Домой / Основные настройки / Принцип и схема работы двигателя постоянного тока с параллельным возбуждением. Особенности электродвигателя постоянного тока со смешанным возбуждением

Принцип и схема работы двигателя постоянного тока с параллельным возбуждением. Особенности электродвигателя постоянного тока со смешанным возбуждением

Министерство науки и образования Российской Федерации

Федеральное агентство по образованию

Государственное образовательное учреждение

Высшего профессионального образования

Национальный исследовательский

ИРКУТСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ

Кафедра Электроснабжения и Электротехники

Двигатель постоянного тока параллельного возбуждения

Отчет по лабораторной работе №9

по дисциплине «Общая электротехника и электроника»

Выполнил

Студент СМо-11-1 ________ Дергунов А.С. __________

(подпись) Фамилия И.О. (дата)

Доцент каф. Э и ЭТ ________ Кирюхин Ю.А. __________

(подпись) Фамилия И.О. (дата)

Иркутск 2012

Цель работы 3

Задание 3

Краткие теоретические сведения 3

Оборудование электрической установки 5

Порядок выполнения работы 6

Ответы контрольные вопросы 9

Цель работы

Ознакомиться с устройством и работой двигателя постоянного тока параллельного возбуждения и исследовать его характеристики.

Задание

Ознакомиться с конструкцией и принципом работы двигателя постоянного тока параллельного возбуждения. Ознакомиться со схемой включения двигателя параллельного возбуждения. Ознакомиться с условиями пуска двигателя параллельного возбуждения. Ознакомиться со способами регулирования частоты вращения двигателя. Исследовать двигатель в режиме холостого хода. Построить регулировочную характеристику. Исследовать двигатель при нагрузке. Построить рабочие и механические характеристики.

Краткие теоретические сведения

В двигателе параллельного возбуждения обмотку возбуждения включают параллельно обмотке якоря (см. рис. 1). Величина тока в обмотке возбуждения меньше тока якоряи составляет 2 – 5% от.

Эксплуатационные свойства двигателей оцениваются рабочими, механическими и регулировочными характеристиками.

Рис. 1

На рис. 8 показаны рабочие характеристики двигателя параллельного возбуждения: зависимость частоты вращения , величины тока якоря, вращающего момента
, коэффициента полезного действияи потребляемой из сети мощностиот полезной мощностипри неизменных напряжениии токе возбуждения.

Рис. 2

Механическая характеристика двигателя представляет собой зависимость частоты вращения якоря от момента на валу при неизменных напряжении и сопротивлении цепи возбуждения . Она показывает влияние механической нагрузки на валу двигателя на частоту вращения, что особенно важно знать при выборе и эксплуатации двигателей. Механические характеристики могут быть естественными и искусственными. Характеристика двигателя при номинальных
,
и сопротивлении
называется естественной. Формула для частоты вращения двигателя:

Уравнение механической характеристики:

, (1)

где
– частота вращения при идеальном холостом ходе (
);

–изменение частоты вращения, вызванное действием нагрузки.

Так как у двигателей постоянного тока сопротивление обмотки якоря
мало, то с увеличением нагрузки на валу частота вращенияn изменяется незначительно. Характеристики подобного типа называются жесткими.

Если пренебречь размагничивающим действием реакции якоря и принять
, то естественная механическая характеристика двигателя параллельного возбуждения имеет вид прямой, слабо наклонной к оси абсцисс (рис.3, прямая 1).

Если в цепь якоря двигателя ввести пускорегулировочный реостат
, то зависимость
будет определяться выражением


. (2)

Частота вращения при идеальном холостом ходе остается неизменной, а изменение частоты вращения
увели-чивается, и угол наклона механической характеристики к оси абсцисс возрастает (рис. 3, прямая 2). Полученная таким образом механическая характеристика называетсяискусственной .

Принудительное изменение частоты вращения двигателя при постоянном моменте нагрузки на валу называется регулированием. Рис. 3

Регулирование частоты вращения в двигателях параллельного возбуждения возможно двумя способами: изменением магнитного потока и изменением сопротивления в цепи якоря.

Р
егулирование частоты вращения изменением сопротивления в цепи якоря осуществляется при помощи пуско-регулировочного реостата
. При увеличении сопротивления
частота вращения уменьшается по формуле (2). Этот способ неэкономичен, так как сопровождается значительными потерями на нагрев реостата.

Регулирование частоты вращения изменением магнитного потока осуществ-ляется посредством реостата , включен-ного в обмотку возбуждения (см.рис.1). Рис. 10 Рис. 4

При увеличении уменьшается ток в обмотке возбуждения, уменьшается магнитный поток
, что вызывает увеличение частоты вращения.

При малых значениях тока возбуждения, а тем более при обрыве цепи возбуждения (
), то есть при незначительном магнитном потоке
, частота вращения резко увеличивается, что ведет к «разносу» двигателя и к его механическому разрушению. Поэтому очень важно следить за тем, чтобы все электрические соединения в цепи возбуждения были надежны.

Зависимость частоты вращения от тока возбуждения называется регулировочной характеристикой двигателя (см. рис. 4).

Регулирование частоты вращения изменением магнитного потока
очень экономично, но не всегда приемлемо, так как при изменении
значительно меняется жесткость механических характеристик.

Двигатели параллельного возбуждения благодаря линейности и «жесткости» механических характеристик, а также возможности плавного регулирования скорости вращения в широких пределах, получили распространение как в силовом электроприводе (для механизмов и станков), так и в системах автоматического управления.

Двигатель постоянного тока с параллельным возбуждением – это электродвигатель, у которого обмотки якоря и возбуждения подключаются друг к другу параллельно. Часто по своей функциональности он превосходит агрегаты смешанного и последовательного типов в случаях, если необходимо задать постоянную скорость работы.

Характеристики двигателя постоянного тока с параллельным возбуждением

Формула общего тока, идущего от источника, выводится согласно первому закону Кирхгофа и имеет вид: I = I я + I в, где I я - ток якоря, I в – ток возбуждения, а I – ток, который двигатель потребляет от сети. Следует отметить, что при этом I в не зависит от I я, т.е. ток возбуждения не зависит от нагрузки. Величина тока в обмотке возбуждения меньше тока якоря и составляет примерно 2-5% от сетевого тока.

В целом, данные электродвигатели отличаются следующими весьма полезными тяговыми параметрами:

  • Высокая экономичность (поскольку ток якоря не проходит через обмотку возбуждения).
  • Устойчивость и непрерывность рабочего цикла при колебаниях нагрузки в широких пределах (т.к. величина момента сохраняется даже в случае изменения числа оборотов вала).

При недостаточном моменте пуск осуществляется посредством перехода на смешанный тип возбуждения.

Сферы применения двигателя

Поскольку частота вращения подобных двигателей остается почти постоянной даже при изменении нагрузки, а также может изменяться при помощи регулировочного реостата, они широко применяются в работе с:

  • вентиляторами;
  • насосами;
  • шахтными подъемниками;
  • подвесными электрическими дорогами;
  • станками (токарными, металлорежущими, ткацкими, печатными, листоправильными и пр.).

Таким образом, этот вид двигателей в основном используется с механизмами, требующими постоянства скорости вращения или ее широкой регулировки.

Регулирование частоты вращения

Регулирование скорости – это целенаправленное изменение скорости электродвигателя в принудительном порядке при помощи специальных устройств или приспособлений. Оно позволяет обеспечить оптимальный режим работы механизма, его рациональное использование, а также уменьшить расход энергии.

Существует три основных способа регулирования скорости двигателя:

  1. Изменение магнитного потока главных полюсов. Осуществляется при помощи регулировочного реостата: при увеличении его сопротивления магнитный поток главных полюсов и ток возбуждения I в уменьшаются. При этом увеличивается число оборотов якоря на холостом ходу, а также угол наклона механической характеристики. Жесткость механических характеристик сохраняется. Однако увеличение скорости может привести к механическим повреждениям агрегата и к ухудшению коммутации, поэтому не рекомендуется увеличивать частоту вращения этим методом более чем в два раза.
  2. Изменение сопротивления цепи якоря. К якорю последовательно подключается регулировочный реостат. Скорость вращения якоря уменьшается при увеличении сопротивления реостата, а наклон механических характеристик увеличивается. Регулировка скорости вышеуказанным способом:
  • способствует уменьшению частоты вращения относительно естественной характеристики;
  • связана с большой величиной потерь в регулировочном реостате, следовательно, неэкономична.
  1. Безреостатное изменение подаваемого на якорь напряжения. В этом случае необходимо наличие отдельного источника питания с регулируемым напряжением, например, генератора или управляемого вентиля.

Двигатель с независимым возбуждением

Двигатель постоянного тока независимого возбуждения как раз и реализует третий принцип регулирования скорости. Его отличие в том, что обмотка возбуждения и магнитное поле главных полюсов подключаются к разным источникам. Ток возбуждения является неизменной характеристикой, а магнитное поле меняется. При этом изменяется число оборотов вала на холостом ходу, жесткость характеристики остается прежней.

Таким образом, принцип работы дпт с независимым возбуждением является достаточно сложным вследствие независимой работы двух источников, тем не менее, его главное преимущество – большая экономичность.

Существует несколько возможных разновидностей построения эл моторов, работающих от источника постоянного напряжения. Принцип их действия одинаков, а отличия заключаются в особенностях подключения обмотки возбуждения (ОВ) и якоря (Я).

Свое название эл двигатель постоянного тока с параллельным возбуждением получил потому, что его обмотка Я и ОВ соединяются друг с другом именно таким образом. Электродвигатель такой разновидности обеспечивает нужные режимы, превосходя изделия последовательного и смешанного типов тогда, когда требуется практически постоянная скорость его функционирования.

  • Заключение

Построение двигателя и область его применения

Схема электродвигателя рассматриваемого типа изображена ниже.

  • общий ток, потребляемый эл мотором от источника, составляет I = I Я + I В, где I Я, I В – токи через якорь, обмотку возбуждения, соответственно;
  • одновременно I В не зависит от I Я, то есть не зависит от нагрузки.

Устройство применяется тогда, когда пуск не требует обеспечения высокого момента, то есть когда режимы эксплуатации приводных механизмов не предполагают создание больших стартовых нагрузок. Это типично для станков и вентиляторов.

Для практики ценны такие полезные тяговые параметры подобных эл механизмов как

  • устойчивость работы при колебаниях нагрузки;
  • высокая экономичность из-за того, что I Я не протекает через ОВ.

Пуск при недостаточном моменте обеспечивается переходом на схему смешанного типа.

Поведение электромотора при изменении нагрузок

Механическая характеристика показывает устойчивость работы электромотора в широком диапазоне изменения нагрузок, описывая зависимость момента, создаваемого эл двигателем, от скорости функционирования вала.

Тяговые характеристики механизма рассматриваемого типа позволяют сохранить величину момента при значительных изменения количества оборотов. Обычно тяговые параметры агрегата должен обеспечивать уменьшение этого параметра не более чем на 5 %. Несложное исследование демонстрирует: тормозные параметры из-за обратимости процессов оказываются аналогичными. Эти положения распространяются также на случай применения смешанного возбуждения.

Говоря иными словами, для такого эл мотора характерна жесткая характеристика. Такой характер работы считается важным преимуществом агрегата рассматриваемого типа.

Разновидности подходов к регулированию частоты вращения

Для экономии на платежах за электроэнергию наши читатели советуют "Экономитель энергии Electricity Saving Box". Ежемесячные платежи станут на 30-50% меньше, чем были до использования экономителя. Он убирает реактивную составляющую из сети, в результате чего снижается нагрузка и, как следствие, ток потребления. Электроприборы потребляют меньше электроэнергии, снижаются затраты на ее оплату.

Принцип действия параллельного включения обмоток обеспечивает плавный пуск в сочетании с большим диапазоном изменения оборотов в процессе работы с помощью реостатов. Они же обеспечивают нормальный пуск двигателя ограничением тока.

Для агрегатов параллельного типа используются способы управления скоростью функционирования изменением:

  • магнитного потока главных полюсов;
  • сопротивления цепи якоря;
  • подаваемого на него напряжения.

Объектом воздействия являются обмотка возбуждения, обмотка якоря, его рабочее напряжение.

Изменение магнитного потока осуществляется с помощью последовательного реостата R Р. При увеличении его сопротивления ОВ пропускает меньший ток, что сопровождается уменьшением магнитного потока. Внешним проявлением такого действия становится наращивание оборотов Я на холостом ходу. Исследование показывает, что происходит увеличение угла наклона характеристики.

Второй принцип основан на включении в цепь питания якоря дополнительного последовательного регулировочного реостата. При увеличении его сопротивления скорость вращения Я уменьшается, тогда как его естественная механическая характеристика приобретает больший наклон. Из-за последовательного включения с основной обмоткой реостата дополнительного сопротивления, на котором рассеивается значительная мощность, происходит заметное падение экономичности.

Третий принцип сопровождается определенным усложнением схемных решений и требует применения отдельного регулируемого источника питания с сохранением возможности раздельного регулирования. В случае его применения в реальных условиях возможно только уменьшение частоты вращения вала.

Двигатель с независимым возбуждением

Двигатель постоянного тока независимого возбуждения реализует третий подход к регулированию и интересен тем, что ОВ и М питаются от разных источников, схема его представлена ниже.

Для моторов в данном конструктивном исполнении I в устанавливается неизменным, а меняется только напряжение, приложенное к М. Это сопровождается изменением числа оборотов на холостом ходу, но жесткость характеристики изменений не претерпевает.

Принцип работы такого агрегата за счет независимого функционирования двух источников оказывается более сложным. Однако, его применение дает такие важные для практики преимущества как

  • плавное экономичное управление скоростью функционирования с большой глубиной;
  • пуск мотора при пониженном напряжении без реостата.

В случае, если пуск происходит на нормальном напряжении, реостат ограничивает величину I в.

Исследование показывает, что максимальное количество оборотов ограничено только сопротивлением М, а минимальное — условиями отвода выделяемого тепла в процессе работы.

Характеристики в части энергопотребления и скорости срабатывания управляющей системы улучшаются в случае последовательного включения с М различных тиристорных регуляторов. Для установки числа оборотов вала и их стабилизации в процессе приведения в движение различных механизмов находят применение различные способы. Их общим характерным признаком является включение тиристорного регулятора в цепь частотной отрицательной обратной связи. Пуск такого агрегата требует реализации специальных процедур.

Заключение

Двигатель с параллельным возбуждением является очень гибким приводным механизмом и может использоваться в очень большом количестве областей там, где не требуются большие моменты при старте. Имеет несложные и надежные цепи регулирования скорости вращения, отличается простотой запуска.

Лекция №9

Двигатели постоянного тока

По габаритам;

По способу защиты;

По мощности;

По скорости вращения;

Схемы возбуждения электродвигателей постоянного тока показаны на рисунке.

Рис. 9.1 Схемы возбуждения электродвигателей постоянного тока: а - независимое, б - параллельное, в - последовательное, г - смешанное

Основные формулы и уравнения

Если принять скорость вращения якоря в системе СИ (рад/с), то формула 4.13 из лекции №4 примет вид

М - электромагнитный момент машины постоянного тока, Н/м (ньютон делить на метр)

k - постоянная для данной машины величина;

Ф - основной маг­нитный поток, Вб (вебер)

р - число пар полюсов обмотки якоря

N - число пазовых сторон обмотки якоря

а - число пар параллельных ветвей обмотки якоря

I а или просто I - ток якоря, А;

Для двигателя, работающего с постоянной час­тотой вращения, можно получить уравнение на­пряжений (Э.Д.С.) для цепи якоря генератора:

Это уравнение получают на основании второго закона Кирхгофа

. (9.3)

Сумма сопротивлений всех участков цепи якоря:

Обмотки якоря r а или, r я

Обмотки добавочных полюсов r д,

Компенсационной обмотки r ко,

Последовательной обмотки возбуждения r с

Переходного щеточного контакта r щ.

При отсутствии в машине каких-либо из указан­ных обмоток в (9.4) не входят соответствующие слагаемые.

Из (9.3) следует, что подведенное к двигателю напряжение уравновешивается противо-ЭДС обмот­ки якоря и падением напряжения в цепи якоря.

На основании (9.3) получим формулу тока якоря

. (9.5)

Умножив обе части уравнения (9.3) на ток яко­ря I а, получим уравнение мощности для цепи якоря:

, (9.6)

, (9.7)

(9.8)

ω- угловая частота вращения якоря;

Электромаг­нитная мощность двигателя.

Следовательно, выражение представляет собой электромаг­нитную мощность двигателя.

Рабочие характеристики

Рабочие характеристики двигателя представлены на рис 9.2б

Частота вращения двигателя с ростом нагрузки Р 2 уменьшается, а график ω= f(Р 2) приобретает падающий вид . Чтобы обеспечить характеристике частоты вращения форму падающей кривой, в некоторых двигателях параллельного возбу­ждения применяют легкую (с небольшим числом витков) последо­вательную обмотку возбуждения, которую называют стаби­лизирующей обмоткой. При включении этой обмотки согласованно с параллельной обмоткой возбуждения ее МДС компенсирует размагничивающее действие реакции якоря так, что поток Ф во всем диапазоне нагрузок остается практически неизменным.

Изменение частоты вращения двигателя при переходе от но­минальной нагрузки к х.х., выраженное в процентах, называют номинальным изменением частоты вращения:

, (9.12)

∆ω ном = 100

где 0 (n 0) - частота вращения двигателя в режиме х.х.

Обычно для двигателей параллельного возбуждения ∆ω ном =2-8%, поэтому характеристику частоты вращения двигателя па­раллельного возбуждения называют жесткой .

Зависимость полезного момента от нагрузки установлена формулой . При график имел бы вид прямой. Однако с увеличением нагрузки частота вращения двига­теля снижается, и поэтому зависимость криволинейна .

График зависимости М эл =f(Р 2) проходит параллельно кривой М 2 =f(Р 2) .

Пуск двигателя

Ток якоря двигателя определяется формулой

В начальный момент пуска якорь двигателя неподвижен и в его обмотке не индуцируется ЭДС Е а =0. Поэтому при непо­средственном подключении двигателя к сети в обмотке его якоря возникает пусковой ток

I п = (9.13)

Обычно сопротивление невелико, поэтому значение пус­кового тока достигает недопустимо больших значений, в 10-20 раз превышающих номинальный ток двигателя.

Такой большой пусковой ток весьма опасен для двигателя. Во-первых, он может вызвать в машине круговой огонь, а во-вторых, при таком токе в двигателе развивается чрезмерно большой пус­ковой момент, который оказывает ударное действие на вращаю­щиеся части двигателя и может механически их разрушить. И на­конец, этот ток вызывает резкое падение напряжения в сети, что неблагоприятно отражается на работе других потребителей, вклю­ченных в эту сеть. Поэтому пуск двигателя непосредственным подключением в сеть (безреостатный пуск) обычно применяют для двигателей мощностью не более 0,7-1,0 кВт. В этих двигате­лях благодаря повышенному сопротивлению обмотки якоря и не­большим вращающимся массам значение пускового тока лишь в 3-5 раз превышает номинальный, что не представляет опасности для двигателя.

Что же касается двигателей большей мощности, то при их пуске для ограничения пускового тока используют пуско­вые реостаты (ПР), включаемые последовательно в цепь якоря (реостатный пуск).

Перед пуском двигателя необходимо реостат ввести, т.е поставить наибольшее сопротивление. Затем включают рубиль­ник и постепенно уменьшают сопротивление реостата.

Рис. 9.4. Схема включения пускового реостата

Пусковой ток якоря при полном сопротивлении пускового реостата

. (9.14)

Сопротивление пус­кового реостата выбирают обычно таким, чтобы наибольший пус­ковой ток превышал номинальный не более чем в 2-3 раза.

Для пуска двигателей большей мощности применять пусковые реостаты нецелесообразно, так как это вызвало бы значительные потери энергии. Кроме того, пусковые реостаты были бы громозд­кими. Поэтому в двигателях большой мощности применяют без­реостатный пуск двигателя путем понижения напряжения.

Приме­рами этого являются пуск тяговых двигателей электровоза переключением их с последовательного соединения при пуске на параллельное при нормальной работе или пуск двига­теля в схеме «генератор-двигатель».

Реверсирование двигателей

Реверсирование двигателя - это изменение направления вращения якоря.

Реверсирование двигателя осуществляется либо изменением полярности напряжения на обмотке якоря, либо на обмотке возбуждения. В обоих случаях изменяется знак электромагнитного момента двигателя М эм и соответственно направление вращения якоря.

КПД машин постоянного тока

η = P 2 /P 1 , (9.20)

Р 2 - полезная мощность машины (у генератора - это электрическая мощность, отдаваемая приемнику, у двигателя - механическая мощность на валу);

Р 1 - подводимая к машине мощность (у генератора - это механическая мощность, сообщаемая ему первичным двигателем, у двигателя - мощность, потребляемая им от источника постоянного тока; если генератор имеет независимое возбуждение, то P 1 включает в себя также мощность, необходимую для питания цепи обмотки возбуждения).

Очевидно, мощность Р 1 может быть выражена следующим образом: Р 1 = Р 2 + ΣΔP,

где ΔP - сумма перечисленных выше потерь мощности.

С учетом последнею выражения

η = P 2 /(P 2 + ΣΔP). (9.21)

Когда машина работает вхолостую, полезная мощность Р 2 равна нулю и η = 0. Характер изменения КПД при увеличении полезной мощности зависит от значения и характера изменения потерь мощности. Примерный график зависимости η=f(Р 2) приведен на рис. 9.5.

При увеличении полезной мощности КПД сначала возрастает при некотором значении Р 2 , достигает наибольшего значения, а затем уменьшается. Последнее объясняется значительным увеличением переменных потерь, пропорциональных квадрату тока. Машины рассчитывают обычно таким образом, чтобы наибольшее значение КПД находилось в области, близкой к номинальной мощности Р 2ном. Номинальное значение КПД машин мощностью от 1 до 100 кВт лежит примерно в пределах от 0,74 до 0,92 соответственно.

Литература: Кацман М.М. Электрические машины. Глава 29.

§29.1, 29.2, 29.3, 29.4, 29.5, 29.6, 29.8, 29.10

Лекция №9

Двигатели постоянного тока

Способы возбуждения электродвигателей постоянного тока

Двигатели постоянного тока используются в промышленности в случае необходимости регулирования скорости ЭП (электропривода). В основном применяются системы УВ-Д (управляемый выпрямитель-двигатель), которые обеспечивают регулирование скорости с высоким качеством.

По способу возбуждения электрические двигатели постоянного тока делят на четыре группы:

1. С независимым возбуждением, у которых обмотка возбуждения НОВ питается от постороннего источника постоянного тока.

2. С параллельным возбуждением (шунтовые), у которых обмотка возбуждения ШОВ включается параллельно источнику питания обмотки якоря.

3. С последовательным возбуждением (сериесные), у которых обмотка возбуждения СОВ включена последовательно с якорной обмоткой.

4. Двигатели со смешанным возбуждением (компаундные), у которых имеется последовательная СОВ и параллельная ШОВ обмотки возбуждения.

Двигатели с независимым возбуждением и параллельным возбуждением обладают одинаковыми свойствами, поэтому эти группы объединяют и относят к одной группе: двигатели с независимым возбуждением предназначенные для работы в регулируемых ЭП.

Промышленность выпускает двигатели постоянного тока основной общепромышленной серии 2П и 4П, они подразделяются по следующим признакам:

По габаритам;

По способу защиты;

По мощности;

По скорости вращения;

По напряжению на якоре (110В, 220В, 340В, 440В);

На напряжению обмотке возбуждения (110 и 220 В);

Если напряжение на якоре и на обмотке возбуждения (ОВ) совпадают, то обмотка возбуждения подключается параллельно обмотке якоря.

Кроме серий 2П и 4П выпускаются и другие специализированные серии.

Ток, протекающий в обмотке возбуждения основных полюсов, создает магнитный поток . Электрические машины постоянного тока следует различать по способу возбуждения и схеме включения обмотки возбуждения.

Генераторы постоянного тока могут выполняться с независимым, параллельным, последовательным и смешанным возбуждением. Следует заметить, что теперь применение в качестве источников энергии генераторов постоянного тока очень ограничено.

Обмотка возбуждения генератора постоянного тока с независимым возбуждением получает питание от независимого источника - сети постоянного тока, специального возбудителя , преобразователя и др. (рис. 1, а). Эти генераторы применяются в мощных системах, когда напряжение возбуждения должно быть выбрано отличным от напряжения генератора, в системах , которые питаются от генераторов и других источников.

Значение тока возбуждения мощных генераторов составляет 1,0-1,5% от тока генераторов и до десятков процентов для машин мощностью порядка десятков ватт.

Рис. 1. Схемы генераторов постоянного тока: а - с независимым возбуждением; б - с параллельным возбуждением; в - с последовательным возбуждением; г - со смешанным возбуждением П - потребители

У г енератора с параллельным возбуждением обмотка возбуждения включается на напряжение самого генератора (смотрите рис. 1,б). Ток якоря I я равен сумме токов нагрузки I п и тока возбуждения I в: I я = I п + I в

Генераторы выполняются обычно для средних мощностей.

Обмотка возбуждения генератора с последовательным возбуждением включена последовательно в цепь якоря и обтекается током якоря (рис. 1, в). Процесс самовозбуждения генератора протекает очень бурно. Такие генераторы практически не используются. В самом начале развития энергетики применялась система передачи энергии с последовательно включенными генераторами и двигателями последовательного возбуждения.

Генератор со смешанным возбуждением имеет две обмотки возбуждения - параллельную ОВП и последовательную ОВС обычно с согласным включением (рис. 1, г). Параллельная обмотка может быть включена до последовательной («короткий шунт») или после нее («длинный шунт»). МДС последовательной обмотки обычно невелика и рассчитана только на компенсацию падения напряжения в якоре при нагрузке. Такие генераторы теперь также практически не применяются.

Схемы возбуждения двигателей постоянного тока подобны схемам для генераторов. большой мощности выполняются обычно с независимым возбуждением . У двигателей параллельного возбуждения обмотка возбуждения получает питание от того же источника энергии, что и двигатель. Обмотка возбуждения включается непосредственно на напряжение источника энергии, чтобы не сказывалось влияние падения напряжения в пусковом сопротивлении (рис. 2).

Рис. 2. Схема двигателя постоянного тока с параллельным возбуждением

Ток сети Ic составляется из тока якоря I я и тока возбуждения I в.

Схема двигателя последовательного возбуждения подобна схеме на рис. 1, в. Благодаря последовательной обмотке вращающий момент при нагрузке возрастает больше, чем у двигателей параллельного возбуждения, при этом скорость вращения уменьшается. Это свойство двигателей определяет их широкое применение в приводах электровозной тяги: в магистральных электровозах, городском транспорте и др. Падение напряжения в обмотке возбуждения при номинальном токе составляет единицы процентов от номинального напряжения.

Двигатели смешанного возбуждения из-за наличия последовательной обмотки в некоторой мере имеют свойства двигателей последовательного возбуждения. В настоящее время они практически не применяются. Двигатели параллельного возбуждения иногда выполняются со стабилизирующей (последовательной) обмоткой, включаемой согласно с параллельной обмоткой возбуждения, для обеспечения более спокойной работы при пиках нагрузки. МДС такой стабилизирующей обмотки невелика - единицы процентов от основной МДС.