Домой / Видео / Что такое тср ip. Основы сетей и протоколов интернет

Что такое тср ip. Основы сетей и протоколов интернет


Протоколы TCP/IP основа работы глобальной сети Интернет. Если быть более точным, то TCP/IP это список или стек протоколов, а по сути, набор правил по которым происходит обмен информации (реализуется модель коммутации пакетов).

В этой статье разберем принципы работы стека протоколов TCP/IP и попробуем понять принципы их работы.

Примечание: Зачастую, обревиатурой TCP/IP называют всю сеть, работающую на основе этих двух протоколов, TCP и IP.

В модель такой сети кроме основных протоколов TCP (транспортный уровень) и IP (протокол сетевого уровня) входят протоколы прикладного и сетевого уровней (смотри фото). Но вернемся непосредственно к протоколам TCP и IP.

Что такое протоколы TCP/IP

TCP — Transfer Control Protocol . Протокол управления передачей. Он служит для обеспечения и установление надежного соединения между двумя устройствами и надежную передачу данных. При этом протокол TCP контролирует оптимальный размер передаваемого пакета данных, осуществляя новую посылку при сбое передачи.

IP — Internet Protocol. Интернет протокол или адресный протокол — основа всей архитектуры передачи данных. Протокол IP служит для доставки сетевого пакета данных по нужному адресу. При этом информация разбивается на пакеты, которые независимо передвигаются по сети до нужного адресата.

Форматы протоколов TCP/IP

Формат IP протокола

Существуют два формата для IP адресов IP протокола.

Формат IPv4. Это 32-битовое двоичное число. Удобная форма записи IP-адреса (IPv4) это запись в виде четырёх групп десятичных чисел (от 0 до 255), разделённых точками. Например: 193.178.0.1.

Формат IPv6. Это 128-битовое двоичное число. Как правило, адреса формата IPv6 записываются в виде уже восьми групп. В каждой группе по четыре шестнадцатеричные цифры разделенные двоеточием. Пример адреса IPv6 2001:0db8:85a3:08d3:1319:8a2e:0370:7889.

Как работают протоколы TCP/IP

Если удобно представьте передаче пакетов данных в сети, как отправку письма по почте.

Если неудобно, представьте два компьютера соединенных сетью. Причем сеть соединения может быть любой как локальной, так и глобальной. Разницы в принципе передачи данных нет. Компьютер в сети также можно считать хостом или узлом.

Протокол IP

Каждый компьютер в сети имеют свой уникальный адрес. В глобальной сети Интернет, компьютер имеет этот адрес, который называется IP-адрес (Internet Protocol Address).

По аналогии с почтой, IP- адрес это номер дома. Но номера дома для получения письма недостаточно.

Передаваемая по сети информация передается не компьютером, как таковым, а приложениями, установленными на него. Такими приложениями являются сервер почты, веб-сервер, FTP и т.п. Для идентификации пакета передаваемой информации, каждое приложение прикрепляется к определенному порту. Например: веб-сервер слушает порт 80, FTP слушает порт 21, почтовый SMTP сервер слушает порт 25, сервер POP3 читает почту почтовых ящиков на порте 110.

Таким образом, в адресном пакете в протоколе TCP/IP, в адресатах появляется еще одна строка: порт. Аналог с почтой — порт это номер квартиры отправителя и адресата.

Пример:

Source address (Адрес отправителя):

IP: 82.146.47.66

Destination address (Адресполучателя):

IP: 195.34.31.236

Стоит запомнить: IP адрес + номер порта — называется «сокет». В примере выше: с сокета 82.146.47.66:2049 пакет отправляется на сокет 195.34.31.236: 53.

Протокол TCP

Протокол TCP это протокол следующего после протокола IP уровня. Предназначен этот протокол для контроля передачи информации и ее целостности.

Например, Передаваемая информация разбивается на отдельные пакеты. Пакеты доставят получателю независимо. В процессе передачи один из пакетов не передался. Протокол TCP обеспечивает повторные передачи, до получения этого пакета получателем.

Транспортный протокол TCP скрывает от протоколов высшего уровня (физического, канального, сетевого IP все проблемы и детали передачи данных).

Стек TCP / IP .

Стек TCP/IP – это набор иерархически упорядоченных сетевых протоколов. Название стек получил по двум важнейшим протоколам – TCP (Transmission Control Protocol) и IP (Internet Protocol). Помимо них в стек входят ещё несколько десятков различных протоколов. В настоящее время протоколы TCP/IP являются основными для Интернета, а также для большинства корпоративных и локальных сетей.

В операционной системе Microsoft Windows Server 2003 стек TCP/IP выбран в качестве основного, хотя поддерживаются и другие протоколы (например, стек IPX/SPX, протокол NetBIOS).

Стек протоколов TCP/IP обладает двумя важными свойствами:

    платформонезависимостью, т. е. возможна его реализация на самых разных операционных системах и процессорах;

    открытостью, т. е. стандарты, по которым строится стек TCP/IP, доступны любому желающему.

История создания TCP / IP .

В 1967 году Агентство по перспективным исследовательским проектам министерства обороны США (ARPA – Advanced Research Projects Agency) инициировало разработку компьютерной сети, которая должна была связать ряд университетов и научно-исследовательских центров, выполнявших заказы Агентства. Проект получил название ARPANET. К 1972 году сеть соединяла 30 узлов.

В рамках проекта ARPANET были разработаны и в 1980–1981 годах опубликованы основные протоколы стека TCP/IP – IP, TCP и UDP. Важным фактором распространения TCP/IP стала реализация этого стека в операционной системе UNIX 4.2 BSD (1983).

К концу 80-х годов значительно расширившаяся сеть ARPANET стала называться Интернет (Interconnected networks – связанные сети) и объединяла университеты и научные центры США, Канады и Европы.

В 1992 году появился новый сервис Интернет – WWW (World Wide Web – всемирная паутина), основанный на протоколе HTTP. Во многом благодаря WWW Интернет, а с ним и протоколы TCP/IP, получил в 90-е годы бурное развитие.

В начале XXI века стек TCP/IP приобретает ведущую роль в средствах коммуникации не только глобальных, но и локальных сетей.

Модель OSI .

Модель взаимодействия открытых систем (OSI – Open Systems Interconnection) была разработана Международной организацией по стандартизации (ISO – International Organization for Standardization) для единообразного подхода к построению и объединению сетей. Разработка модели OSI началась в 1977 году и закончилась в 1984 году утверждением стандарта. С тех пор модель является эталонной для разработки, описания и сравнения различных стеков протоколов.

Рассмотрим кратко функции каждого уровня.


Модель OSI включает семь уровней: физический, канальный, сетевой, транспортный, сеансовый, представления и прикладной.

    Физический уровень (physical layer) описывает принципы передачи сигналов, скорость передачи, спецификации каналов связи. Уровень реализуется аппаратными средствами (сетевой адаптер, порт концентратора, сетевой кабель).

    Канальный уровень (data link layer) решает две основные задачи – проверяет доступность среды передачи (среда передачи чаще всего оказывается разделена между несколькими сетевыми узлами), а также обнаруживает и исправляет ошибки, возникающие в процессе передачи. Реализация уровня является программно-аппаратной (например, сетевой адаптер и его драйвер).

    Сетевой уровень (network layer) обеспечивает объединение сетей, работающих по разным протоколам канального и физического уровней, в составную сеть. При этом каждая из сетей, входящих в единую сеть, называется подсетью (subnet). На сетевом уровне приходится решать две основные задачи – маршрутизации (routing, выбор оптимального пути передачи сообщения) и адресации (addressing, каждый узел в составной сети должен иметь уникальное имя). Обычно функции сетевого уровня реализует специальное устройство – маршрутизатор (router) и его программное обеспечение.

    Транспортный уровень (transport layer) решает задачу надежной передачи сообщений в составной сети с помощью подтверждения доставки и повторной отправки пакетов. Этот уровень и все следующие реализуются программно.

    Сеансовый уровень (session layer) позволяет запоминать информацию о текущем состоянии сеанса связи и в случае разрыва соединения возобновлять сеанс с этого состояния.

    Уровень представления (presentation layer) обеспечивает преобразование передаваемой информации из одной кодировки в другую (например, из ASCII в EBCDIC).

    Прикладной уровень (application layer) реализует интерфейс между остальными уровнями модели и пользовательскими приложениями.

Структура TCP / IP . В основе структуры TCP/IP лежит не модель OSI, а собственная модель, называемая DARPA (Defense ARPA – новое название Агентства по перспективным исследовательским проектам) или DoD (Department of Defense – Министерство обороны США). В этой модели всего четыре уровня. Соответствие модели OSI модели DARPA, а также основным протоколам стека TCP/IP показано на рис. 2.2.

Следует заметить, что нижний уровень модели DARPA – уровень сетевых интерфейсов – строго говоря, не выполняет функции канального и физического уровней, а лишь обеспечивает связь (интерфейс) верхних уровней DARPA с технологиями сетей, входящих в составную сеть (например, Ethernet, FDDI, ATM).

Все протоколы, входящие в стек TCP/IP, стандартизованы в документах RFC.

Документы RFC .

Утвержденные официальные стандарты Интернета и TCP/IP публикуются в виде документов RFC (Request for Comments – рабочее предложение). Стандарты разрабатываются всем сообществом ISOC (Internet Society – Сообщество Интернет, международная общественная организация). Любой член ISOC может представить на рассмотрение документ для его публикации в RFC. Далее документ рассматривается техническими экспертами, группами разработчиков и редактором RFC и проходит в соответствии с RFC 2026 следующие этапы, называемые уровнями готовности (maturity levels):

    черновик (Internet Draft) – на этом этапе с документом знакомятся эксперты, вносятся дополнения и изменения;

    предложенный стандарт (Proposed Standard) – документу присваивается номер RFC, эксперты подтвердили жизнеспособность предлагаемых решений, документ считается перспективным, желательно, чтобы он был опробован на практике;

    черновой стандарт (Draft Standard) – документ становится черновым стандартом, если не менее двух независимых разработчиков реализовали и успешно применили предлагаемые спецификации. На этом этапе ещё допускаются незначительные исправления и усовершенствования;

    стандарт Интернета (Internet Standard) – наивысший этап утверждения стандарта, спецификации документа получили широкое распространение и хорошо зарекомендовали себя на практике. Список стандартов Интернета приведен в RFC 3700. Из тысяч RFC только несколько десятков являются документами в статусе «стандарт Интернета».

Кроме стандартов документами RFC могут быть также описания новых сетевых концепций и идей, руководства, результаты экспериментальных исследований, представленных для информации и т. д. Таким документам RFC может быть присвоен один из следующих статусов:

    экспериментальный (Experimental) – документ, содержащий сведения о научных исследованиях и разработках, которые могут заинтересовать членов ISOC;

    информационный (Informational) – документ, опубликованный для предоставления информации и не требующий одобрения сообщества ISOC;

    лучший современный опыт (Best Current Practice) – документ, предназначенный для передачи опыта конкретных разработок, например реализаций протоколов.

Статус указывается в заголовке документа RFC после слова Category (Категория). Для документов в статусе стандартов (Proposed Standard, Draft Standard, Internet Standard) указывается название Standards Track , так как уровень готовности может меняться.

Номера RFC присваиваются последовательно и никогда не выдаются повторно. Первоначальный вариант RFC никогда не обновляется. Обновленная версия публикуется под новым номером. Устаревший и замененный документ RFC получает статус исторический (Historic).

Все существующие на сегодня документы RFC можно посмотреть, например, на сайте www.rfc-editor.org . В августе 2007 года их насчитывалось более 5000. Документы RFC, упоминаемые в этом курсе, приведены в Приложении I.

Обзор основных протоколов.

Протокол IP (Internet Protocol ) – это основной протокол сетевого уровня, отвечающий за адресацию в составных сетях и передачу пакета между сетями. Протокол IP является дейтаграммным протоколом, т. е. не гарантирует доставку пакетов до узла назначения. Обеспечением гарантий занимается протокол транспортного уровня TCP.

Протоколы RIP (Routing Information Protocol протокол маршрутной информации) и OSPF (Open Shortest Path First – « первыми открываются кратчайшие маршруты») – протоколы маршрутизации в IP-сетях.

Протокол ICMP (Internet Control Message Protocol протокол управляющих сообщений в составных сетях) предназначен для обмена информацией об ошибках между маршрутизаторами сети и узлом-источником пакета. С помощью специальных пакетов сообщает о невозможности доставки пакета, о продолжительности сборки пакета из фрагментов, об аномальных величинах параметров, об изменении маршрута пересылки и типа обслуживания, о состоянии системы и т. п.

Протокол ARP (Address Resolution Protocol – протокол преобразования адресов) преобразует IP-адреса в аппаратные адреса локальных сетей. Обратное преобразование осуществляется с помощью протокола RAPR (Reverse ARP).

TCP (Transmission Control Protocol – протокол управления передачей) обеспечивает надежную передачу сообщений между удаленными узлами сети за счет образования логических соединений. TCP позволяет без ошибок доставить сформированный на одном из компьютеров поток байт на любой другой компьютер, входящий в составную сеть. TCP делит поток байт на части – сегменты и передает их сетевому уровню. После того как эти сегменты будут доставлены в пункт назначения, протокол TCP снова соберет их в непрерывный поток байт.

UDP (User Datagram Protocol – протокол дейтаграмм пользователя) обеспечивает передачу данных дейтаграммным способом.

HTTP (HyperText Transfer Protocol – протокол передачи гипертекста) – протокол доставки web-документов, основной протокол службы WWW.

FTP (File Transfer Protocol – протокол передачи файлов) – протокол для пересылки информации, хранящейся в файлах.

POP 3 (Post Office Protocol version 3 – протокол почтового офиса) и SMTP (Simple Mail Transfer Protocol – простой протокол пересылки почты) – протоколы для доставки входящей электронной почты (POP3) и отправки исходящей (SMTP).

Telnet – протокол эмуляции терминала 1 , позволяющий пользователю подключаться к другим удалённым станциям и работать с ними со своей машины, как если бы она была их удалённым терминалом.

SNMP (Simple Network Management Protocol – простой протокол управления сетью) предназначен для диагностики работоспособности различных устройств сети.

Стек протоколов TCP/IP – это альфа и омега Интернета, и нужно не только знать, но также понимать модель и принцип работы стека.

Мы разобрались с классификацией, стандартами сетей и моделью OSI. Теперь поговорим о стеке, на базе которого построена всемирная система объединенных компьютерных сетей Интернет.

Модель TCP/IP

Изначально данный стек создавался для объединения больших компьютеров в университетах по телефонным линиям связи соединения «точка-точка». Но когда появились новые технологии, широковещательные (Ethernet) и спутниковые, возникла необходимость адаптировать TCP/IP, что оказалось непростой задачей. Именно поэтому наряду с OSI появилась модель TCP/IP.

Через модель описывается, как необходимо строить сети на базе различных технологий, чтобы в них работал стек протоколов TCP/IP.

В таблице представлено сравнение моделей OSI и TCP/IP. Последняя включает в себя 4 уровня:

  1. Самый нижний, уровень сетевых интерфейсов , обеспечивает взаимодействие с сетевыми технологиями (Ethernet, Wi-Fi и т. д.). Это объединение функций канального и физического уровней OSI.
  2. Уровень интернет стоит выше, и по задачам перекликается с сетевым уровнем модели OSI. Он обеспечивает поиск оптимального маршрута, включая выявление неполадок в сети. Именно на этом уровне работает маршрутизатор.
  3. Транспортный отвечает за связь между процессами на разных компьютерах, а также за доставку переданной информации без дублирования, потерь и ошибок, в необходимой последовательности.
  4. Прикладной объединил в себе 3 уровня модели OSI: сеансовый, представления и прикладной. То есть он выполняет такие функции, как поддержка сеанса связи, преобразование протоколов и информации, а также взаимодействие пользователя и сети.

Иногда специалисты пытаются объединить обе модели в нечто общее. Например, ниже приведено пятиуровневое представление симбиоза от авторов «Компьютерные сети» Э. Таненбаума и Д. Уэзеролла:

Модель OSI обладает хорошей теоретической проработкой, но протоколы не используются. С моделью TCP/IP все иначе: протоколы широко используются, но модель подходит исключительно для описания сетей на базе TCP/IP.

Не путайте их:

  • TCP/IP – это стек протоколов, представляющий собой основу Интернета.
  • Модель OSI (Базовая Эталонная Модель Взаимодействия Открытых Систем) подходит для описания самых разных сетей.

Стек протоколов TCP/IP

Рассмотрим каждый уровень более подробно.

Нижний уровень сетевых интерфейсов включает в себя Ethernet, Wi-Fi и DSL (модем). Данные сетевые технологии формально не входят в состав стека, но крайне важны в работе интернета в целом.

Основной протокол сетевого уровня – IP (Internet Protocol). Это маршрутизированный протокол, частью которого является адресация сети (IP-адрес). Здесь также работают такие дополнительные протоколы, как ICMP, ARRP и DHCP. Они обеспечивают работу сетей.

На транспортной уровне расположились TCP – протокол, обеспечивающий передачу данных с гарантией доставки, и UDP – протокол для быстрой передачи данных, но уже без гарантии.

Прикладной уровень – это HTTP (для web), SMTP (передача почты), DNS (назначение IP-адресам понятных доменных имен), FTP (передача файлов). Протоколов на прикладном уровне стека TCP/IP больше, но приведенные можно назвать самыми значимыми для рассмотрения.

Протокол TCP/IP (Transmission Control Protocol/Internet Protocol ) представляет собой стек сетевых протоколов, повсеместно используемый для Интернета и других подобных сетей (например, данный протокол используется и в ЛВС). Название TCP/IP произошло от двух наиболее важных протоколов:

  • IP (интернет протокол) - отвечает за передачу пакета данных от узла к узлу. IP пересылает каждый пакет на основе четырехбайтного адреса назначения (IP-адрес).
  • TCP (протокол управления передачей) - отвечает за проверку корректной доставки данных от клиента к серверу. Данные могут быть потеряны в промежуточной сети. TCP добавлена возможность обнаружения ошибок или потерянных данных и, как следствие, возможность запросить повторную передачу, до тех пор, пока данные корректно и полностью не будут получены.

Основные характеристики TCP/IP:

  • Стандартизованные протоколы высокого уровня, используемые для хорошо известных пользовательских сервисов.
  • Используются открытые стандарты протоколов, что дает возможность разрабатывать и дорабатывать стандарты независимо от программного и аппаратного обеспечения;
  • Система уникальной адресации;
  • Независимость от используемого физического канала связи;

Принцип работы стека протоколов TCP/IP такой же как и в модели OSI, данные верхних уровней инкапсулируются в пакеты нижних уровней.

Если пакет продвигается по уровню сверху вниз - на каждом уровне добавляется к пакету служебная информация в виде заголовка и возможно трейлера (информации помещенной в конец сообщения). Этот процесс называется . Служебная информация предназначается для объекта того же уровня на удаленном компьютере. Ее формат и интерпретация определяются протоколами данного уровня.

Если пакет продвигается по уровню снизу вверх - он разделяется на заголовок и данные. Анализируется заголовок пакета, выделяется служебная информация и в соответствии с ней данные перенаправляются к одному из объектов вышестоящего уровня. Вышестоящий уровень, в свою очередь, анализирует эти данные и также их разделяет их на заголовок и данные, далее анализируется заголовок и выделяется служебная информация и данные для вышестоящего уровня. Процедура повторяется заново пока пользовательские данные, освобожденные от всей служебной информации, не дойдут до прикладного уровня.

Не исключено, что пакет так и не дойдет до прикладного уровня. В частности, если компьютер работает в роли промежуточной станции на пути между отправителем и получателем, тогда объект, на соответствующем уровне, при анализе служебной информации определит, что пакет на этом уровня адресован не ему, в следствии чего, объект проведет необходимые мероприятия для перенаправления пакета к пункту назначения или возврата отправителю с сообщением об ошибке. Но так или иначе не будет осуществлять продвижение данных на верхний уровень.

Пример инкапсуляции можно представить следующим образом:

Рассмотрим каждые функции уровней

Прикладной уровень

Приложения, работающие со стеком TCP/IP, могут также выполнять функции представительного уровня и частично сеансового уровня модели OSI.

Распространенными примерами приложений являются программы:

  • Telnet
  • HTTP
  • Протоколы электронной почты (SMTP, POP3)

Для пересылки данных другому приложению, приложение обращается к тому или иному модулю транспортного модуля.

Транспортный уровень

Протоколы транспортного уровня обеспечивают прозрачную доставку данных меду двумя прикладными процессами. Процесс, получающий или отправляющий данные, с помощью транспортного уровня идентифицируется на этом уровне номером, который называется номером порта.

Таким образом, роль адреса отправителя и получателя на транспортном уровне выполняется номером порта. Анализируя заголовок своего пакета, полученного от межсетевого уровня, транспортный модуль определяет по номеру порта получателя по какому из прикладных процессов направленны данные и передает эти данные к соответствующему прикладному процессу.

Номер порта получателя и отправителя записывается в заголовок транспортным модулем отправляющим данные. Заголовок транспортного уровня содержит также и некоторую другую служебную информацию, и формат заголовка зависит от используемого транспортного протокола.

Средства транспортного уровня представляют собой функциональную надстройку над сетевым уровнем и решают две основных задачи:

  • обеспечение доставки данных между конкретными программами, функционирующими, в общем случае, на разных узлах сети;
  • обеспечение гарантированной доставки массивов данных произвольного размера.

В настоящее время в Интернет используются два транспортных протокола – UDP , обеспечивающий негарантированную доставку данных между программами, и TCP , обеспечивающий гарантированную доставку с установлением виртуального соединения.

Сетевой (межсетевой) уровень

Основным протоколом этого уровня является протокол IP, который доставляет блоки данных (дейтаграммы) от одного IP-адреса к другому. IP-адрес является уникальным 32-х битным идентификатором компьютера, точнее его сетевого интерфейса. Данные для дейтаграммы передаются IP модулю транспортным уровнем. IP модуль добавляет к этим данным заголовок, содержащий IP-адрес отправителя и получателя, и другую служебную информацию.

Таким образом, сформированная дейтаграмма передается на уровень доступа к среде передачи, для отправки по каналу передачи данных.

Не все компьютеры могут непосредственно связаться друг с другом, часто чтобы передать дейтаграмму по назначению требуется направить ее через один или несколько промежуточных компьютеров по тому или ному маршруту. Задача определения маршрута для каждой дейтаграммы решается протоколом IP.

Когда модуль IP получает дейтаграмму с нижнего уровня, он проверяет IP адрес назначения, если дейтаграмма адресована данному компьютеру, то данные из нее передаются на обработку модулю вышестоящего уровня, если же адрес назначения дейтаграммы чужой, то модуль IP может принять два решения:

  • Уничтожит дейтаграмму;
  • Отправить ее дальше к месту назначения, определив маршрут следования, так поступают промежуточные станции – маршрутизаторы .

Также может потребоваться на границе сетей, с различными характеристиками, разбить дейтаграмму на фрагменты, а потом собрать их в единое целое на компьютере получателя. Это также задача протокола IP.

Также протокол IP может отправлять сообщения – уведомления с помощью протокола ICMP , например, в случае уничтожения дейтаграммы. Более никаких средств контроля корректности данных, подтверждения или доставки, предварительного соединения в протоколе нет, эти задачи возложены на транспортный уровень.

Уровень доступа к среде

Функции этого уровня следующие:

  • Отображение IP-адресов в физические адреса сети. Эту функцию выполняет протокол ARP ;
  • Инкапсуляция IP-дейтаграмм в кадры для передачи по физическому каналу и извлечение дейтаграмм из кадров, при этом не требуется какого-либо контроля безошибочной передачи, поскольку в стеке TCP/IP такой контроль возложен на транспортный уровень или на само приложение. В заголовке кадров указывается точка доступа к сервису SAP, это поле содержащее код протокола;
  • Определение метода доступа к среде передачи, т.е. способа, с помощью которого компьютеры устанавливает свое право на передачу данных;
  • Определение представления данных в физической среде;
  • Пересылка и прием кадра.

Рассмотрим инкапсуляцию на примере перехвата пакета протокола HTTP с помощью сниффера wireshark, который работает на прикладном уровне протокола TCP/IP:


Помимо самого перехваченного протокола HTTP, на основании стека TCP/IP сниффер описывает каждый нижележащий уровень. HTTP инкапсулируется в TCP, протокол TCP в IPv4, IPv4 в Ethernet II.

Если вкратце, то это набор правил, которые регулируют «общение» компьютеров между собой по сети. Их существует около десятка, и каждый из них определяет правила передачи отдельного типа данных. Но для удобства в обращении их все объединяют в так называемый «стек», называя его именем самого важного протокола - протокола TCP/IP (Transmission Control Protocol и Internet Protocol). Слово ­­«стек» подразумевает, что все эти протоколы представляют собой как бы «стопку протоколов», в которой протокол верхнего уровня не может функционировать без протокола нижнего уровня.

Стек TCP/IP включает 4 уровня:

1. Прикладной - протоколы HTTP, RTP, FTP, DNS. Самый верхний уровень; отвечает за работу прикладных приложений, например почтовых сервисов, отображение данных в браузере и прочее.

2. Транспортный - протоколы TCP, UDP, SCTP, DCCP, RIP. Данный уровень протоколов обеспечивает правильное взаимодействие компьютеров между собой и является проводником данных между разными участниками сети.

3. Сетевой - протокол IP. Этот уровень обеспечивает идентификацию компьютеров в сети, раздавая каждому из них уникальный цифровой адрес.

4. Канальный - протоколы Ethernet, IEEE 802.11, Wireless Ethernet. Самый низкий уровень; он взаимодействует с физическим оборудованием, описывает среду передачи даннных и ее характеристики.

Следовательно, для отображения этой статьи ваш компьютер использует стек протоколов «HTTP - TCP - IP - Ethernet».

Как передается информация по интернету

Каждый компьютер в сети называется хостом и с помощью одноименного протокола получает уникальный IP-адрес. Этот адрес записывается в следующей форме: четыре числа от 0 до 255, разделенных точкой, например, 195.19.20.203. Для успешного обмена информацией по сети IP-адрес также должен включать номер порта. Поскольку информацией обмениваются не сами компьютеры, а программы, каждый тип программы должен также иметь собственный адрес, который и отображается в номере порта. Например, порт 21 отвечает за работу FTP, порт 80 - за работу HTTP. Общее количество портов у компьютера ограничено и равно 65536 с нумерацией от 0 до 65535. Номера портов от 0 до 1023 зарезервированы серверными приложениями, а нишу портов с 1024 по 65535 занимают клиентские порты, которыми программы вольны распоряжаться как угодно. «Клиентские порты» назначаются динамически.

Комбинация IP-адреса и номера порта называется «сокет» . В нем значения адреса и порта разделяются двоеточием, например, 195.19.20.203:110

Таким образом, чтобы удаленный компьютер с IP 195.19.20.203 получил электронную почту, нужно всего лишь доставить данные на его порт 110. А, поскольку, этот порт денно и нощно «слушает» протокол POP3 , который отвечает за прием электронных писем, значит дальнейшее — «дело техники».

Все данные по сети для удобства разбиваются на пакеты. Пакет - это файл размером 1-1,5 Мб, который содержит адресные данные отправителя и получателя, передаваемую информацию, плюс служебные данные. Разбиение файлов на пакеты позволяет намного снизить нагрузку на сеть, т.к. путь каждого из них от отправителя к получателю не обязательно будет идентичным. Если в одном месте в сети образуется «пробка», пакеты смогут ее оминуть, используя другие пути сообщения. Такая технология позволяет максимально эффективно использовать интернет: если какая-то транспортная часть его обрушится, информация сможет и дальше передаваться, но уже по другим путям. Когда пакеты достигают целевой компьютер, он начинает собирать их обратно в цельный файл, используя служебную информацию, которую они содержат. Весь процесс можно сравнить с неким большим паззлом, который, в зависимости от размеров передаваемого файла, может достигать воистину огромных размеров.

Как уже было сказано ранее, IP-протокол выдает каждому участнику сети, в том числе, сайтам уникальный числовой адрес. Однако запомнить миллионы IP-адресов никакому человеку не под силу! Поэтому был создан сервис доменных имен DNS (Domain Name System), который занимается тем, что переводит цифровые IP-адреса в буквенно-цифровые имена, которые гораздо легче запомнить. Например, вместо того, чтобы набирать каждый раз ужасное число 5.9.205.233, можно набрать в адресной строке браузера www.сайт.

Что же происходит, когда мы набираем в браузере адрес искомого сайта? С нашего компьютера отправляется пакет с запросом DNS-серверу на порт 53. Этот порт зарезервирован службой DNS, которая, обработав наш запрос, возвращает IP-адрес, соответствующий буквенно-цифровому имени сайта. После этого наш компьютер соединяется с сокетом 5.9.205.233:80 компьютера 5.9.205.233, на котором расположен HTTP-протокол, отвечающий за отображение сайтов в браузере, и посылает пакет с запросом на получение страницы www.сайт. Нам нужно установить соединение именно на 80-й порт, поскольку именно он соответствует Веб-серверу. Можно, при большом желании, указать 80-й порт и прямо в адресной строке браузера — http://www.сайт:80. Веб-сервер обрабатывает полученный от нас запрос и выдает несколько пакетов, содержащих текст HTML, который отображает наш браузер. В результате мы видим на экране главную страницу