Домой / Видео / Почему уменьшили чувствительность радиоприемников в 1976 году. Практическое использование специальных шкал децибел при проверке чувствительности радиоприемников. Вижу, но совсем не слышу

Почему уменьшили чувствительность радиоприемников в 1976 году. Практическое использование специальных шкал децибел при проверке чувствительности радиоприемников. Вижу, но совсем не слышу

Под чувствительностью понимается способность радиоприемного устройства принимать слабые сигналы. Она определяется минимальной величиной входного сигнала, которая обеспечивает нормальное функционирование исполнительного устройства при заданном превышении сигнала над помехой. Если чувствительность приемника ограничивается собственными шумами, ее можно оценить реальной или предельной чувствительностью, коэффициентом шума и шумовой температурой. Реальная чувствительность равна величине э.д.с. (номинальной мощности) сигнала в антенне, при которой напряжение (мощность) сигнала на выходе приемника превышает напряжение (мощность) помех в заданное число раз. Если мощность сигнала равна мощности помех на выходе линейной части приемника – предельная чувствительность .

Чувствительность радиоприемного устройства определяется уровнем внутренних и внешних шумов и помех э.д.с., приведенных к его входу, величина которых составляет

где – э.д.с. шумов и помех, обусловленных их влиянием извне на характеристики радиоприемного устройства;

– э.д.с. собственных шумов и помех, приведенных к входу радиоприемного устройства.

Влияние внешних шумов на чувствительность радиоприемного устройства в диапазоне частот различное и зависит от причин их возникновения. В диапазоне рабочих частот до 100 МГц наибольшее влияние оказывает средний уровень промышленных помех в городе (рис. 1.7). В данном диапазоне также большое влияние оказывают помехи, обусловленные атмосферными, грозовыми и космическими явлениями. Суммарное значение э.д.с. помех, наводимых в антенне, определяется выражением

где – отдельные источники э.д.с. помех.

Суммарное значение э.д.с. помех может быть определено по данным (рис. 1.7), где представлены их частотные зависимости в эффективной шумовой полосе частот, равной 1 кГц.

Уровень внешних помех, наводимых в согласованной антенне, определяется выражением

где – суммарное значение помех, наводимых в антенне в мкВ/м;

– действующая высота антенны в метрах;

– шумовая полоса радиоприемного устройства в кГц.

В диапазоне частот свыше 100 МГц основным видом помех являются внутренние шумы радиоприемного устройства и шумы антенны. Шумы антенны обусловлены приемом шумовых излучений космического пространства, атмосферы земли и ее поверхности, а также тепловым шумом сопротивления потерь r п антенны. В инженерной практике за шум антенны принимают э.д.с., наводимую в полном сопротивлении антенны R А нагретого до величины, называемой эффективной шумовой температурой антенны T А. Эквивалентная схема настроенной антенны с учетом наводимых шумов и помех представлена на рисунке (рис. 1.8).


Рис. 1.8 - Эквивалентная схема настроенной антенны

Величина уровня шума в антенне определяется формулой Найквиста

где k – постоянная Больцмана равная 1.38×10 - 23 Дж/град;

П Ш – шумовая полоса радиоприемного устройства;

T А – абсолютная температура антенны в К 0 .

Величина температуры T А зависит от формы диаграммы направленности антенны, от характера шумовых источников, действующих в зоне радиоприема, от диапазона рабочих частот (рис. 1.9) и т.д.

Рис. 1.9 - Зависимость шумовой температуры приемной антенны от частоты (1 – максимальная; 2 – минимальная)

Мощность шума антенны, поступающего на согласованный вход радиоприемного устройства, определяется величиной (1.14) и равна

Для оценки предельной чувствительности и шумовых свойств радиоприемного устройства используется понятие коэффициента шума N , определяемого как степень уменьшения отношения сигнал/шум на выходе линейного тракта по сравнению с этим соотношением на его входе при стандартных условиях измерения.

где – мощность сигнала на входе;

– рассеиваемая мощность, обусловленная тепловым шумом сопротивления эквивалентного генератора при T 0 = 290 K 0 ;

– мощность шума на выходе линейного тракта при определении коэффициента шума;

– мощность сигнала на выходе линейного тракта радиоприемного тракта.

Под линейным трактом понимаются все каскады приемного радиочастотного тракта до детектора.

Чувствительность приемного устройства в диапазоне метровых и менее длин волн в режиме согласования при заданном отношении сигнал/шум на выходе линейного тракта определяется выражением:

где – относительная шумовая температура антенны;

Т 0 стандартная температура(290 К);

– коэффициент шума приемника (1.16);

– коэффициент различимости на выходе линейного тракта приемника.

В единицах напряжения:

где r А – сопротивление антенны (эквивалента антенны).

При определении требований к приемному устройству по шумовым свойствам на практике определяют допустимым коэффициентом шума .

В диапазоне ДВ, СВ и КВ, если задана э.д.с., наведенная в антенне:

Если чувствительность определяется напряженностью поля сигнала

Для диапазонов метрового и менее длин волн:

где K рф коэффициент передачи мощности фидерной линии (волновода).

Исходя из анализа предыдущих выражений, можно сделать следующие выводы:

1. Если уровень помех в антенне больше уровня шумов приемника, то требования к шумовым параметрам приемника не предъявляются.

2. В диапазоне частот более 100 МГц необходимо принять меры к уменьшению коэффициенту шума приемника, полосе пропускания и т.д.

3. На частотах более 1 ГГц уровнем внешних шумов можно пренебречь.

Министерство высшего и среднего специального образования РФ.

Балтийский государственный технический университет

«ВОЕНМЕХ» имени Д.Ф. Устинова

Исследование супергетеродинного приёмника

Методические указания к лабораторной работе по курсу

"Радиоприемные устройства"

Санкт-Петербург

Цель работы - ознакомление с основными качественными показателями и методикой измерения основных электрических параметров радиоприемников.

1. Основные качественные показатели радиоприемников

Основными качественными показателями приемников является : чувствительность, помехоустойчивость, коэффициент передачи (усиления), амллитудно-частотная и фазочастотная характеристики, избирательность, перекрытие диапазона частот, нелинейные искажения, вносимые приемникомв принимаемые сигналы, амплитудная характеристика, динамический диапазон, переходная характеристика, выходные данные приемника, устойчивость работы приемника и др.

Чувствительностью приемника называется его способность обеспечивать нормальный прием малых э.д.с. (или мощности сигнала в антенне). Различают пороговую и реальную чувствительность приемника.

Пороговая чувствительность характеризуется величиной э.д.с. или мощности сигнала в антенне, при которой на выходе линейного тракта приемника (т.е. на входе детектора) обеспечивается отношением мощности сигнала к мощности собственных шумов (выходное превышение), равное единице.

Реальная чувствительность определяется величиной э.д.с, или мощности сигнала в антенне, при которое на выходе линейного тракта приемника достигается выходное превышение, требуемое длянормальной работы оконечного устройства. Реальная чувствительность связана с пороговой Р n простым соотношением Р р =D Р n где D - коэффициент различимости. Изменяющийся в широких пределах (от 0.01 до 10) и зависящий как от информативности принимаемых сигналов, так и от структуры оконечных устройств др. Помехоустойчивостью приемника называется его способность противостоять вредному действие помех, обеспечивая при наличии последних прием переданных сообщений с заданной достоверностью при заданном, способе передачи. Поскольку достоверность принятых сообщений обычно возрастает по мере роста превышения на выходе приемника, помехоустойчивость последнего как отдельного звена соответствующей радиотехнической системы удобно выражать относительным увеличением его выходного превышения hвых по сравнению с входным hвых

Оно объективно и достаточно просто характеризует как, эффективность всех селектирующих средств приемника, так и его способность противостоять вредному воздействию помех.

Коэффициентом передачи (усиления) приемника К называется отношение амплитуды выходного напряжения U m вых к амплитуде гармонически изменяемого во времени информативного параметравходного сигнала приемника М (Ω):

К=U m вых /М(Ω).

Частопользуются понятием комплексного коэффициента передачи приемника, равного отношению комплексных амплитуд напряжения на выходе приемника и информативного параметра входною сигнала

К(Ω)= U m вых /M(Ω)-K(Ω)e jφ (Ω)

где К(ω) - модуль комплексного коэффициента передачи приемника; φ(Ω)- фазовый сдвиг на частоте модуляции Ω= 2π F , вносимый приемным трактом в соответствующую компоненту сигнальной модулирющей функции.

Амплитудно-частотной характеристикой приемника называетсязависимость модуля коэффициента передачи K (F ) от частотымодуляции F=Ω/(2π) при принятом коэффициенте модуляции входного сигнала и точной настройке линейного тракта приемника в резонанс с центральной частотой спектра входного сигнала.

По амплитудно-частотной характеристике приемника можно судить о степени частотных искажений, вносимых приемником в спектральные составляющие модуляционных частот принимаемого сигнала, а также определить рабочий диапазон модуляционных частотприемника, ограничиваемый соответственнонижней F н и верхней F в, модуляционными частотами (рис.1,а). Выбор последних определяется спектральным составом принимаемых сигналов.

Фазочастотная характеристика приемника - это зависимостьугла сдвига фаз φ выходного напряжения приемника и модулирующей функции входного сигналаот частоты модуляции F сигнала (рис. 1,6). Длятого чтобы, приемник вносил как можно меньшефазовых искажений в принимаемый сигнал, его фазочастотная характеристика в пределах рабочего диапазона модуляционных частот должна в возможно меньшей мере отклоняться от прямой линии.

Избирательностью приемника называется егоспособность выделять п ринимаемый

сигнал из смеси его с помехами на выходе приемной антенны.

Для количественной характеристики частотной избирательности чаще всего о используют нормированную амплитудно-частотную характеристику (рис.2), линейного трактаприемника, представляющую зависимость y (f ) отношения модуля коэффициента передачи линейного трактана любой частоте К(f ) кего резонансному коэффициенту передачи К о от частотыf немодулированного входного сигнала приемника.

При этомв качествемеры частотнойизбирательности можно принять коэффициент прямоугольности амплитудно-частотной характеристики линейного тракта приемника:

к П =П 0,1 /П 0,7

где П 0,1 и П 0,7 - полосы пропускания линейного тракта приемника, измеренные по уровням 0.707 и 0,1 соответственно.

Перекрытие диапазона частот - способность приемника производить прием радиосигналов,несущие частоты которых лежат в пределах заданного интервала частот, ограниченного граничными частотами f min и f max . Перекрытие диапазона

частот можно характеризовать коэффициентом диапазона K 1 = f max / f min

Амплитудная характеристика приемника амплитудно-модулированных

сигналов - это зависимость амплитуды первой гармоники выходного напряжения U m вых от амплитуды огибающей входного сигнала U m вх при его гармонической модуляции.

По амплитудной характеристике приемника АМ- сигналов (рис.3) удобно определять динамический диапазон амплитуд входного сигнала

D A = U вх max / U вх min

при которых сохраняется линейный режим работы приемника, а также максимальный уровень входного сигнала U вх max превышение которого вызывает появление нелинейных искажений в выходном сигнале приемника. Нелинейные искажения принимаемого сигнала возникают из-за нелинейности проходных характеристик усилительных элементов и других приборов, используемых в приемнике. При гармоническом модулирующем входном сигнале эти искажения вызывают обогащение спектра выходного напряжения приемника высшими гармониками основной частоты модуляции F.

Для количественной оценки нелинейных искажений используют коэффициент" нелинейных искажений

К Н =

где U 1 ,U 2 ,…,U n - эффективные значения первой и высших гармоник основной частоты

модуляции F в спектре выходного напряжения приемника.

Переходной характеристикой приемника называется график реакции его на

входной сигнал, представляющий собой высокочастотное колебание, модулированное единичной функцией (функцией включения). Большое значение переходная характеристика имеет для приемников импульсных радиотехнических систем. По ней могут быть определены (рис.4) время установления τ y - время изменения выходного напряжения от 10 до 90% установившейся величины; время запаздывания τ о - временной интервал от момента, включения модулирующего напряжения

до момента, когда выходное напряжение достигает половины установившейся величины; величина выбросов - отношение максимального отклонения выходного напряжения от установившейся величины.

Определение параметров переходной характеристики приемника поясняется рис.4.

Следует отметить, что время установления, характеризующее инерционность приемника, связано с его верхней граничной частотой F в определяемой по амплитудно-частотной характеристике приемника приближенным соотношением

τ у = (0,45 - 0,5)/F в

которое часто используется при расчете импульсных радиоприемников.

Выходные данные приемника регламентируют величину выходной мощности или выходного напряжения приемника.

Выходной мощностью приемника называется мощность, подводимая к оконечному устройству с токовым управлением (громкоговоритель, рулевая машинка, автопилот и т.п.). Ее величина определяется целевым, назначением приемника и конкретным типом оконечного устройства. При использовании оконечных устройств с бестоковым управлением, (электронно-лучевые трубки, электронные устройства на полевых транзисторах и электронных лампах и т.п.) вместо выходной мощности задают выходное напряжение (в телевизионных приемниках - 20 - 30 В. в радиолокационных приемниках с яркостной индикацией - 20 - 30 В. с индикацией отклонением - 40-80 В).

Чувствительность приемника характеризует его способность принимать слабые сигналы. Количественно чувствительность оце­нивают минимальной ЭДС модулированного сигнала в экви­валенте приемной антенны или минимальной напряженностью по­ля; минимальной мощностью сигнала на входе приемни­ка. Первый случай характерен для приемников НЧ-ОВЧ, работа­ющих с открытой антенной: минимальная напряженность поля используется для оценки чувстви­тельности при применении магнитных и штыревых антенн; второй случай характерен преимущественно для приемников УВЧ и СВЧ.

Различают:

1) Чувствительность, ограниченное усилением.

Характерна для приемников, принимающих достаточно сильные сигналы, когда помехи слабо влияют на прием. Она определяется при заданной выходной мощности. Для приемников аналоговых сигналов различают номинальную и нормальную выходные мощности.

Номинальная мощность - максимальная выходная мощность, соответствующая 100 процентной глубине модуляции входного сигнала при коэффициенте нелинейных искажений меньше заданной нормы.

Нормальная мощность соответствует 30 процентной глубине модуляции и составляет 10 процентов от номинальной. В этом заключается проблема АМ видов модуляции.

2) Реальная чувствительность.

Учитывает влияние собственных его шумов и определяется минимальным уровнем сигнала на входе приемника при заданном превышении его над шумами на выходе приемника.

h-отношение сигнал/шум в выходном сигнале.

Чувствительность приемника зависит от его коэффициента усиления К, уровня собственных шумов , приведенных ко входу антенны, и требуемого превышения h 2 B ых­. Рассмотрим влияние этих факторов на чувствительность прием­ника AM сигналов, подключенного к эквиваленту открытой ан­тенны. Коэффициент усиления приемника:

K=U с вых /mU А C ,

где m - коэффициент модуляции сигнала; U А C - эффективное напряжение несущей частоты сигнала в эквиваленте антенны. Чувствительность, ограниченная усилением, с ростом К повышается.



Для определения реальной чувствительности необхо­димо определить, как влияет К на уровень шумов на выходе. Реальный шумящий приемник заменим нешумящим прием­ником с генератором собственных шумов U ш.пр, приведенных к его входу, который вместе с генератором шумов эквивалента антен­ны U ш э.А образует генератор суммарного шумового напряжения U ш.А.∑ ,приведенного к эквиваленту антенны с эффективным напряжением в полосе пропускания приемника.

U ш.э.А =

Если U ш.вых =К U ш.А.∑ , то U А0/ U ш.А.∑ = U С вых/ m U ш.вых. При заданном h вых =(U с /U ш) вых в эквиваленте антенны необходимо обеспечить превышение сигнала h A =U A 0 / U ш.А.∑ . Отсюда реальная чувствительность U A 0 P ≥h A U ш.А.∑ .

Реальная чувствительность не зависит от K и определяется собственными шумами приёмника.

3) Пороговая чувствительность . Определяется уровнем входного сигнала при n 2 =1

Факторы, влияющие на чувствительность:

1) Коэффициент усиления аналоговой части К ус

2) Суммарное напряжение шума антенны U m A ∑

3) h 2 вых допустимое соотношение сигнал/шум.

Рассмотрим их влияние на чувствительность АМ приемника:

U вых = К ус *m*U ∆ c

Рассмотрим модель приемника с шумами:

U ш. пр.
Нешумящий приёмник
Z A
U МА
U СА
U вых
U

U ША∑ =

U Швых = К ус* U ША∑ следовательно:

U реальной чувствительности =h A * U ША∑

Лекция 6.

Тепловые шумы

Любая цепь, имеющая омическое сопротивление является источником теплового шума. Это обусловлено увеличением количества носителей зарядов (электронов).

шумовой поток

Сопротивление,

B-постоянная Больцмана,

T-температура в Кельвинах,

П-полоса в Гц

Шумы связаны только с активным сопротивлением, так как связаны с тепловыми флуктуациями электронов.

Единица измерения мощности в радиотехнических системах:

dBm-1 дб/1 мВт на нагрузке R=50 Ом

абсолютный уровень шума в 50 Омных системах равен -174 dBm/Гц.

Рассмотрим резонансный контур:

При комнатной температуре напряжение можно посчитать с помощью эмпирической формулы:

в этой формуле:

Шумовая температура.

Роль тепловых шумов в антенне не значительна. В основном источником шума в ней являются внешние источники ЭМ излучений. Вклад внешних источников шума в антенну оценивается как:

A -шумовая температура антенны - это температура, до которой нужно нагреть эквивалент антенны с сопротивлением R A чтобы его уровень тепловых шумов равнялся уровню шумов, измеренных со входа антенны. Т А позволяет сравнивать антенны. Источником шума в приемнике помимо активных сопротивлений являются транзисторы. Они характеризуются шумовым сопротивлением:

Для полевых транзисторов составляет десятки Ом.

Т ш =(Ш-1)Т,

Шумовая температура характеризует собственные шумы четырехполюсника, пересчитанные ко входу. Эта величина является тепловым эквивалентом собственных шумов четырехполюсника и показывает, на сколько градусов должен быть нагрет эквивалент антенны, чтобы вызванные им шумы на выходе равнялись собственным шумам. Понятие шумовой температуры удобно применять к малошумящим усилителям, коэффициент шума которых близок к 1. Например, при Ш=1.1 имеем Т э 30К. Шумовая температура многокаскадного устройства:

Коэффициент шума и шумовая температура устройства определяются свойствами главным образом первых четырехполюсников. Влияние последующих каскадов тем меньше, чем больше усиление по мощности предшествующих. Чтобы коэффициент шума был мал, необходимо первые каскады выполнять малошумящими и с большими коэффициентами передачи по мощности.

Полевой транзистор.

=(0.6…0.75)/s

S - крутизна управляемой характеристики.

Любой источник сигнала является источником шума. Мощность сигнала, который отдает источник в согласованную нагрузку называют номинальной(макс) .

Номинальная мощность шумов источника не зависит от сопротивления источника. Для оценки шумовых свойств источника используют отношение средней мощности сигнала к средней мощности шумов. При прохождении сигнала через четырехполюсник отношение сигнал/шум изменяется (уменьшается) в следствие добавления к шумам источника сигнала собственных шумов четырехполюсника.

Шумовые свойства в четырехполюснике описывает коэффициент шума , который показывает во сколько раз уменьшается отношение сигнал/шум на выходе по сравнению с отношением сигнал/шум на входе.

Ш-коэффициент шума. Является отношением

К р -коэффициент передачи

1) для идеального нешумящего четырехполюсника Ш=1.Для шумящего Ш>1.

2) Характеристику коэффициента шума можно использовать только для нелинейных устройств.

3) Для пассивных четырехполюсников, при согласовании их с источником сигнала коэффициент шума Ш=1/К р.

Пример:

K p
50 Ом

Найти спектральную плотность мощности на выходе четырехполюсника.

Для удобства оценки вклада шума каждого каскада приёмника в уровень шума на входе, все шумы относят ко входу приёмника, считая, что сам приёмник не шумит, а лишь усиливает шумы.

Лекция 7.

Шумовая чувствительность радиоприемного устройства (чувствительность, ограниченная внутренними шумами) – величина, характеризующаяся минимальной необходимой мощностью сигнала в антенне, при которой на выходе линейного тракта обеспечивается заданное отношение сигнал/шум. Линейный тракт ПРМ заканчивается перед демодулятором.

Понятием коэффициент шума можно пользоваться лишь для линейного устройства; в приемнике- это тракт до детектора. Коэффициент шума пассивного четырехполюсника (например антенного фидера) при согласовании его с источником сигнала и нагрузкой определяется коэффициентом передачи по мощности

Ш=1/К р - коэффициент шума

При потерях в пассивной цепи К р <1, Ш>1

Для сравнения шумов с сигналом на выходе удобно относить все шумы ко входу, полагая, что сам приемник не шумит, а лишь усиливает входные шумы.

Найдем коэффициент шума линейного тракта из последовательно соединенных четырехполюсников, каждый из которых характеризуется коэффициентом передачи по мощности К р i и коэффициентом шума Ш i . Предположим, что коэффициент рассогласования η 1 , η 2, … η n на стыках четырехполюсников известны

Мощность шумов первого четырехполюсника на выходе:

Шумы каждого последовательного четырехполюсника усиливаются всеми каскадами, кроме предыдущих. В конечном итоге получим:

K p прм.
Z A
Е A
Z н



t А - относительная шумовая температура




.

- выражение для расчета чувствительности приемника по известному коэффициенту шума ПРМ, полосе приема, П, волновому сопротивлению антенного входа r a , относительной шумовой температура антенны t A .

Задача: найти чувствительность 50 Омного приемника с полосой пропускания 20 кГц, отношение сигнал/шум на выходе - 4 раза(по напряжению), коэффициент шума равен 4, T=300K, 4kT=1.6*10 20.

Ответ: e=0.5 мкВ

113 dBm-0.5 мкВ àх=20lg =-113 dBm

ПОВЫШЕНИЕ ЧУВСТВИТЕЛЬНОСТИ РАДИОПРИЕМНИКА

Чувствительность простого радиоприемника можно существенно повысить при помощи нескольких способов. Рассмотрим три из них:

Казалось бы - чего проще - добавляй дополнительные каскады усиления... Но на практике простое добавление усилительных каскадов приводит к нестабильной работе усилителя. Чрезмерное усиление приводит к возбуждению усилителя. Практически признано нецелесообразным использование более трех каскадов усиления как в усилителях радиочастоты, так и в низкочастотных усилителях. Можно вывести режим транзистора в диапазон максимального усиления, но такой режим характеризуется сильной зависимостью параметров от уровня входного сигнала, то есть такой усилитель буде неплохо усиливать слабый сигнал, но при увеличении его до некоторого уровня транзистор начнет работать с отсечкой коллекторного тока. Работа транзистора в режиме отсечки приведет к возникновению значительных искажений. На практике, режим транзистора устанавливается на участке с линейной характеристикой усиления (коллекторный ток транзистора выбирается в режиме молчания на уровне 0,5-1 миллиампера), то есть от каскада трудно получить усиление выше 35-40. Двухкаскадный усилитель, таким образом, будет иметь максимальное усиление не более 1600. Использование такого усилителя в простом радиоприемнике не позволит добиться высокой чувствительности приемника в целом. Приблизительно, чувствительность такого радиоприемника (по полю) будет равна 10-15 милливольт на метр. Учитывая низкую эффективность магнитной антенны, такой приемник позволит принимать только мощные радиостанции, удаленные от места приема не более, чем на 150-200 километорв (это замечане справедливо при постройке радиоприемника на длинно или средне волновый диапазоны).


Для увеличения чувствительности радиоприемника в целом можно применить более тщательное согласование всех его каскадов. Один из таких приемов - применение на входе УРЧ Истокового повторителя на полевом транзисторе:

Сам по себе истоковый повторитель не усиливает сигнал (коэффициент усиления - всегда меньше еденицы), но он повышает входное сопротивление УРЧ до нескольких сотен килоом. Как известно, каскад на биполярном транзисторе обладает невысоким входным сопротивлением (до едениц килоом). Если на вход такого усилителя включить колебательный контур - каскад сильно зашунтирует контур, что скажется на его добротности (а, значит - и эффективности!). От добротности контура зависит как чувствительность, так и избирательность (способность принимать только одну радиостанцию) приемника в целом. При низкой добротности резонанс колебательного контура при настройке на работающую радиостанцию будет "расплывчатым". Эта "расплывчатость" приведет к снижению наводимого в контуре напряжения, также при наличии в месте приема нескольких радиостанций - их сигналы будут проникать на вход УРЧ одновременно, что сделает практически невозможным прием радиопередачи какой либо конкретной радиостанции. Для согласования такого каскада с контуром магнитной антенны приходится использовать катушку связи, которая содержит, как правило, в 6-10 раз меньшее количество витков, чем контурная. Применение катушки связи пропорционально уменьшает уровень входного сигнала на входе УРЧ. При использовании на входе усилителя истокового повторителя необходимость в катушке связи отпадает и теперь на вход усилителя поступает уже весь сигнал, наведенный в контуре магнитной антенны принимаемой радиостанцией. На практике применение истокового повторителя реально повышает чувствительность радиоприемника в 5-6 раз, что эквивалентно увеличению дальности приема радиостанций.

Если вы испытывете затруднения в приобретении полевого транзистора - можно повысить чувствительность радиоприемника применением эмиттерного повторителя но уже на выходе УРЧ:

Эмиттерный повторитель, так же, как и истоковый, имеет усиление по напряжению меньше еденицы. В данной схеме повышение чувствительности достигнуто применением на выходе усилителя автотрансформатора L1. Автотрансформатор наматывается на ферритовом кольце типоразмеров К8-К10 (наружный диаметр) и содержит 50+250 витков, провода ПЭВ-0,1. Дальнейшему увеличению усиления способствует применение для детектирования сигнала схемы с удвоением напряжения на диодах VD1,VD2. Реально данная схема увеличивает чувствительность радиоприемника в 3-4 раза.

Коэффициент передачи диодного детектора при однополупериодном выпрямлении обычно равен 0,3-0,5. Детектор с удвоением напряжения имеет коэффициент передачи в 1,4 раза больше, чем однополупериодный. Остальное напряжение бесцельно теряется на переходах диодов. Третий из рассматриваемых нами способов повышения чувствительности приемника - это применение так называемого транзисторного детектора. Детектор на транзисторе дополнительно усиливает низкочастотное полезное напряжение радиопередачи. Коэффициент усиления детектора на транзисторе может достигать 80-100, что эквивалентно общему повышению усиления радиоприемника. Такое повышение может служить поводом для возбуждения усилителя, поэтому в данном случае желательно использовать систему Автоматической Регулировки Усиления (сокращенно - АРУ). Суть АРУ заключается в автоматическом снижении усиления усилителя при высоком уровне входного сигнала.

Практическая схема транзисторного детектора приведена ниже:

Транзистор работает на нелинейном участке характеристики. Рабочий режим транзистора задается при помощи диода. При увеличении входного сигнала напряжение на коллекторе пропорционально уменьшается. Это напряжение можно использовать для установки рабочих точек транзисторов усилителя РЧ. Напряжение АРУ подается на базы транзисторов УРЧ через простейшие развязывающие RC цепочки. Для большинства случаев бывает достаточно применить АРУ только в первом (входном) каскаде УРЧ.

Примерная схема фильтра приведена ниже:

Номинал резисторов R1 и R2 зависит от необходимого уровня смещения на базу транзистора и подбирается к конкретному экземпляру. Емкость конденсатора может колебаться от 0,033 до 0,1 микрофарады.

Наиболее простой задачей является прием местных станций, сигналы которых достаточно сильны, так что даже простой малоламповый приемник может принять и воспроизвести их с большой громкостью. Значительно труднее принять передачи удаленных радиостанций, от которых к месту приема доходят иногда очень слабые сигналы. Тогда нужен более сложный приемник.

Способность принимать слабые сигналы характеризуется параметрам, называемым чувствительностью приемника . Чем слабее сигналы принимаемой станции, тем более чувствительным должен быть приемник, чтобы принять их.

Чувствительность приемника оценивается тем напряжением сигнала на его входе, при котором на выходе приемника получается установленная для него мощность. Чем меньше требуемое для этого напряжение сигнала, тем чувствительнее приемник. Но напряжение на вход приемника поступает из антенны, в которой приходящими от радиостанций сигналами возбуждается электродвижущая сила (э. д. с.). Естественно, что подаваемое антенной на вход приемника напряжение несколько меньше этой э. д. с., так как часть э. д. с. расходуется в самой антенне (это аналогично тому, что напряжение гальванической батареи, отдаваемое во внешнюю цепь, оказывается всегда меньше э. д. с., развиваемой этой батареей). Поэтому под чувствительностью приемника надо понимать ту величину э. д. с. в антенне, при которой на его выходе получается установленная для него мощность .

Чувствительность измеряется в микровольтах (мкв ). Чем меньше микровольт нужно подать на вход приемника для получения требуемой выходной мощности, тем лучше или, как часто говорят, тем выше его чувствительность. Так как поступающее на вход приемника напряжение сигнала усиливается в различных каскадах приемника и, достигнув необходимой величины, попадает на управляющую сетку выходной лампы, то чувствительность приемника определяется общим усилением всех его каскадов. Поэтому приемник тем чувствительнее, чем больше в нем каскадов усиления.

Чувствительность приемника неодинакова в разных точках диапазона. В зависимости от схемы и конструкции она может быть более равномерной или менее равномерной. На фиг. 1 приведена в виде примера диаграмма, характеризующая чувствительность одного из промышленных приемников. По горизонтальной оси отложены частоты (кгц ), на которых производилось измерение, а по вертикальной - чувствительность (мкв ), причем значения чувствительности отложены сверху вниз. Такой метод построения диаграммы делает ее более наглядной (чем выше расположены точки кривой, тем выше чувствительность приемника).

Если схема приемника проработана недостаточно тщательно и налаживание его произведено не совсем правильно, то чувствительность приемника может оказаться очень неравномерной по диапазону, например высокой на высокочастотном конце поддиапазона и резко уменьшившейся на его низкочастотном конце, или наоборот. Подобная неравномерность явилась бы недостатком приемника, так как у хорошего приемника чувствительность в пределах одного поддиапазона, а еще лучше - по всему диапазону принимаемых частот - должна оставаться более или менее постоянной.

По ГОСТ у приемников 1-го масса чувствительность должна быть на всех диапазонах не хуже 50 мкв, у приемников 2-го класса - не хуже 200 мкв на длинных и средних волнах и не хуже 300 мкв на коротких волнах, у приемников 3-го класса сетевых - не хуже 300 мкв на длинных и средних и не хуже 500 мкв на коротких волнах, у батарейных приемников 3-го класса - не хуже 400 мкв на всех диапазонах.