использующие автономные элементы, работающие в режиме «или» (рисунок ниже).


Модель нейрона с набором дендритных логических автономных элементов в сопоставлении с пирамидальным нейроном (Хокинс, 2011)

Вполне уместно предположить, что и реальный мозг оперирует нейронами с существенным разнообразием свойств.

Теперь перейдем, собственно, к описанию ассоциативной событийной памяти. Предположим, что у нас есть нейроны двух типов, образующие плоскую кору. Рецептивные поля этих нейронов охватывают некую локальную область своего окружения, куда попадают нейроны обоих типов. Условно разнесем их на два слоя, помня при этом о перекрестном распределении связей.

Зададим нейроны первого типа такими, чтобы они распространяли волну информационного идентификатора. Нейроны же второго типа заставим распространять исключительно волны идентификаторов гиппокампа (рисунок ниже).


Распространение двух независимых волн на нейронах с разным типом медиатора

Для этого разведем их аксоны и внесинаптические рецепторы по используемым медиаторам (таблица ниже). Обратите внимание, что для задания волнового распространения синаптические рецепторы нам не важны.

Синапсы Вне синапсов Аксон
Тип 1 A A
Тип 2 B B
Нейромедиаторные характеристики нейронов. Чувствительность рецепторов и выброс аксона

При таком задании медиаторов и рецепторов волны на двух слоях никак не будут влиять друг на друга.

Теперь усложним нейроны второго типа, сделаем их дендритные деревья состоящими из двух типов веток, отличающихся внесинаптическими медиаторами. При моделировании однородные ветки можно объединить и в результате оставить два дендритных сегмента, работающих по принципу «или» (таблица ниже).

Сегмент Синапсы Вне синапсов Аксон
Тип 1 A A
Тип 2 1 B B
2 A
Нейромедиаторные характеристики нейронов. Чувствительность рецепторов и выброс аксона. Нейроны второго типа имеют два дендритных сегмента с рецепторами, чувствительными к медиаторам разного типа

Предположим, что пока шло обучение нейронов тому, как распространять волны идентификаторов, у нейронов второго типа был заблокирован второй сегмент, чувствительный к «чужому» медиатору. Вся информация, необходимая для формирования волн, у нейронов второго типа будет откладываться на внесинаптической памяти первого сегмента.

Если теперь мы включим вторые сегменты, то на них начнется запоминание волновых картин, распространяющихся по нейронам первого типа. Будем полагать, что внесинаптическое запоминание происходит в момент, когда нейрон генерирует спайк. При этом фиксируется не моментальная картина активности на синапсах, а накопленная за весь такт распространения волны. Накопление позволит нам запомнить фрагмент волны первого уровня, даже если фазы волн двух уровней в месте запоминания не совпадают. То есть, когда нейрон второго уровня выдаст спайк, он зафиксирует картину информационной активности, даже если она была какое-то время назад.

Предположим, что мы провели один такт такого запоминания. Все нейроны второго уровня, распространяющие волну идентификатора гиппокампа, активные в этом такте, запомнят на своих вторых сегментах фрагменты информационной волны, прошедшей по нейронам первого типа. Это значит, что если мы когда-нибудь повторим такую же волну описания, то все нейроны второго уровня, которые узнают эту картину, дадут спайк. Общая картина этих спайков воспроизведет тот самый идентификатор гиппокампа, который был на момент запоминания этого информационного образа.

Так можно запоминать различные описательные картины. При повторении соответствующих описаний нейроны второго уровня будут выдавать суммарное сочетание всех идентификаторов гиппокампа, попадающих под текущее описание.

Видно, что такое запоминание крайне расточительно. Мы запоминаем каждый образ на всех активных нейронах второго типа. Хотя для воспроизведения идентификатора нам нужен всего лишь малый локальный участок, способный запустить волну. Чтобы исправить ситуацию, будем запоминать информационную волну не на всех активных нейронах второго типа, а только на тех, которые попадают в области с высокой вызванной активностью нейронов первого типа. То есть вспомним, что информация дуалистична. Она одновременно и идентификаторная волна, и активность паттернов вызванной активности. Волна даст нам узор для запоминания, а паттерны укажут места для этого.

Самый простой способ выбора места – это воспользоваться тем же полем активности, которое мы использовали для пространственной самоорганизации паттернов. В такой конфигурации запоминание можно представить так. В местах коры, где информационная картина создает паттерны вызванной активности, формируется поле активности. Все активные нейроны второго типа, распространяющие волну гиппокампа, для которых поле активности выше определенного порога, фиксируют на внесинаптической памяти картины, описываемые информационной волной.

Подав информационную волну-запрос, мы получим активность нейронов второго типа, узнавших этот запрос. Локальные группы таких нейронов будут излучать идентификаторы гиппокампа, относящиеся ко всем воспоминаниям, ассоциативно связанным с этим запросом.

Мы показали, как могут фиксироваться и восстанавливаться уникальные идентификаторы воспоминаний. Ранее мы показали, что если на нейронах-детекторах хранить память о таких уникальных идентификаторах, то можно восстанавливать образы, соответствующие запомненным моментам. В таблице ниже приведена возможная конфигурация медиаторов для такой памяти.

Сегмент Синапсы Вне синапсов Аксон
Тип 1 1 A A
2 B
Тип 2 1 B B
2 A
Нейромедиаторные характеристики нейронов. Чувствительность рецепторов и выброс аксона. Двусвязная конфигурация

Задание области запоминания через поле активности – достаточно грубый инструмент. Есть вполне очевидные пути по совершенствованию конструкции. Например, можно через синаптическое обучение нейронов второго типа создать из них области, соответствующие понятиям, находящимся в этом месте коры. Используя концепцию дендритного детектора совпадений, можно сделать так, что активность понятия будет обязательным условием, как для записи, так и для обратной генерации идентификаторов воспоминаний, связанных с этим понятием.

Вообще же богатство инструментария, которое предоставляет волновая модель коры с многосекционными нейронами, позволяет реализовывать достаточно сложные и интересные конструкции. Ограничимся пока уже приведенными самыми простыми схемами, чтобы окончательно не запутать повествование.