Домой / Музыка / Задача линейного программирования. Симплекс-метод. Применение надстройки «Поиск решения» в MS Excel. Решение задач линейного программирования с помощью Excel

Задача линейного программирования. Симплекс-метод. Применение надстройки «Поиск решения» в MS Excel. Решение задач линейного программирования с помощью Excel

Цель работы: изучение современных программных средств решения задачи линейного программирования; практическое решение задач линейного программирования графическим методом, симплекс-методом и средствами программыMicrosoftExcel; программная реализация симплекс-метода на языке программирования высокого уровня.

1. Теоретическая часть

Для решения задач линейного программирования в программе Microsoft Excel имеется надстройка Поиск решения , обращение к которой производится из меню Сервис .

Если команда Поиск решения отсутствует в меню Сервис , то требуется установить надстройку «Поиск решения». Для этого в меню Сервис выбирается команда Надстройки , которая открывает диалоговое окно, показанное на рис. 1.

Покажем использование надстройки «Поиск решения» на примере решения следующей задачи.

Постановка задачи

Предприятие изготавливает и реализует три вида продукции – P 1 , Р 2 и Р 3 . Для производства продукции используются три вида ресурсов – комплектующие изделия, сырье и материалы. Запасы ресурсов и их расход на изготовление единицы продукции каждого вида приведены в табл. 1.

Таблица 1

Прибыль от реализации единицы продукции каждого вида составляет 240, 210 и 180 денежных единиц для P 1 , Р 2 и Р 3 соответственно.

Требуется определить производственную программу предприятия таким образом, чтобы прибыль от реализации продукции была максимальной.

Математическая модель задачи

Обозначим переменными x 1 , x 2 и x 3 искомые объемы производства продукции видов P 1 , Р 2 и Р 2 , а через F – прибыль предприятия. Тогда математическая постановка представленной задачи принимает следующий вид.

Определить значения переменных x 1 , x 2 и x 3 , для которых достигается максимум целевой функции

F = 240 x 1 + 210 х 2 + 180 x 3

при ограничениях:

Целевая функция описывает суммарную прибыль от реализации произведенной продукции всех трех видов. Ограничения (1), (2) и (3) учитывают расход и запасы комплектующих изделий, сырья и материалов соответственно. Поскольку объемы производства продукции не могут быть отрицательными, добавляются условия

x 1 ≥ 0; x 2 ≥ 0; x 3 ≥ 0.

Порядок оптимального решения задачи

Примерные действия, необходимые для решения задачи линейного программирования средствами программы Excel, представим в виде последовательности шагов.

Шаг 1. Исходные данные задачи записываются на рабочем листе электронной таблицы. Один из вариантов показан на рис. 2.

Замечание. Если известно исходное допустимое базисное решение, то можно несколько ускорить процесс поиска оптимального решения. Для этого начальные значения некоторых или всех переменных могут быть заданы вручную. В данном примере для их хранения используются ячейки $B$2, $C$2 и $D$2. Если допустимое базисное решение не задано, то программа Excel автоматически определяет начальные значения переменных задачи.

Шаг 2. В ячейку E3 вводится формула

СУММПРОИЗВ(В3:D3; $B$2:$D$2)

для вычисления текущего значения целевой функции, которая находит сумму попарных произведений ячеек (В3:D3) с коэффициентами при переменных в выражении целевой функции на ячейки ($B$2:$D$2) с текущими значениями переменных.

Шаг 3. Чтобы задать ограничения решаемой задачи, в ячейки E5, E6 и E7 копируется формула из ячейки E3. После этого в указанных ячейках должны быть получены формулы, представленные в табл. 2.

Таблица 2

СУММПРОИЗВ(В5:D5; $B$2:$D$2)

СУММПРОИЗВ(В6:D6; $B$2:$D$2)

СУММПРОИЗВ(В7:D7; $B$2:$D$2)

Шаг 4. После создания таблицы с исходными данными курсор устанавливается в ячейку E3, содержащую формулу для вычисления целевой функции. Далее в меню Сервис выбирается команда Поиск решения , которая открывает диалоговое окно, приведенное на рис. 3.

В поле Установить целевую ячейку окна «Поиск решения», показанного на рис. 3, должен появиться адрес ячейки с формулой целевой функции (в данном примере это ячейка $E$3).

Затем в этом окне (рис. 3) заполняются следующие поля этого окна:

В поле Равной переключатель вида экстремума целевой функции устанавливается в положение максимальное значение (или минимальное значение при соответствующей постановке задачи);

В поле Изменяя ячейки указывается диапазон ячеек со значениями переменных задачи, выделяемый на рабочем листе электронной таблицы (в примере это ячейки $B$2:$D$2);

В поле Ограничения задаются ограничения исходной задачи. Для этого курсор устанавливается в поле ввода ограничений и нажимается кнопка Добавить . В результате выводится диалоговое окно «Добавление ограничения», показанное на рис. 4.

В этом окне в поле Ссылка на ячейку вводится адрес ячейки с формулой соответствующего ограничения (например, для ограничения (1) это будет ячейка E5), а в поле Ограничение указывается предельное значение, которое может принимать выбранное ограничение (в данном примере правая часть ограничения (1) находится в ячейке G5).

Следует заметить, что заполнение полей Ссылка на ячейку и Ограничение в окне «Добавление ограничения» можно выполнить выделением соответствующих ячеек рабочего листа электронной таблицы.

Затем выбирается вид отношения, связывающего левую и правую части ограничения, что показано на рис. 5.

После нажатия кнопки Добавить в окне «Добавление ограничения» (или кнопки ОК для ввода последнего ограничения) данное ограничение попадает в список ограничений решаемой задачи. С помощью кнопок Удалить и Изменить можно удалять выделенные в списке ограничения или вносить в них исправления.

Замечание . В окне «Добавление ограничения» можно указать, что все или некоторые переменные должны принимать только целые значения (рис. 5). Это позволяет получать решения задач целочисленного линейного программирования (полностью или частично целочисленных).

Шаг 5. После заполнения всех полей окна «Поиск решения» нажимается кнопка Параметры (рис. 3), которая открывает диалоговое окно «Параметры поиска решения», показанное на рис. 6.

В этом окне требуется установить флажки Линейная модель для решения задачи линейного программирования и Неотрицательные значения , если такое условие накладываются на все переменные задачи.

Здесь (рис. 6) также можно определить параметры процесса решения: предельное время поиска решения, максимальное количество итераций, точность и т.п. Флажок Показывать результаты итераций позволяет по шагам следить за поиском решения. Флажок Автоматическое масштабирование включается в том случае, когда разброс значений переменных очень велик.

Шаг 6. Задав необходимые параметры в окне «Параметры поиска решения», следует нажать на кнопку Выполнить для поиска решения задачи (рис. 3) в окне «Поиск решения». Если решение найдено, то на экран выводится окно с соответствующим сообщением (рис. 7).

Полученные результаты отображаются на рабочем листе электронной таблицы, как это показано на рис. 8. В частности, значения переменных - в ячейках $B$2:$D$2, значение целевой функции – в ячейке E3.

Таким образом, получено оптимальное решение исходной задачи в виде вектора
, где
,
и
, для которого значение целевой функцииF максимально и составляет F * = 129825.

Результаты решения задачи линейного программирования также можно сохранить в виде отдельных рабочих листов с именами Отчет по результатам , Отчет по устойчивости и Отчет по пределам . Для сохранения результатов в виде отчетов необходимо предварительно в поле Тип отчета выделить требуемые типы отчетов (рис. 7). В этом же окне можно отказаться от полученных решений и восстановить исходные значения переменных.

Отчет по результатам для рассмотренной задачи показан на рис. 9.

В данном отчете представлены оптимальное решение задачи линейного программирования и его расположение в области допустимых решений. В графах Результат выводятся оптимальные значения целевой функции F * и переменных задачи
, а также их значения для исходного базисного решения, с которого начинался поиск оптимального решения (графаИсходное значение ). Состояние ограничений (графа Статус ) характеризует расположение точки
в области допустимых решений. ГрафаРазница показывает разности между значениями левых и правых частей ограничений (невязки). Для связанного ограничения невязка равна нулю, что свидетельствует о расположение точки
на границе области допустимых решений, которая задается этим ограничением. Если ограничение являются не связанным, то оно не влияет на оптимальное решение.

Замечание . В экономической интерпретации связанные ограничения соответствуют дефицитным ресурсам. Для не связанных ограничений графа Разница показывает оставшиеся объемы неиспользованных не дефицитных ресурсов. В рассмотренной задаче ограничения (1) и (3) соответствуют комплектующим изделиям и материалам, которые являются дефицитными ресурсами. Ограничение (2) является не связанным, т.е. не влияет на оптимальный план производства продукции по критерию максимальной прибыли. Это означает, что второй ресурс (сырье) не использован в объеме 292,5 ед.

В отчете по устойчивости (рис. 10) приведены границы устойчивости переменных задачи (графы Допустимое увеличение и Допустимое уменьшение коэффициентов целевой функции), а также границы устойчивости теневых цен (т.е. переменных двойственной задачи), в пределах которых оптимальное решение не изменяется. Большие значения пределов (1Е+30) означают фактическое отсутствие соответствующих границ, т.е. переменная может изменяться до бесконечности.

В графе Нормированная стоимость элемент во второй строке (-150) показывает, на сколько уменьшится значение функции, если в решении переменную x 2 увеличить на единицу. С другой стороны, при допустимом увеличении коэффициента функции при неизвестной x 2 на 150 единиц значение этой переменной не изменится, т.е. неизвестная x 2 будет равна нулю, а если выйти за пределы допустимого увеличения (коэффициент при x 2 увеличить более чем на 150), то неизвестная x 2 в решении будет больше нуля.

В отчете по пределам (рис. 11) показаны нижние и верхние пределы возможного изменения переменных (в пределах области допустимых решений) и соответствующие значения целевой функции (графа Целевой результат ) при этих изменениях. В частности, если x 1 = 0, а x 2 и x 3 остаются без изменений, то F = 2400 + 2100 + 180191,25 = 34425; при x 3 = 0 и неизменных x 1 и x 2 получим F = 240397,5 + 2100 + 1800 = 95400.

Цель: научиться решать задачи линейного программирования в Excel с помощью надстройки «Поиск решения».

Краткие теоретические сведения

Оптимизационные задачи находят широкое применение в различных областях практической деятельности: при организации работы транспортных систем, в управлении промышленными предприятиями, при составлении проектов сложных систем. Многие распространенные классы задач системного анализа, в частности, задачи оптимального планирования, распределения различных ресурсов, управления запасами, календарного планирования, межотраслевого баланса укладываются в рамки моделей линейного программирования.

Постановка задачи линейного программирования (ЗЛП).

Имеется множество переменных X= (x 1 , х 2 ,..., х n). Целевая функция линейно зависит от управляемых параметров:

Имеются ограничения, которые представляют собой линейные формы

где (2)

Требуется определить максимум (минимум) линейной функции

при условии, что точка (х 1 , х 2 ,..., х n) принадлежит некоторому множеству D, которое определяется системой линейных неравенств

(4)

Любое множество значений (х 1 *, х 2 *,..., х n *), которое удовлетворяет системе неравенств (4) задачи линейного программирования, является допустимым решением данной задачи. Если при этом выполняется неравенство

c 1 х 1 o + c 2 х 2 o +..+ c n х n o ≥ c 1 х 1 + c 2 х 2 +..+ c n х n

для всего множества значений x 1 , х 2 ,..., х n , то значение х 1 o ..х n o является оптимальным решением задачи линейного программирования.

Пример построения математической модели и решения ЗЛП.

Задача. Требуется определить, в каком количестве надо выпускать продукцию четырех типов A, B, C иD, для изготовления которой требуются ресурсы трех видов: трудовые, сырье и финансы. Количество ресурса каждого вида, необходимое для выпуска единицы продукции данного типа, называется нормой расхода. Нормы расхода, а также прибыль, получаемая от реализации единицы каждого типа продукции, приведены в таблице1. Там же приведено наличие располагаемого ресурса.

Таблица1.

Ресурс

A

B

C

D

знак

наличие

трудовые

Составим математическую модель, для чего введем следующие обозначения:

x i - количество выпускаемой продукции i-го типа, i = 1,2,3,4

b j – количество располагаемого ресурса j-го вида, j = 1,2,3

a ji – норма расхода j-го ресурса для выпуска i-ой продукции

c i – прибыль от реализации единицы продукции i-го типа.

Как видно из таблицы 1, для выпуска единицы продукции A требуется 6 единиц сырья, значит, для выпуска всей продукции A требуется 6x 1 единиц сырья, где x 1 - количество выпускаемой продукции A . С учетом того, что для других видов продукции зависимости аналогичны, ограничение по сырью будет иметь вид:

6x 1 + 5x 2 + 4x 3 + 3x 4 ≤ 110

В этом ограничении левая часть равна величине требуемого ресурса, а правая часть показывает количество имеющегося ресурса.

Аналогично можно составить ограничения для других видов ресурсов и написать зависимость для целевой функции. Тогда математическая модель задачи будет иметь вид:

x 1 + x 2 + x 3 + x 4 ≤ 16

6x 1 + 5x 2 + 4x 3 + 3x 4 ≤ 110

4x 1 + 6x 2 + 10x 3 + 13x 4 ≤ 100

x i ≥ 0, i=1,2,3,4

1. Для ввода условий задачи создадим форму в Excel (рис.1). В ячейках B3:E3 будут отображаться вычисленные значения x i .


рис.1. Форма для ввода условий задачи

2. Введем коэффициенты целевой функции и ограничений в форму. Из математической модели введем зависимости. Введенные данные отображены на рис.2.


рис.2. Исходные данные задачи

В ячейке F6 записана формула целевой функции, в F9-F11- левые части ограничений из математической модели. На рис. 3 отображен режим представления формул. Перейти к данному режиму можно с помощью последовательности действий: нажмите кнопку Microsoft Office , щелкните Параметры Excel, откройте вкладку Дополнительно и установите флажок Показывать формулы, а не их значения.


рис.3. Режим представления формул.

3. Загрузим надстройку поиск решения Данные Анализ Поиск решения .

4. В поле Установить целевую ячейку введем ссылку на целевую ячейку, для чего установим курсор в поле и щелкнем левой кнопкой мыши по ячейке F6.

5. Выберем направление поиска, установив флажок равной максимальному значению.

6. Установим курсор в поле Изменяя ячейки и введем с помощью мыши имена изменяемых ячеек B3:E3. В этих ячейках в результате поиска решения будет выведено решение – значения переменных x i ., при которых целевая функция имеет максимальное значение при заданных ограничениях.

7. Введем ограничения на искомые переменные: x i ≥ 0 (нижняя граница по умолчанию равна 0, количество выпускаемой продукции не может быть отрицательным). Так же введем ограничения на ресурсы (н е может быть использовано больше ресурсов, чем их запасы). Щелкнем по кнопке Добавить , в появившемся окне Добавление ограничения в левом поле с помощью мыши введем ссылку на ячейку B3, из раскрывающегося списка выберем знак ≥, в правом поле щелкнем мышью по ячейкеB4 (рис.4). Аналогично введем остальные ограничения.


Рис.4. Окно добавления ограничений.

На рисунке 5 показано заполненное окно Поиск решения.


Рис.5 Заполненное окно Поиск решения

8. Далее нажимаем на кнопку Выполнить. Появляется диалоговое окно Результаты поиска решения (рис.6). Решение найдено. Все ограничения и условия оптимальности выполнены. Сохраняем найденное решение. В этом окне также можно получить три вида отчетов: по результатам, устойчивости и пределам, отчеты формируются в новых рабочих листах.


рис.6. Окно Результаты поиска решения

Результаты оптимального решения задачи приведены в таблице (рис.7).


рис.7. Результаты оптимального решения

Таким образом, получилось оптимальное решение (10;0;6;0), т.е. целесообразно выпускать 10 единиц продукции А и 6 единиц продукции С. Максимальная прибыль равна 1320 денежным единицам, при этом используются все трудовые и финансовые ресурсы, 84 единиц сырья, в запасе остается 26 единиц сырья.

Задания для лабораторной работы.

Составить математическую модель и решить полученную задачу линейного программирования в Excel с помощью надстройки Поиск решения.

Для перевозки грузов используются машины типов А и Б. Грузоподъемность машин обоих типов одинаковая и равна h т. За одну ходку машина А расходует а 11 кг смазочных материалов и а 12 л горючего, машина Б - а 21 кг смазочных материалов иа 22 л горючего. На базе имеется d 1 кг смазочных материалов и d 2 л горючего. Прибыль от перевозки одной машины А составляет с 1 руб., машины Б - с 2 руб. Необходимо перевезти H т груза (исходные данные приведены в нижеследующей таблице).

Сколько надо использовать машин обоих типов, чтобы доход от перевозки груза был максимальным.

№ варианта

Инструкция по выполнению лабораторной работы.

  1. Изучить теоретический материал.
  2. Выполнить приведенный пример.
  3. Выбрать свой вариант по последней цифре.
  4. Составить математическую модель задачи.
  5. Найти оптимальное решение с помощью Поиска решения.
  6. Сделать выводы по полученным решениям, сформировать отчеты по результатам решения, устойчивости и пределам.
  7. Создать отчет по лабораторной работе.
  1. Титульный лист.
  2. Словесная постановка задачи.
  3. Математическая формулировка задачи.
  4. Заполненное окно Поиск решения
  5. Результаты поиска решения (таблица).
  6. Выводы по полученным решениям.

Список источников

  1. Гельман В.Я. Решение математических задач средствами Excel: Практикум. – СПб.:Питер, 2003
  2. Курицкий Б.Я. Поиск оптимальных решений средствами Excel. – СПб.: BHV-Санкт-Петербург, 1997
  3. Пазюк К.Т. Математические методы и модели в экономике. – Хабаровск: Издательство ХГТУ, 2002
  4. Джон Уокенбах. MS OfficeExcel 2007 - Библия пользователя, Издатель: Вильямс, 2008

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Размещено на http://www.allbest.ru/

Частное образовательное учреждение высшего образования «Санкт-Петербургский университет технологий управления и экономики»

Кафедра экономики и менеджмента

КОНТРОЛЬНАЯ РАБОТА

По дисциплине: МЕТОДЫ ОПТИМАЛЬНЫХ РЕШЕНИЙ

Выполнил:

Студент (ка) 3 курса, группа № 19731Д/3-2

Крюк Альбина Владимировна

Руководитель:

к.э.н., доцент Ж.М. Козлова.

Барнаул 2016

  • Введение
  • Заключение
  • ВВЕДЕНИЕ
  • Решение широкого круга задач электроэнергетики и других отраслей народного хозяйства основывается на оптимизации сложной совокупности зависимостей, описанных математически с помощью некоторой «целевой функции» (ЦФ). Подобные функции можно записать для определения затрат на топливо для электростанций, на потери электроэнергии при транспорте ее от электростанции к потребителям и многие другие проблемные задачи. В таких случаях требуется найти ЦФ при определенных ограничениях, накладываемых на ее переменные. Если ЦФ линейно зависит от входящих в ее состав переменных и все ограничения образуют линейную систему уравнений и неравенств, то такая частная форма оптимизационной задачи получила название «задачи линейного программирования».
  • Темы контрольной работы «Решение задач линейного программирования в MS Excel», получить практические навыки в использовании электронных таблиц Microsoft Excel и решения оптимизационных задач линейного программирования.

1. Типовые задачи оптимизации и их экономико-математические модели

Экономико-математическое моделирование представляет собой процесс выражения экономических явлений математическими мо­делями. Экономическая модель -- это схематичное представление экономического явления или процесса с использованием научной абстракции, отражение их характерных черт. Математические мо­дели -- основное средство решения задач оптимизации любой дея­тельности. По своей сути эти модели -- средство плановых расче­тов. Ценность их для экономического анализа и оптимизации реше­ний состоит в том, что они позволяют оценить напряженность плановых заданий, определить лимитирующую группу оборудова­ния, видов ресурсов, получать оценки их дефицитности и т.п. Мате­матическое моделирование экономических явлений и процессов дает возможность получить четкое представление об исследуемом объекте, охарактеризовать и количественно описать его внутреннюю струк­туру и внешние связи. Модель -- условный образ объекта управле­ния /1/.

Экономико-математическая модель должна быть адекватной действительности, отражать существенные стороны и связи изучаемо­го объекта. Отметим принципиальные черты, характерные для по­строения экономико-математической модели любого вида. Процесс моделирования можно условно подразделить на три этапа:

1) ана­лиз теоретических закономерностей, свойственных изучаемому яв­лению или процессу и эмпирических данных о его структуре и особенностях; на основе такого анализа формируются модели;

2) определение методов, с помощью которых можно решить задачу;

3) анализ полученных результатов.

Важнейшим моментом первого этапа моделирования является четкая формулировка конечной цели построения модели, а также определение критерия, по которому будут сравниваться различные варианты решения. Такими критериями в системе менеджмента могут быть:

а) максимизация полезного эффекта товара при ограни­чении совокупности затрат;

б) максимизация прибыли фирмы при условии, что качество товара не снизится; в) снижение себестоимо­сти товара при условии, что его качество не снизится, затраты у потребителя не увеличатся;

г) рост производительности труда, улуч­шение использования оборудования или материалов, повышение оборачиваемости оборотных средств при условии, что качество то­вара не снизится и другие критерии не ухудшатся.

Таким образом, в качестве критерия оптимизации может быть целое или любой компонент прибыли, эффективности товара, объема рынка при ус­ловии, что другие компоненты при этом не ухудшатся.

Например, уравнение целевой функции (L) и система ограниче­ний по оптимизации прибыли фирмы (правда, у авторов нет огра­ничений по качеству товара) будет иметь следующий вид:

где хj -- количество производимой продукции j-го вида в нату­ральных измерениях;

Пj -- прибыль, получаемая от производства единицы про­дукции j-го вида;

аij -- норма расхода i-го производственного ресурса на про­изводство единицы j-го вида продукции;

щj -- запасы i-го вида производственного ресурса на рас­сматриваемый период времени.

Не для всякой экономической задачи нужна собственная модель. Некоторые процессы с математической точки зрения однотипны и могут описываться одинаковыми моделями. Например, в линейном программировании, теории массового обслуживания и других су­ществуют типовые модели, к которым приводится множество конк­ретных задач.

Вторым этапом моделирования экономических процессов являет­ся выбор наиболее рационального математического метода для реше­ния задачи. Например, для решения задач линейного программиро­вания известно много методов: симплексный, потенциалов и др. Луч­шей моделью является не самая сложная и самая похожая на реальное явление, а та, которая позволяет получить самое рациональное реше­ние и наиболее точные экономические оценки. Излишняя детализа­ция затрудняет построение модели, а излишнее укрупнение модели приводит к потере существенной экономической информации, к не­адекватному отражению реальности.

Третьим этапом моделирования является всесторонний анализ результата, полученного при изучении экономического явления. Окончательным критерием достоверности и качества модели явля­ются практика, соответствие полученных результатов и выводов реальным условиям, экономическая содержательность полученных оценок. Если результаты не соответствуют реальным условиям, то необходим анализ причин несоответствия, в качестве которых могут быть недостоверность информации, несоответствие модели эконо­мическим условиям и др. По результатам анализа причин несоответствия экономико-математическая модель корректируется и ре­шение задачи повторяется.

Решим графическим методом типовую задачу оптимизации

Некоторая фирма выпускает два набора удобрений для газонов: обычный и улучшенный. В обычный набор входит 3 кг азотных, 4 кг фосфорных и 1 кг калийных удобрений, а в улучшенный - 2 кг азотных, 6 кг фосфорных и 3 кг калийных удобрений. Известно, что для некоторого газона требуется по меньшей мере 10 кг азотных, 20 кг фосфорных и 7 кг калийных удобрений. Обычный набор стоит 3 ден. Ед., а улучшенный - 4 ден. Ед. Какие и сколько наборов удобрений нужно купить, чтобы обеспечить эффективное питание почвы и минимизировать стоимость?

Построить экономико-математическую модель задачи, дать необходимые комментарии к ее элементам и получить решение графическим методом. Что произойдет, если решать задачу на максимум, и почему?

Сформулируем прямую оптимизационную задачу.

Пусть х1 - количество обычных наборов удобрений;

х2 - количество улучшенных наборов удобрений.

А для некоторого газона требуется по крайней мере 10 кг азотных удобрений, следовательно:

3х1 + 2х2 ? 10

4х1 + 6х2 ? 20

Стоимость необходимых наборов удобрений составит:

Таким образом, получим следующую экономико-математическую модель задачи:

min (х) = 3х1 + 4х2

3х1 + 2х2 ? 10

4х1 + 6х2 ? 20

Построим область решений системы ограничений. Для этого рассмотрим равенства и построим их графики - прямые.

1) 3х1 + 2х2 ? 10

3х1 + 2х2 = 10

3) х1 + 3х2 ? 7

Неравенство не выполняется, значит, исходному неравенству соответствует полуплоскость, не содержащая точку О(0;0).

х1 = 0 - ось ОХ2.

х2 = 0 - ось ОХ1.

Следовательно, область решений системы ограничений находится только в первой четверти декартовой системы координат.

Рис.1. Графическое решение ЗЛП

Находим общую часть всех построенных полуплоскостей. Это выпуклая заштрихованная область.

Для нахождения оптимального решения задачи изобразим графически функцию цели:

(х) = d1x1 + d2x2

(х) = 3х1 + 4х2

Для этого строим вектор d, начало которого в точке (0;0), а конец в точке (d1;d2).

И строим одну из линий уровня функции цели (это линия, на которой функция цели принимает постоянное значение).

Для определения минимума данной функции, передвигаем линию уровня в направлении, противоположном вектору d, и видим, что она последний раз соприкасается с областью решений в точке В, где и будет достигнут min(х).

Определим координаты точки В:

3х1 + 2х2 = 10 *(-3)

4х1 + 6х2 = 20

9х1 - 6х2 = -30

4х1 + 6х2 = 20

Складываем почленно уравнения и получаем:

(х) = 3*2 + 4*2 = 14 (ден. ед.)

Таким образом, чтобы минимизировать стоимость удобрений, нужно купить 2 обычных набора удобрений и 2 улучшенных набора удобрений. При этом минимальные затраты на покупку удобрений составят 14 денежных единиц. microsoft excel программирование математический

Если решать данную задачу на максимум, то конечного оптимума не найдем, т.к. функция цели неограниченна, область решений системы ограничений бесконечна.

2. Задачи линейного программирования, решение средствами MS Excel

Линейное программирование является разделом, с которого начала развиваться дисциплина «математическое программирование». Термин «программирование» в названии дисциплины ничего общего с термином «программирование (т.е. составление программ) для ЭВМ» не имеет, так как дисциплина «линейное программирование» возникла еще до того времени, когда ЭВМ стали широко применяться при решении математических, инженерных, экономических и других задач. Термин «линейное программирование» возник в результате неточного перевода английского «linear programming». Одно из значений слова «programming» - составление планов, планирование. Следовательно, правильным переводом «linear programming» было бы не «линейное программирование», а «линейное планирование», что более точно отражает содержание дисциплины. Однако, термин линейное программирование, нелинейное программирование и т.д. в нашей литературе стали общепринятыми. Задачи линейного программирования является удобной математической моделью для большого числа экономических задач (планирование производства, расходование материалов, транспортные перевозки и т.д.). Использование метода линейного программирования представляет собой важность и ценность - оптимальный вариант выбирается из достаточно значительного количества альтернативных вариантов. Также все экономические задачи, решаемые с применением линейного программирования, отличаются альтернативностью решения и определенными ограничивающими условиями.
В электронных таблицах Excel с помощью функции поиска решения можно вести поиск значения в целевой ячейке, изменения значения переменных. При этом для каждой переменной можно задать ограничения, например верхнюю границу. Перед тем как запустить поиск решения, необходимо четко сформулировать в модели решаемую проблему, т.е. определить условия, выполняемые при оптимизации. Отправленной точкой при поиске оптимального решения является модель вычисления, созданная в рабочем листе. Программе поиска решения при этом необходимы следующие данные. 1. Целевая ячейка - это ячейка в модели вычисления, значения в которой должно быть максимизировано, минимизировано или же равняться определенному указанному значению. Она должна содержать формулу, которая прямо или косвенно ссылается на изменяемые ячейки, или же самой быть изменяемой. 2. Значения в изменяемых ячейках будут последовательно (методом итераций) изменяться до тех пор, пока не будет получено нужное значение в целевой ячейке. Эти ячейки, следовательно, прямо или косвенно должны влиять на значение целевой ячейки. 3. Вы можете задать как для целевой, так и для изменяемых ячеек, ограничения и граничные условия. Можно задать также ограничения для других ячеек. Прямо или косвенно присутствующих в модели. Программа предоставляет возможность задать специальные параметры, определяющие процесс поиска решения. После задания всех необходимых параметров можно запустить поиск решения. Функция поиска решения создаст по итогам своей работы три отчета, которые можно пометить в рабочую книгу.Ограничения - это условия, которые должны быть выполнены аппаратом поиска решения при оптимизации модели.

Изучение литературы показало, что:

1. Линейное программирование - это один из первых и наиболее подробно изученных разделов математического программирования. Именно линейное программирование явилось тем разделом, с которого начала развиваться сама дисциплина «математическое программирование».

Линейное программирование представляет собой наиболее часто используемый метод оптимизации. К числу задач линейного программирования можно отнести задачи:

· рационального использования сырья и материалов; задачи оптимизации раскроя;

· оптимизации производственной программы предприятий;

· оптимального размещения и концентрации производства;

· составления оптимального плана перевозок, работы транспорта;

· управления производственными запасами;

· и многие другие, принадлежащие сфере оптимального планирования.

2. Графический метод довольно прост и нагляден для решения задач линейного программирования с двумя переменными. Он основан на геометрическом представлении допустимых решений и ЦФ задачи.

Суть графического метода заключается в следующем. По направлению (против направления) вектора в ОДР производится поиск оптимальной точки. Оптимальной считается точка, через которую проходит линия уровня, соответствующая наибольшему (наименьшему) значению функции. Оптимальное решение всегда находится на границе ОДР, например, в последней вершине многоугольника ОДР, через которую пройдет целевая прямая, или на всей его стороне.

ЗАКЛЮЧЕНИЕ

С помощью правильной постановки задачи планирования производства и наличия основных производственных параметров, мы можем найти план выпуска продукции, при котором будет достигнута максимальная прибыль.

Благодаря программному продукту Excel, который входит в пакет MS Office, решение наших задач ускоряется в несколько десятков раз. А благодаря точным математическим расчетам данного ПО, мы можем без сомнения найти самые точные результаты исследований.

Размещено на Allbest.ru

...

Подобные документы

    Краткие сведения об электронных таблицах MS Excel. Решение задачи линейного программирования. Решение с помощью средств Microsoft Excel экономической оптимизационной задачи, на примере "транспортной задачи". Особенности оформления документа MS Word.

    курсовая работа , добавлен 27.08.2012

    История развития и функции линейного программирования. Исследование условий типовых задач и возможностей табличного процессора. Решение задач о рационе питания, плане производства, раскрое материалов и рациональной перевозке груза в среде MS Excel.

    курсовая работа , добавлен 28.04.2014

    Принципы решения задач линейного программирования в среде электронных таблиц Excel, в среде пакета Mathcad. Порядок решения задачи о назначении в среде электронных таблиц Excel. Анализ экономических данных с помощью диаграмм Парето, оценка результатов.

    лабораторная работа , добавлен 26.10.2013

    Алгоритм решения задач линейного программирования симплекс-методом. Построение математической модели задачи линейного программирования. Решение задачи линейного программирования в Excel. Нахождение прибыли и оптимального плана выпуска продукции.

    курсовая работа , добавлен 21.03.2012

    Изучение и укрепление на практике всех моментов графического метода решения задач линейного программирования о производстве журналов "Автомеханик" и "Инструмент". Построение математической модели. Решение задачи с помощью электронной таблицы Excel.

    курсовая работа , добавлен 10.06.2014

    Общее понятие и характеристика задачи линейного программирования. Решение транспортной задачи с помощью программы MS Excel. Рекомендации по решению задач оптимизации с помощью надстройки "Поиск решения". Двойственная задача линейного программирования.

    дипломная работа , добавлен 20.11.2010

    Анализ метода линейного программирования для решения оптимизационных управленческих задач. Графический метод решения задачи линейного программирования. Проверка оптимального решения в среде MS Excel с использованием программной надстройки "Поиск решения".

    курсовая работа , добавлен 29.05.2015

    Разработка таблиц в Excel методами линейного программирования с целью оптимизации расходов ресурсов и запасов на изготовление продукции: определение переменных величин, структуры целевой функции, построение математической модели и блок-схем решения задач.

    курсовая работа , добавлен 07.06.2010

    Методы решения задач линейного программирования: планирования производства, составления рациона, задачи о раскрое материалов и транспортной. Разработка экономико-математической модели и решение задачи с использованием компьютерного моделирования.

    курсовая работа , добавлен 13.03.2015

    Графическое решение задач. Составление математической модели. Определение максимального значения целевой функции. Решение симплексным методом с искусственным базисом канонической задачи линейного программирования. Проверка оптимальности решения.

Требуется определить, в каком количестве надо выпустить продукцию четырех типов Прод1, Прод2, Прод3, Прод4, для изготовления которой требуются ресурсы трех видов: трудовые, сырье и финансы. Количество ресурса каждого вида, необходимое для выпуска единицы продукции данного типа, называется нормой расхода. Нормы расхода, а также прибыль, получаемая от реализации единицы каждого типа продукции, приведены на рис. 1.

Ресурс

Прод1

Прод2

Прод3

Прод4

Знак

Наличие

Прибыль

Трудовые

Сырье

Финансы

Рисунок 1.

Математическая модель задачи имеет вид:

где x j – количество выпускаемой продукции j-го типа; F – функция цели; в левых частях выражений ограничений указаны величины потребного ресурса , а правые части показывают количество имеющегося ресурса .

Ввод условий задачи

Для решения задачи с помощью Excel следует создать форму для ввода исходных данных и ввести их. Форма ввода показана на рис. 2.

В ячейку F6 введено выражение целевой функции как суммы произведений значений прибыли от выпуска единицы продукции каждого типа на количество выпускаемой продукции соответствующего типа. Для наглядности на рис. 3 представлена форма ввода исходных данных в режиме вывода формул.

В ячейки F8:F10 введены левые части ограничений для ресурсов каждого вида.

Рисунок 2.

Рисунок 3.

Решение задачи линейного программирования

Для решения задач линейного программирования в Excel используется мощный инструмент, называемый Поиск решения . Обращение к Поиску решения осуществляется из меню Сервис , на экран выводится диалоговое окно Поиска решения (рис. 4).

Рисунок 4.

Ввод условий задачи для поиска ее решения состоит из следующих шагов:

1 Назначить целевую функцию, для чего установить курсор в поле Установить целевую ячейку окна Поиск решения и щелкнуть в ячейке F6 в форме ввода;

2 Включить переключатель значения целевой функции, т.е. указать ее Равной Максимальному значению ;

3 Ввести адреса изменяемых переменных (x j): для этого установить курсор в поле Изменяя ячейки окна Поиск решения, а затем выделить диапазон ячеек B3:E3 в форме ввода;

4 Нажать кнопку Добавить окна Поиск решения для ввода ограничений задачи линейного программирования; на экран выводится окно Добавление ограничения (рис. 5) :

Ввести граничные условия для переменных x j (x j ³0), для этого в поле Ссылка на ячейку указать ячейку В3, соответствующую х 1 , выбрать из списка нужный знак (³), в поле Ограничение указать ячейку формы ввода, в которой хранится соответствующее значение граничного условия, (ячейка В4), нажать кнопку Добавить ; повторить описанные действия для переменных х 2 , х 3 и х 4 ;

Ввести ограничения для каждого вида ресурса, для этого в поле Ссылка на ячейку окна Добавление ограничения указать ячейку F9 формы ввода, в которой содержится выражение левой части ограничения, наложенного на трудовые ресурсы, в полях Ограничение указать знак £ и адрес Н9 правой части ограничения, нажать кнопку Добавить ; аналогично ввести ограничения на остальные виды ресурсов;

После ввода последнего ограничения вместо Добавить нажать ОК и возвратиться в окно Поиск решения.

Рисунок 5.

Решение задачи линейного программирования начинается с установки параметров поиска:

В окне Поиск решения нажать кнопку Параметры , на экран выводится окно Параметры поиска решения (рис. 6);

Установить флажок Линейная модель, что обеспечивает применение симплекс-метода;

Указать предельное число итераций (по умолчанию – 100, что подходит для решения большинства задач);

Установить флажок , если необходимо просмотреть все этапы поиска оптимального решения;

Нажать ОК , возврат в окно Поиск решения .

Рисунок 6.

Для решения задачи нажать кнопку Выполнить в окне Поиск решения , на экране – окно Результаты поиска решения (рис. 7), в котором содержится сообщение Решение найдено. Все ограничения и условия оптимальности выполнены. Если условия задачи несовместны, то выводится сообщение Поиск не может найти подходящего решения . Если целевая функция не ограничена, то появляется сообщение Значения целевой ячейки не сходятся .

Рисунок 7.

Для рассматриваемого примера решение найдено и результат оптимального решения задачи выводится в форме ввода: значение целевой функции, соответствующее максимальной прибыли и равное 1320, указывается в ячейке F6 формы ввода, оптимальный план выпуска продукции х 1 =10, х 2 =0, х 3 =6, х 4 =0 указывается в ячейках В3:С3 формы ввода (рис. 8).

Количество использованных для выпуска продукции ресурсов выводится в ячейки F9:F11: трудовых – 16, сырья – 84, финансов – 100.

Рисунок 8.

Если при установке параметров в окне Параметры поиска решения (рис. 6) был установлен флажок Показывать результаты итераций , то будут показаны последовательно все шаги поиска. На экран будет выводиться окно (рис. 9). При этом текущие значения переменных и функции цели будут показаны в форме ввода. Так, результаты первой итерации поиска решения исходной задачи представлены в форме ввода на рисунке 10 .

Рисунок 9.

Рисунок 10.

Чтобы продолжить поиск решения, следует нажимать кнопку Продолжить в окне Текущее состояние поиска решения .

Анализ оптимального решения

Прежде чем, перейти к анализу результатов решения, представим исходную задачу в форме

введя дополнительные переменные у i , представляющие собой величины неиспользованных ресурсов.

Составим для исходной задачи двойственную задачу и введем дополнительные двойственные переменные v i .

Анализ результатов поиска решения позволит увязать их с переменными исходной и двойственной задач.

С помощью окна Результаты поиска решения можно вызвать отчеты трех типов, позволяющие анализировать найденное оптимальное решение:

Результаты,

Устойчивость,

Пределы.

Для вызова отчета в поле Тип отчета выделить название нужного типа и нажать ОК .

1 Отчет по результатам (рис. 11) состоит из трех таблиц:

Таблица 1 содержит сведения о целевой функции; в столбце Исходно указывается значение целевой функции до начала вычислений;

Таблица 2 содержит значения искомых переменных x j , полученных в результате решения задачи (оптимальный план выпуска продукции);

Таблица 3 показывает результаты оптимального решения для ограничений и для граничных условий.

Для Ограничений в графе Формула приведены зависимости, которые были введены при задании ограничений в окне Поиск решения ; в графе Значение указаны величины использованного ресурса; в графе Разница показано количество неиспользованного ресурса. Если ресурс используется полностью, то в графе Состояние выводится сообщение связанное ; при неполном использовании ресурса в этой графе указывается не связан. Для Граничных условий приводятся аналогичные величины с той лишь разницей, что вместо неиспользованного ресурса показана разность между значением переменной x j в найденном оптимальном решении и заданным для нее граничным условием (x j ³0).

Именно в графе Разница можно увидеть значения дополнительных переменных y i исходной задачи в формулировке (2). Здесь у 1 =у 3 =0, т.е. величины неиспользованных трудовых и финансовых ресурсов равны нулю. Эти ресурсы используются полностью. Вместе с тем, величина неиспользованных ресурсов для сырья у 2 =26, значит, имеются излишки сырья.

Рисунок 11.

2 Отчет по устойчивости (рис. 12)состоит из двух таблиц.

В таблице 1 приводятся следующие значения:

Результат решения задачи (оптимальный план выпуска);

- Нормир. стоимость , т.е. величины, показывающие, насколько изменится целевая функция при принудительном включении единицы продукции соответствующего типа в оптимальный план;

Коэффициенты целевой функции;

Предельные значения приращения коэффициентов целевой функции, при которых сохраняется оптимальный план выпуска.

В таблице 2 содержатся аналогичные данные для ограничений:

Величины использованных ресурсов;

- Теневая цена , показывающая, как изменится целевая функция при изменении величины соответствующего ресурса на единицу;

Допустимые значения приращений ресурсов, при которых сохраняется оптимальный план выпуска продукции.

Рисунок 12.

Отчет по устойчивости позволяет позволяет получить двойственные оценки.

Как известно, двойственные переменные z i показывают, как изменится целевая функция при изменении ресурса i-го типа на единицу. В отчете Excel двойственная оценка называется Теневой ценой .

В нашем примере сырье не используется полностью и его ресурс у 2 =26. Очевидно, что увеличение количества сырья, например, до 111 не повлечет за собой увеличения целевой функции. Следовательно, для второго ограничения двойственная переменная z 2 =0. Таким образом, если по данному ресурсу есть резерв, то дополнительная переменная будет больше нуля, а двойственная оценка этого ограничения равна нулю.

В рассматриваемом примере трудовые ресурсы и финансы использовались полностью, поэтому их дополнительные переменные равны нулю (у 1 =у 3 =0). Если ресурс используется полностью, то его увеличение или уменьшение повлияет на объем выпускаемой продукции, и следовательно, на величину целевой функции. Двойственные оценки ограничений на трудовые и финансовые ресурсы отличны от нуля, т.е. z 1 =20, z 3 =10.

Значения двойственных оценок находим в Отчете по устойчивости , в таблице 2, в графе Теневая цена .

При увеличении (уменьшении) трудовых ресурсов на единицу целевая функция увеличится (уменьшится) на 20 единиц и будет равна

F=1320+20×1=1340 (при увеличении).

Аналогично, при увеличении объема финансов на единицу целевая функция будет

F=1320+10×1=1330.

Здесь же, в графах Допустимое увеличение и Допустимое уменьшение таблицы 2, показаны допустимые пределы изменения количества ресурсов j-го вида. Например, для при изменении приращения величины трудовых ресурсов в пределах от –6 до 3,55, как показано в таблице, структура оптимального решения сохраняется, т.е наибольшую прибыль обеспечивает выпуск Прод1 и Прод3, но в других количествах.

Дополнительные двойственные переменные также отражены в Отчете по устойчивости в графе Нормир. стоимость таблицы 1.

Если основные переменные не вошли в оптимальное решение, т.е. равны нулю (в примере х 2 =х 4 =0), то соответствующие им дополнительные переменные имеют положительные значения (v 2 =10, v 4 =20). Если же основные переменные вошли в оптимальное решение (х 1 =10, х 3 =6), то их дополнительные двойственные переменные равны нулю (v 1 =0, v 3 =0).

Эти величины показывают, насколько уменьшится (поэтому знак минус в значениях переменных v 2 и v 4) целевая функция при принудительном выпуске единицы данной продукции. Следовательно, если мы захотим принудительно выпустить единицу продукции вида Прод3, то целевая функция уменьшится на 10 единиц и будет равна 1320 -10×1 =1310.

Обозначим через Dс j изменение коэффициентов целевой функции в исходной модели (1). Эти коэффициенты определяют прибыль, получаемую при реализации единицы продукции j-го вида.

В графах Допустимое увеличение и Допустимое Уменьшение таблицы 1 Отчета по устойчивости показаны пределы изменения Dс j , при которых сохраняется структура оптимального плана, т.е. будет выгодно по-прежнему выпускать продукцию вида Продj. Например, при изменении Dс 1 в пределах -12£ Dс 1 £ 40, как показано в отчете, по-прежнему будет выгодно выпускать продукцию вида Прод1. При этом значение целевой функции будет F=1320+x 1 ×Dс j =1320+10×Dс j .

3 Отчет по пределам приведен на рис. 13. В нем показывается, в каких пределах могут изменяться значения x j , вошедшие в оптимальное решение, при сохранении структуры оптимального решения. Кроме этого, для каждого типа продукции приводятся значения целевой функции, получаемые при подстановке в оптимальное решение значения нижнего предела выпуска изделий соответствующего типа при неизменных значениях выпуска остальных типов. Например, если при оптимальном решении х 1 =10, х 2 =0, х 3 =6, х 4 =0 положить х 1 =0 (нижний предел) при неизменных х 2 , х 3 и х 4 , то значение целевой функции будет равно 60×0+70×0+120×6+130×0=720.

Для решения задач линейного программирования симплекс-методом в среде MS Excel заполняются ячейки исходными данными в режиме чисел и формулами математической модели.

MS Excel позволяет получить оптимальное решение без ограничения размерности системы неравенств целевой функции.

Решим задачу о выпускаемых изделиях симплекс-методом применяя надстройку «Поиск решения» в MS Excel.

1. Заполните таблицу Excel в режиме чисел (рис.1)

2. Заполните таблицу Excel в режиме формул (рис.2)

Рис.1 Таблица в режиме чисел

Рис.1 Таблица в режиме формул

Здесь: В9:С9 – результат (оптимальное количество изделий каждого вида);

В6:С6 – коэффициенты целевой функции;

В10 – значение целевой функции;

В3:С5 – коэффициенты ограничений;

D12:D14 – правая часть ограничений;

B12:B14 – вычисляемые (фактические) значения левой части ограничений.

Решим задачу с помощью команды Данные/Поиск решения. На экране появляется диалоговое окно Поиск решения.

В поле Установить целевую функция будет показана ссылка на активную ячейку, т.е. на В10. Причем эта ссылка абсолютная. В секции Равной устанавливаем переключатель Максимальному (минимальному) значению в зависимости от целевой функции. Ограничения устанавливаются с помощью кнопки Добавить, которая вызывает диалоговое окно их ввода Добавление ограничения.

В поле ввода Ссылка на ячейку: указывается адрес ячейки, содержащей формулу левой части ограничения. Затем выбирается из списка знак соотношения. В поле Ограничение указывается адрес ячейки, содержащей правую часть ограничения. Щёлкаем на кнопку Добавить и повторяем до следующего ограничения. После ввода всех ограничений нажимаем ОК.

Так как все переменные несут условия неотрицательности, то их положительность задается через кнопку Параметры в окне диалога Поиск решения. После щелчка по ней, на экране окно Параметры поиска решения.

Устанавливаем флажок Сделать переменные без ограничений неотрицательными и выбрать Метод решения Поиск решения линеных задач симплекс-методом. Щёлкаем на кнопке Найти решение.

Excel предъявит окно Результаты поиска решения с сообщением о том, что решение найдено, или о том, что не может найти подходящего решения.

Если вычисления оказались успешными, Excel предъявит следующее окно итогов. Их можно сохранить или отказаться. Кроме того, можно получить один из трёх видов отчётов (Результаты, Устойчивость, Пределы), позволяющие лучше осознать полученные результаты, в том числе, оценить их достоверность.



После найденного решения, в ячейках В9:С9 появится оптимальное количество изделий каждого вида.

При сохранении отчета выберите – Отчет по результатам (рис.3).

Из отчета видно, что ресурс 1 не используется полностью на 150 кг, а ресурс 2 и 3 используется полностью.

В результате получен оптимальный план, при котором изделий 1 вида необходимо выпустить в количестве 58 шт., а изделий 2 вида в количестве 42 шт. При этом прибыль от их реализации максимальная и составляет 4660 тыс.руб.

Рис.3 Отчет по результатам

1. Со станции формирования ежедневно отправляются пассажирские и скорые поезда, составленные из плацкартных, купейных и мягких вагонов. Число мест в плацкартном вагоне – 54, в купейном – 36, в мягком – 18. В таблице указаны состав поезда каждого типа и количество имеющихся в парке вагонов различного типа. Определить число скорых и пассажирских поездов, которые необходимо формировать ежедневно, чтобы число перевозимых пассажиров было максимальным.







Решение транспортных задач

Транспортными задачами называются задачи определения оптимального плана перевозок груза из данных пунктов отправления в заданные пункты потребления.

b 1 b 2 b k b g
a 1 }