Домой / Музыка / Векторное управление асинхронным двигателем. Скалярное и векторное управление в частотных преобразователях

Векторное управление асинхронным двигателем. Скалярное и векторное управление в частотных преобразователях

1

При проектировании частотного регулирования электропривода возникает необходимость построения адекватных моделей, в полной мере учитывающих специфику протекающих электромеханических процессов в двигателе. Для апробации моделей необходимо сравнение с физически реализуемым процессом на реальном оборудовании, в связи с этим возникает необходимость определения параметров реальных электродвигателей для проверки модели на адекватность. В статье описана математическая модель векторного управления асинхронным электродвигателем. Модель позволяет отслеживать электромеханические процессы в электродвигателе при его работе. Получены графики механических и электрических переходных процессов, характеризующих пуск электродвигателя. Построена механическая характеристика электродвигателя при векторном управлении, наглядно показывающая увеличение нагрузочного диапазона. Произведена оценка адекватности модели. Математические эксперименты и создание модели выполнены в графической среде имитационного моделирования Simulink – приложении к пакету Matlab.

инвертор

математическая модель

механическая характеристика

векторное управление

асинхронный двигатель

1. Виноградов А.Б. Векторное управление электроприводами переменного тока / ГОУ ВПО «Ивановский государственный энергетический университет имени В.И. Ленина». – Иваново, 2008. – 297 с.

2. Лиходедов А.Д. Построение механической характеристики асинхронного двигателя и её апробация // Современные проблемы науки и образования. – 2012. – № 5. – URL: http://www..09.2012).

3. Усольцев А.А. Векторное управление асинхронными двигателями: учебное пособие по дисциплинам электромеханического цикла. – СПб., 2002.

4. Шувалов Г.А. Экономия электроэнергии с помощью частотного преобразователя // Электрооборудование: эксплуатация и ремонт. – 2012. – № 2.

5. Blaschke, F. Das Prinzip der Feldorientierung, die Grundlage für die Transvector-Regelung von Drehfeldmaschinen (in German), Siemens-Zeitschrift 45, Heft 10, 1971.

6. PLC – это просто!! Векторное управление. – URL: http://plc24.ru/vektornoe-upravlenie/ (дата обращения: 12.09.2012).

Развитие асинхронного электропривода с векторным управлением

Принято различать два основных способа управления электроприводами переменного тока, использующими в качестве преобразователей энергии по-лупроводниковые преобразователи частоты: частотное и векторное.

При частотном управлении в ЭП реализуется один из статических за-конов частотного управления (например, , и т.д.). На выходе системы управления формируется задание по частоте и ам-плитуде выходного напряжения ПЧ. Область применения таких систем: асинхронный электропривод, к кото-рому не предъявляется повышенных статических и динамических требований, вентиляторы, насосы и прочие общепромыш-ленные механизмы.

При векторном управлении управление осуществляется по мгновен-ным значениям переменных. В цифровых векторных системах может выпол-няться управление по эквивалентным (усредненным на интервале дискретно-сти управления) переменным .

В 1971 году Блашке предложил принцип построения системы управления асинхронным двигателем , в котором использовалась векторная модель АД с ориентацией системы координат по потокосцеплению ротора. Этот принцип называется также прямым управлением моментом . Векторное управление позволяет существенно увеличить диапазон управления, точность регулирования, повысить быстродействие электропривода. Этот метод обеспечивает непосредственное управление вращающим моментом двигателя.

Вращающий момент определяется током статора, который создает возбуждающее магнитное поле. При непосредственном управлении моментом необходимо изменять, кроме амплитуды, и фазу статорного тока, то есть вектор тока. Этим и обусловлен термин «векторное управление».

Для управления вектором тока, а, следовательно, положением магнитного потока статора относительно вращающегося ротора требуется знать точное положение ротора в любой момент времени. Задача решается либо с помощью выносного датчика положения ротора, либо определением положения ротора путем вычислений по другим параметрам двигателя. В качестве этих параметров используются токи и напряжения статорных обмоток.

Менее дорогим является частотно регулируемый электропривод с векторным управлением без датчика обратной связи скорости, однако векторное управление при этом требует большого объема и высокой скорости вычислений от преобразователя частоты. Кроме того, для непосредственного управления моментом при малых, близких к нулевым скоростям вращения работа частотно-регулируемого электропривода без обратной связи по скорости невозможна. Векторное управление с датчиком обратной связи по скорости обеспечивает диапазон регулирования до 1:1000 и выше, точность регулирования по скорости - сотые доли процента, точность по моменту - единицы процентов .

Питание АД и СД в режиме векторного управления осуществляется от инвертора, который может обеспечить в любой момент времени требуемые амплитуду и угловое положение вектора напряжения (или тока) статора. Измерение амплитуды и положение вектора потокосцепления ротора производится с помощью наблюдателя (математический аппарат, позволяющий восстанавливать неизмеряемые параметры системы). В зависимости от условий эксплуатации электропривода возможно управление электродвигателем как в режимах с обычной точностью, так и в режимах с повышенной точностью отработки задания на скорость или момент. Так, например, частотный преобразователь обеспечивает точность поддержания скорости вращения ±2-3% в режиме U/f, при векторном управлении без датчика скорости ±0,2%, при полном векторном управлении с датчиком скорости обеспечивается точность ±0,01% .

Общий принцип векторного управления АД

В дальнейшем мы будем использовать следующие индексы систем координат: a-b - неподвижная система координат (), ориентированная по оси фазы a обмотки статора; x-y - система координат, вращающаяся синхронно с ротором () и ориентированная по оси фазы a его обмотки; d-q - система координат, вращающаяся синхронно с потокосцеплением ротора () и ориентированная по его направлению; m-n - произвольно ориентированная система координат, вращающаяся с произвольной скоростью .

Общий принцип моделирования и построения системы управления АД заключается в том, что для этого используется система координат, постоянно ориентированная по направлению какого-либо вектора, определяющего электромагнитный момент. Тогда проекция этого вектора на другую ось координат и соответствующее ей слагаемое в выражении для электромагнитного момента будут равны нулю, и формально оно принимает вид, идентичный выражению для электромагнитного момента двигателя постоянного тока, который пропорционален по величине току якоря и основному магнитному потоку.

В случае ориентации системы координат по потокосцеплению ротора () момент можно представить как:

, (1)

где - индуктивность рассеяния цепи ротора, - индуктивность цепи намагничивания, - число пар полюсов, - проекции токов статора на оси системы координат .

По данному выражению можно при условии постоянства потокосцепления ротора управлять электромагнитным моментом, изменяя проекции тока статора на поперечную ось . Выбор уравнения для построения системы управления играет большую роль, т.к. многие величины, в особенности у короткозамкнутых АД, не могут быть измерены. Кроме того, этот выбор существенно влияет на сложность передаточных функций системы, иногда в несколько раз увеличивая порядок уравнений.

Для построения системы векторного управления АД нужно выбрать вектор, относительно которого будет ориентирована система координат, и соответствующее выражение для электромагнитного момента, а затем определить входящие в него величины из уравнений для цепи статора и/или ротора (2) :

, (2, а)

, (2, б)

где - напряжение обмоток статора в векторной форме; - активные сопротивления обмоток статора и ротора; составляющие ,связаны с изменением потокосцепления во времени вследствие изменения во времени токов и называются ЭДС трансформации, по аналогии с процессами ее возбуждения в соответствующей электрической машине; составляющие , - связаны с изменением потокосцепления вследствие вращения ротора и называются ЭДС вращения.

Если в качестве опорного вектора выбрать потокосцепление ротора и ориентировать по нему координатную систему так, чтобы ее вещественная ось совпадала с направлением , то угловая частота вращения системы координат будет равна угловой частоте питания статора , т.к. векторы потокосцеплений статора и ротора вращаются с одинаковой частотой. Применение вектора потокосцепления ротора теоретически обеспечивает большую перегрузочную способность АД.

При этом проекции вектора тока статора с учетом того, что , равны:

(3)

где - электромагнитная постоянная времени ротора.

Выразим потокосцепление и угловую частоту ротора:

(4)

Таким образом, с помощью проекции тока статора можно управлять потокосцеплением ротора, и передаточная функция этого канала соответствует апериодическому звену с постоянной времени, равной постоянной времени ротора; а с помощью проекции можно независимо и безынерционно управлять частотой ротора .

При этом электромагнитный момент АД можно определить, зная частоту токов ротора при заданном потокосцеплении:

, (5)

Выражения - определяют связь между проекциями тока статора на оси координат, потокосцеплением, частотой ротора и электромагнитным моментом АД. Из выражения и уравнения движения следует, что управление моментом может осуществляться безынерционно двумя входными сигналами: потокосцеплением и частотой ротора. Эти сигналы связаны с проекциями вектора тока статора выражениями . Поэтому устройство векторного управления содержит блок развязки координат (РК), осуществляющий преобразования в соответствии с выражениями (3), а также ротатор, вращающий вектор тока статора в направлении, противоположном вращению ротора АД. Входными сигналами для устройства управления будут линейное напряжение сети и частота питающего напряжения, соответствующие потокосцеплению и частоте ротора. Название блока развязки координат происходит от выполняемой им функции формирования сигналов, соответствующих независимым (развязанным, разделённым) проекциям вектора тока статора (рисунок 1).

Рис. 1. Структурная схема блока развязки координат.

Из выражения для электромагнитного момента (5) и общего уравнения движения можно получить передаточную функцию АД по каналу управления частотой ротора:

где - механическая постоянная времени. Эта передаточная функция полностью соответствует двигателю постоянного тока, поэтому построение систем электропривода с векторным управлением АД ничем не отличается от приводов постоянного тока.

Следует отметить, что устройство управления может выполнять свои функции только при условии, что параметры АД, входящие в передаточные функции его звеньев, соответствуют истинным значениям, в противном случае потокосцепление и частота ротора в АД и в устройстве управления будут отличаться друг от друга. Это обстоятельство создает значительные трудности при реализации систем векторного управления на практике, т.к. параметры АД изменяются в процессе работы. В особенности это относится к значениям активных сопротивлений .

Математическое описание координатных преобразований

Если вектор тока представлен в неподвижной системе координат (a, b), то переход к новой системе координат (x,y), развернутой относительно исходной на некоторый угол (рисунок 2а), осуществляется из следующего соотношения аргументов комплексных чисел:

Или (7)

Рис. 2. Обобщенный вектор тока в различных системах координат.

Для системы координат, вращающейся с постоянной угловой частотой , угол равен .

Преобразование координат можно записать в развернутом виде следующим образом:

Отсюда можно найти составляющие вектора и в матричной форме:

, (9)

где , - мгновенные значения токов соответствующих обмоток.

Необходимым элементом системы векторного управления АД является ротатор, осуществляющий преобразование координат векторов в соответствии с выражением (9) .

Для преобразования переменных из системы координат (d,q) в систему координат (a, b) воспользуемся следующими уравнениями:

где γ - угол полеориентирования. Структурная схема ротатора изображена на рисунке 3.

Рис. 3. Структурная схема ротатора.

Математическая модель АД

Асинхронный двигатель смоделирован в системе координат - α, β. Уравнения, соответствующие этой системе координат, описываются системой уравнений:

(11)

где: , , , - составляющие векторов потокосцепления статора и ротора в системах координат ; , - составляющие вектора напряжения статора в системах координат ; - активные сопротивления обмоток статора и ротора; - полные индуктивности обмоток статора и ротора (17),(18);- коэффициенты электромагнитной связи статора и ротора (12),(13); p - число пар полюсов; - механическая скорость ротора; J - момент инерции ротора двигателя; - момент сопротивления на валу двигателя.

Значения полных индуктивностей обмоток и коэффициентов электромагнитной связи статора и ротора вычисляются по формулам:

где:- индуктивности рассеяния; - индуктивность цепи намагничивания,

где: - индуктивное сопротивление рассеяния обмоток статора и ротора; - индуктивное сопротивление цепи намагничивания; f - частота напряжения, подводимого к статору.

При решении системы дифференциальных уравнений в координатах (11) можно получить динамическую механическую характеристику и временные характеристики переменных состояния (например, момента и скорости), которые дают представление о процессах, протекающих в двигателе. Составляющие напряжения, подводимого к статорной обмотке двигателя, вычисляются по формуле:

(19)

где U - действующее значение напряжения, подводимого к статору.

Решение уравнений сводится к интегрированию левой и правой частей каждого дифференциального уравнения системы:

(20)

Токовременные зависимости вычисляются по уравнениям:

(21)

Паспортные данные АД ДМТ f 011-6у1 приведены в статье .

На рисунке 4 изображена модель АД, управляемого током статора, в системе координат, ориентированной по потокосцеплению ротора.


Рис. 4. Модель векторного управления АД в среде Simulink:

АД - асинхронный двигатель;

УУ - устройство управления, включающее: РК - блок развязки координат, Р - ротатор;

Н - нагрузка, учитывающая также сопротивление подшипников.

Модель векторного управления АД позволяет отслеживать электромагнитные процессы, происходящие в асинхронном двигателе при его работе.

На следующем графике (рисунок 5) изображена механическая характеристика электродвигателя при векторном управлении, полученная модельным путем, в сравнении с механической характеристикой электродвигателя без регулятора, полученной при натурном эксперименте .

Рис. 5. Сравнение механических характеристик.

Как можно видеть по графику, при векторном управлении механическая характеристика асинхронного двигателя приобретает жёсткость, вследствие чего расширяется перегрузочный диапазон. Значения характеристик в диапазоне от 0 до 153 Н·м расходятся незначительно, погрешность составляет лишь 1,11%, следовательно, полученная математическая модель адекватно отражает работу реального двигателя и её можно использовать для проведения экспериментов в инженерной практике.

Заключение

Применение векторного управления позволяет посредством изменения амплитуды и фазы питающего напряжения напрямую управлять электромагнитным моментом электродвигателя. Для векторного управления асинхронным двигателем следует сначала привести его к упрощенной двухполюсной машине, которая имеет две обмотки на статоре и роторе, в соответствии с этим имеются системы координат, связанные со статором, ротором и полем. Векторное управление подразумевает наличие в звене управления математической модели регулируемого электродвигателя.

Механические характеристики, полученные при работе описанной модели, подтверждают теоретические сведения о векторном управлении. Модель адекватна и может применяться для дальнейших экспериментов.

Рецензенты:

Швецов Владимир Алексеевич, д.т.н., профессор кафедры РЭС КамчатГТУ, г. Петропавловск-Камчатский.

Потапов Вадим Вадимович, д.т.н., профессор филиала ДВФУ, г. Петропавловск-Камчатский.

Библиографическая ссылка

Лиходедов А.Д., Портнягин Н.Н. МОДЕЛИРОВАНИЕ ВЕКТОРНОГО УПРАВЛЕНИЯ АСИНХРОННЫМ ЭЛЕКТРОПРИВОДОМ // Современные проблемы науки и образования. – 2013. – № 1.;
URL: http://science-education.ru/ru/article/view?id=8213 (дата обращения: 18.03.2019). Предлагаем вашему вниманию журналы, издающиеся в издательстве «Академия Естествознания»

Для осуществления возможности регулирования момента и скорости в современных электроприводах используются следующие методы частотного управления, такие как:

  • Векторное;
  • Скалярное.

Наибольшее распространение получили асинхронные электроприводы со скалярным управлением. Его используют в приводах компрессоров, вентиляторов, насосов и прочих механизмов в которых необходимо удерживать на определенном уровне или скорость вращения вала электродвигателя (применяется датчик скорости), либо какого-то технологического параметра (к примеру, давление в трубопроводе, с применением соответствующего датчика).

Принцип действия скалярного управления асинхронным двигателем - амплитуда и частота питающего напряжения изменяются по закону U/f^n = const, где n>=1. То, как будет выглядеть данная зависимость в конкретном случае, зависит от требований предъявляемых нагрузкой электроприводу. Как правило, в качестве независимого воздействия выступает частота, а напряжение при определенной частоте определяется видом механической характеристики, а также значениями критического и пускового моментов. Благодаря скалярному управлению обеспечивается постоянная перегрузочная способность асинхронного двигателя, независящая от частоты напряжения, и все же при довольно низких частотах может произойти значительное снижение момента, развиваемого двигателем. Максимальное значение диапазона скалярного управления, при котором возможно осуществление регулирования значения скорости вращения ротора электродвигателя, без потери момента сопротивления не превышает 1:10.

Скалярное управление асинхронным двигателем довольно просто реализуется, но все же имеются два значительных недостатка. Во-первых, если на валу не установлен датчик скорости, то невозможно осуществлять регулирование значения скорости вращения вала, поскольку она зависит от воздействующей на электропривод нагрузки. Установка датчика скорости с легкостью решает данную проблему, но еще одним значительным недостатком остается – отсутствие возможности регулирования значения момента на валу двигателя. Можно конечно установить датчик момента, но стоимость подобных датчиков, как правило, превышает стоимость самого электропривода. Причем, даже если установить датчик управления моментом, то процесс управления этим самым моментом окажется невероятно инерционным. Еще одно «но» - скалярное управление асинхронным двигателем характеризуется тем, что невозможно осуществление одновременного регулирования скорости и момента, поэтому приходится осуществлять регулирование той величины, которая в данный момент времени наиболее важна в силу условий технологического процесса.

Дабы устранить недостатки, которыми обладает скалярное управление двигателем, еще в 71-м году прошлого века компанией SIEMENS было предложено внедрение метода векторного управления двигателем. В первых электроприводах с векторным управлением использовались двигатели, в которых были встроены датчики потока, что значительно ограничивало область применения подобных приводов.

Система управления современных электроприводов содержит в себе математическую модель двигателя, позволяющую рассчитать скорость вращения и момент вала. Причем в качестве необходимых датчиков устанавливаются только датчики тока фаз статора двигателя. Специально разработанная структура системы управления обеспечивает независимость и практически безынерционность регулирования основных параметров – момент вала и скорость вращения вала.

К сегодняшнему дню сформировались следующие системы векторного управления асинхронным двигателем:

  • Бездатчиковые – на валу двигателя отсутствует датчик скорости,
  • Системы, имеющие обратную связь по скорости.

Применение методов векторного управления зависит от области применения электропривода. Если диапазон измерения значения скорости не превышает 1:100, а требования, предъявляемые к точности, колеблются в пределах ±1,5%, то используется бездатчиковая система управления. Если измерение скорости осуществляется в пределах достигающих значений 1: 10000 и больше, а уровень точности должен быть довольно высоким (±0,2% при частоте вращения ниже 1 Гц), или же необходимо позиционировать вал или осуществлять регулирование момента на валу при низких частотах вращения, то применяется система, имеющая обратную связь по скорости.

Преимущества векторного метода управления асинхронным двигателем:

  • Высокий уровень точности при регулировании скорости вращения вала, несмотря даже на возможное отсутствие датчика скорости,
  • Осуществление вращения двигателя на малых частотах происходит без рывков, плавно,
  • Если установлен датчик скорости, то можно достичь номинального значения момента на валу даже при нулевом значении скорости,
  • Быстрое реагирование на возможное изменение нагрузки – резкие скачки нагрузки практически не отражаются на скорости электропривода,
  • Высокий уровень КПД двигателя, за счет сниженных потерь из-за намагничивания и нагрева.

Несмотря на очевидные преимущества, метод векторного управления имеет и определенные недостатки – большая сложность вычислений, для работы необходимо знание параметров двигателя. Помимо всего прочего колебания значения скорости при постоянной нагрузке значительно больше, нежели при скалярном методе управления. Кстати, существуют такие сферы, где используются электроприводы исключительно со скалярным методом управления. К примеру, групповой электропривод, в котором один преобразователь подпитывает несколько двигателей.

1.5.1 Управление асинхронным электродвигателем в частотном режиме до недавнего времени было большой проблемой, хотя теория частотного регулирования была разработана еще в тридцатых годах. Развитие частотно-регулируемого электропривода сдерживалось высокой стоимостью преобразователей частоты. Появление силовых схем с IGBT-транзисторами, разработка высокопроизводительных микропроцессорных систем управления позволило различным фирмам Европы, США и Японии создать современные преобразователи частоты доступной стоимости. Известно, что регулирование частоты вращения исполнительных механизмов можно осуществлять при помощи различных устройств: механических вариаторов, гидравлических муфт, дополнительно вводимыми в статор или ротор резисторами, электромеханическими преобразователями частоты, статическими преобразователями частоты. Применение первых четырех устройств не обеспечивает высокого качества регулирования скорости, неэкономично, требует больших затрат при монтаже и эксплуатации. Статические преобразователи частоты являются наиболее совершенными устройствами управления асинхронным приводом в настоящее время.

Принцип частотного метода регулирования скорости асинхронного двигателя заключается в том, что, изменяя частоту f1 питающего напряжения, можно в соответствии с выражением

неизменном числе пар полюсов p изменять угловую скорость магнитного поля статора. Этот способ обеспечивает плавное регулирование скорости в широком диапазоне, а механические характеристики обладают высокой жесткостью. Регулирование скорости при этом не сопровождается увеличением скольжения асинхронного двигателя, поэтому потери мощности при регулировании невелики. Для получения высоких энергетических показателей асинхронного двигателя – коэффициентов мощности, полезного действия, перегрузочной способности – необходимо одновременно с частотой изменять и подводимое напряжение.

Закон изменения напряжения зависит от характера момента нагрузки Mс. При постоянном моменте нагрузки Mс=const напряжение на статоре должно регулироваться пропорционально частоте:

.

Для вентиляторного характера момента нагрузки это состояние имеет вид:

При моменте нагрузки, обратно пропорциональном скорости:

Таким образом, для плавного бесступенчатого регулирования частоты вращения вала асинхронного электродвигателя, преобразователь частоты должен обеспечивать одновременное регулирование частоты и напряжения на статоре асинхронного двигателя.

При скалярном управлении по определенному закону изменяют амплитуду и частоту приложенного к двигателю напряжения. Изменение частоты питающего напряжения приводит к отклонению от расчетных значений максимального и пускового моментов двигателя, к.п.д., коэффициента мощности. Поэтому для поддержания требуемых рабочих характеристик двигателя необходимо с изменением частоты одновременно соответственно изменять и амплитуду напряжения.

В существующих преобразователях частоты при скалярном управлении чаще всего поддерживается постоянным отношение максимального момента двигателя М макс к моменту сопротивления на валу М с . То есть при изменении частоты амплитуда напряжения изменяется таким образом, что отношение максимального момента двигателя к текущему моменту нагрузки остается неизменным. Это отношение называется перегрузочная способность двигателя.

При постоянстве перегрузочной способности номинальные коэффициент мощности и к.п.д. двигателя на всем диапазоне регулирования частоты вращения практически не изменяются.

Основная особенность при регулировании АД заключается в том, что необходимо изменять напряжение U на статоре как в функции момента статических M с сопротивлений, так и в соответствии с изменением частоты.

Таким образом, при скалярном методе управления зависимость напряжения питания от частоты определяется характером нагрузки на валу электрического двигателя. При этом для постоянного момента нагрузки всегда поддерживается отношение U /f = cоnst , и, по сути, обеспечивается постоянство максимального момента двигателя. Вместе с тем на малых частотах, начиная с некоторого значения частоты, максимальный момент двигателя начинает падать. Для компенсации этого и для увеличения пускового момента используется повышение уровня на­пряжения питания.

Используя зависимость максимального крутящего момента от напряжения и частоты, можно построить график для U от f для любого типа нагруз­ки.

Важным достоинством скалярного метода является возможность одновременного управления группой электродвигателей.

Скалярное управление достаточно для большинства практических случаев применения частотно - регулируемого электропривода с диапазоном регулирования частоты вращения двигателя до 1:40.

Векторное управление позволяет существенно увеличить диапазон управления, точность регулирования, повысить быстродействие электропривода. Этот метод обеспечивает непосредственное управление вращающим моментом двигателя.

Вращающий момент определяется током статора, который создает возбуждающее магнитное поле. При непосредственном управлении моментом необходимо изменять кроме амплитуды и фазу статорного тока, то есть век­тор тока. Этим и обусловлен термин «векторное управление».

Для управления вектором тока, а, следовательно, положением магнитного потока статора относительно вращающегося ротора требуется знать точное положение ротора в любой момент времени. Задача решается либо с помощью выносного датчика положения ротора, либо определением поло­жения ротора путем вычислений по другим параметрам двигателя. В качест­ве этих параметров используются токи и напряжения статорных обмоток.

Менее дорогим является частотно - регулируемый электропривод с векторным управлением без датчика обратной связи скорости, однако векторное управление при этом требует большого объема и высокой скорости вычислений от преобразователя частоты.

Кроме того, для непосредственного управления моментом при малых, близких к нулевым скоростям вращения работа частотно регулируемого электропривода без обратной связи по скорости невозможна.

Векторное управление с датчиком обратной связи скорости обеспечивает диапазон регулирования до 1:1000 и выше, точность регулирования по скорости – сотые доли процента, точность по моменту – единицы процентов.

В синхронном частотно-регулируемом приводе применяются те же ме­тоды управления, что и в асинхронном.

Управляющая часть ПЧ выполняется на цифровых микропроцессорах и обеспе­чивает управление силовыми электронными ключами, а также решение большого количества вспомогательных задач (контроль, диагностика, защита). При этом на выходе преобразователя частоты формируется трехфазное (или однофазное) переменное напряжение изменяемой частоты и амплитуды ( и вых = vаr , ƒ вых = vаr ).

Механические характеристики асинхронного двигателя при частотном регулировании скорости для различных объектов управления имеют вид представленный на рисунке 1.2.

Итак, при объектах управления с постоянным моментом статической нагрузки M c = Const , напряжение источника питания должно изменяться пропорционально его частоте U / f = const в объектах управления, требующих регулирования скорости при постоянстве мощности P c = Const закон управления, будет: U / f = const , при вентиляторной нагрузке закон управления соответствует U / f 2 = const . По этим соображениям наибольшее распространение метод регулирования получил для механизмов M с = Const , хотя в принципе использование функциональных преобразователей позволяет реализовать любой из этих законов.

До последнего времени системы электроприводов прямоточных волочильных станов строились исключительно на базе двигателей постоянного тока. Причиной этому являлось отсутствие надежных преобразователей частоты. При этом системы тиристорный преобразователь двигатель (ТП-Д) имеют такие недостатки, как:

Ограничение темпа нарастания тока якоря, повышенный момент инерции электропривода, приводящие к снижению быстродействия систем автоматического регулирования;

Высокие массогабаритные показатели;

Трудоемкость в обслуживании.

Перечисленные недостатки обусловлены наличием коллектора и соответственно процессов коммутации и могут быть исключены при построении системы электропривода на основе асинхронного короткозамкнутого двигателя.

В настоящее время имеется достаточный опыт промышленного применения электроприводов по системе ПЧ-АД в диапазоне мощностей 35...100 кВт.

Таким образом, система ПЧ-АД имеющая диапазон регулирования до 1:1000 и выше, точность регулирования по скорости – сотые доли процента и точность по моменту – единицы процентов может обеспечивать необходимую синхронизацию скоростей приводных электродвигателей в прямоточном волочильном стане с целью безобрывного волочения и заданной величиной противонатяжения проволоки.

1.5.2 Насосные станции с частотными электроприводами. В насосной станции №1 в г. Талдыкорган обычный короткозамкнутый асинхронный электродвигатель насоса мощностью 110 кВт/ч включен через преобразователь ПЧТ, разработанный в НИИ ХЭМЗ. Система управления электроприводом построена аналогично ранее описанным, за исключением того, что в качестве преобразователя уровня в системе использован ультразвуковой уровнемер ЭХО3. Применение частотного электропривода в этой установке уменьшает потребление электроэнергии на 60 тыс. кВт - ч в год, Т.о. примерно на 5 %.

В насосных станциях г. Талдыкорган используются также частотные преобразователи типа ПЧР-2 и производства финской фирмы Stromberg, на основе которых созданы и работают свыше 10 систем автоматического регулирования режима работы насосных станций с агрегатами мощностью от 75 до 160 кВт.

Частотные преобразователи фирмы Stromberg - высоконадежные и достаточно компактные средства регулирования насосных агрегатов. Для обеспечения равномерного использования насосных агрегатов предусматривается устройство, с помощью которого они могут поочередно подключаться к одному преобразователю.

1.5.3 Многоскоростные электродвигатели в насосных установках. Циркуляционные насосные станции некоторых талдыкорганских ТЭЦ укомплектованы вертикальными насосными агрегатами с двухскоростными двигателями марки ДВДА215/64-16-20К. Из семи насосов каждой станции два приводятся во вращение этими электродвигателями. Номинальная мощность двигателей 1400 кВт, частота вращения 375 и 300 об/мин. Наличие таких насосных агрегатов позволяет лучше приспосабливать режим работы насосной установки к режиму работы теплосети. Применяются двухскоростные электродвигатели и в водопроводных насосных установках.

Технические различия между векторными и скалярными частотными

преобразователями

Вопрос: На рынке представлены векторные и скалярные частотные преобразователи, причем

векторные ощутимо дороже. Каковы технические различия между ними?

Вопрос не так прост, чтобы ответить на него односложным образом. Сами по себе термины

"векторный" и "скалярный" являются неточными применительно к характеристике

частотных преобразователей. Поскольку речь идет по существу о параметре переменного

тока, то использование термина "скалярный" вообще недопустимо. Из курса элементарной

физики хорошо известно, что скалярная величина - это такая величина, каждое значение которой (в отличие от вектора) может быть выражено одним (действительным) числом,

вследствие чего совокупность значений скаляра можно изобразить на линейной шкале (скале - отсюда название). Длина, площадь, время, температура и т. д. - скалярные величины. Векторными величинами, или векторами, называют величины, имеющие и численное

значение, и направление. В этой связи разделение частотных преобразователей на скалярные

и векторные в принципе некорректно, и отражает стремление менеджеров торговых

компаний обосновать более высокие цены на один из типов преобразователей, якобы имеющий превосходство над другим.

Что касается технической стороны дела, она заключается в следующем.

Основным способом корректировки вращающего момента на валу электродвигателя является

изменение частоты и величины тока обмоток статора, что приводит к изменению силы его

вращающегося магнитного поля. Большинство частотных преобразователей устроены таким

образом, что дают возможность пользователю настроить характеристику выходных

электрических параметров под конкретный вид оборудования. Например, в зависимости от

величины момента инерции приводимого в движение оборудования можно придать

характеристике выходного тока преобразователя линейный, параболический или гиперболический вид.

Так, если необходимо стронуть с места тяжелую массу на приводимом в движение

транспортере, характеристике выходного тока следует придать гиперболический вид. Водяные насосы и вентиляторы желательно приводить в движение по параболической

кривой, что дает экономию электроэнергии. По этому алгоритму работают практически все

частотные преобразователи, называемые неправильным термином "скалярные", более точным названием которых было бы: "частотные преобразователи с предварительной настройкой частоты и величины выходного тока".

Другим эффективным средством повышения момента на валу электродвигателя является

использование 3-й гармоники выходного тока, вектор которой, как и кратных ей более

высоких гармоник, вращается в ту же сторону, что и вектор тока основной гармоники (50

Гц), т.е., имеет прямую последовательность. Другие же вращаются в обратном направлении

и имеют обратную последовательность. Общий ток нейтрали, вычисляемый по формуле:



управления параметрами выходного тока, а именно:

1) Преобразователи с предварительной настройкой параметров выходного тока .

Используются в большинстве общепромышленных приводов как с обратной связью по

контролю технологического параметра так и без нее, включая приводы насосов,

вентиляторов, конвейеров, транспортеров, экструдеров, в том числе одно- и многодвигательные системы.

2) Преобразователи с динамической настройкой параметров выходного тока . Используются в однодвигательных приводах высокоточного технологического

оборудования. Могут быть с обратной связью по контролю положения ротора двигателя и без нее. По точности и глубине регулирования скорости вращения несколько превосходят преобразователи первого типа, но значительно уступают сервоприводам.

Что касается проблемы в целом, следует иметь ввиду, что для решения конкретных задач в области управляемого привода применяются соответствующие электродвигатели со своими

системами управления - шаговые моторы с контроллерами, серводвигатели с контроллерами,

двигатели постоянного тока с контроллерами и, наконец, асинхронные и синхронные

электродвигатели с частотными преобразователями. Попытки создать универсальный привод

заведомо обречены на провал, поскольку конструктивные различия между приводами

слишком велики, а решаемые приводами задачи просто несопоставимы. Невозможно создать из асинхронного двигателя серводвигатель, а из синхронного шаговый, даже если встроить в него полсотни полюсов.

Что же делать? Все гениальное просто - достаточно правильно спроектировать привод с

учетом необходимого момента на валу в самом неблагоприятном диапазоне частот

вращения, а управление технологическим параметром поручить ПИД-регулятору, который имеется в большинстве скалярных преобразователей. автор статьи

большинстве современных т.н. "скалярных" преобразователей.

Всякое изменение или поддержание постоянной скорости электропривода обеспечивает целенаправленное регулирование момента, развиваемого двигателем. Момент формируется в результате взаимодействия потока (потокосцепления), создаваемого одной частью двигателя с током в другой части и определяется векторным произведением этих двух пространственных моментообразующих векторов. Поэтому величину развиваемого двигателем момента определяют модули каждого вектора и пространственный угол между ними.

При построении систем скалярного управления контролировались и регулировались только численные значения (модули) моментообразующих векторов, но не контролировалось их пространственное положение. Принцип векторного управления заключается в том, что система управления контролирует численное значение и положение в пространстве друг относительно друга моментообразующих векторов. Отсюда задача векторного управления состоит в определении и принудительном установлении мгновенных значений токов в обмотках двигателя таким образом, чтобы обобщенные векторы токов и потокосцеплений занимали в пространстве положение, обеспечивающее создание требуемого электромагнитного момента .

Электромагнитный момент, создаваемый двигателем:

где м - конструктивный коэффициент; , 2 - пространственные

векторы токов или потокосцеплений, образующие момент; X - пространственный угол между моментообразующими векторами.

Как следует из (6.53), минимальные значения токов (потокосцеплений), образующих момент, будут для требуемого значения момента, если векторы х и 2 перпендикулярны друг другу, т.е. Х = °.

В системах векторного управления нет необходимости определять абсолютное пространственное положение векторов, и 2 по отношению к осям статора или ротора. Нужно определить положение одного вектора относительно другого. Поэтому один из векторов принимают за базовый, а положение другого контролирует угол X.

Исходя из этого, при построении систем векторного управления целесообразно исходить из математического описания электромагнитных и электромеханических процессов, выраженных в координатах, привязанных к базовому вектору (координаты и- v). Такое математическое описание приведено в § 1.6.

Если принять за базовый вектор и направить ось координат и по этому вектору, то, исходя из (1.46), получим следующую систему уравнений:


В этих уравнениях? v = , так как вектор совпадает с осью координат и.

На рис. 6.31 представлена векторная диаграмма токов и потоко- сцеплений в осях и - v ^ориентацией координаты и по вектору по- токсцепления ротора. Из векторной диаграммы следует, что

Рис. Б.31. Векторная диаграмма потокосцеплений и токов в осях u-v при М

При постоянстве (или медленном изменении) потокосцепления ротора d"V u /dt= в результате чего i и = и Г = yji u +i v = i v

При этом вектор тока ротора Г перпендикулярен потокосцеп- лению ротора. Поскольку поток рассеяния ротора 0 существенно меньше потока в зазоре машины Ч, т то при постоянстве потокосцепления ротора можно считать, что проекция вектора тока статора на ось координат v i v равна |/"| или /

Достоинством принятой системы координат u-v для построения системы векторного регулирования момента и скорости асинхронного двигателя является то, что момент двигателя (6.54) определяется как скалярное произведение двух взаимоперпендикуляр- ных векторов: потокосцепления ротора *Р и активной составляющей тока статора Такое определение момента, характерное, например, для двигателей постоянного тока независимого возбуждения, наиболее удобно для построения системы автоматического регулирования.

Система векторного управления. Структурная схема такого управления строится, исходя из следующих принципов:

  • ? двухканальная система регулирования состоит из канала стабилизации потокосцепления ротора и канала регулирования скорости (момента);
  • ? оба канала должны быть независимы, т.е. изменение регулируемых величин одного канала не должно влиять на другой;
  • ? канал регулирования скорости (момента) управляет составляющей тока статора / v . Алгоритм работы контура регулирования момента как и в системах подчиненного регулирования скорости двигателей постоянного тока (см. § 5.6) - выходной сигнал регулятора скорости является заданием на момент двигателя. Разделив значение этого задания на модуль потокосцепления ротора и получим задание на составляющую тока статора i v (рис. 6.32);
  • ? каждый канал содержит внутренний контур токов / v и i и с регуляторами токов, обеспечивающими необходимое качество регулирования;
  • ? полученные значения токов i v и i и посредством координатных преобразований переводятся в значения i а и / р двухфазной неподвижной системы координат а - (3 и затем в задание реальных токов в обмотках статора в системе трехфазных координат а-Ь-с;
  • ? необходимые для вычислений и формирования обратных связей сигналы скорости, угла поворота ротора, токов в обмотках статора измеряются соответствующими датчиками и затем с помощью обратных координатных преобразований переводятся в значения этих величин, соответствующих координатным осям u-v.

Рис.

Такая система регулирования обеспечивает быстродействующее регулирование момента, а, следовательно, и скорости в максимально широком диапазоне (свыше 10 000:1). При этом мгновенные значения момента асинхронного двигателя могут значительно превосходить паспортное значение критического момента.

Для того, чтобы сделать каналы регулирования независимыми друг от друга нужно ввести на вход каждого канала перекрестные компенсирующие сигналы е К0МПУ и е компм (см. рис. 6.32). Значение этих сигналов найдем из уравнений цепи статора (6.54). Выразив и ЧК 1у через соответствующие токи и индуктивности (1.4) и учитывая, что при ориентации оси и вдоль вектора потокосцепления ротора Ч / |у =0 получим:

Откуда находим


где коэффициент рассеяния.

Подставив (6.55) в (6.54) и учитывая, что в рассматриваемой системе регулирования d x V 2u /dt = 0, получим

или

ные постоянные времени; е и и e v - ЭДС вращения по осям u - v

Для задания независимых величин i и и / v необходимо компенсировать е и и e v введением компенсирующих напряжений:

Для реализации принципов векторного управления необходимо прямое измерение или расчет по математической модели (оценки) модуля и углового положения вектора потокосцепления ротора. Функциональная схема векторного управления асинхронным двигателем с непосредственным измерением потока в воздушном зазоре машины с помощью датчиков Холла представлена на рис. 6.33 .


Рис. Б.ЗЗ. Функциональная схема прямого векторного управления асинхронным двигателем

Схема содержит два канала регулирования: канал регулирования (стабилизации) потокосцепления ротора *Р 2 и канал регулирования скорости. Первый канал содержит внешний контур потокосцепления ротора, содержащий ПИ-регулятор потокосцепления РП и обратную связь по потокосцеплению, сигнал которой формируется с помощью датчиков Холла, измеряющих поток в зазоре машины х? т по осям аи(3. Реальные значения потока затем пересчитываются в блоке ПП в значения потокосцепления ротора по осям а и р и с помощью вектор-фильтра ВФ находят модуль вектора потокосцепления ротора, который подается как сигнал отрицательной обратной связи на регулятор потокосцепления РП и используется в качестве делителя в канале регулирования скорости.

В первом канале контуру потокосцепления подчинен внутренний контур тока i и, содержащий ПИ-регулятор тока РТ1 и обратную связь по действительному значению тока / 1и, вычисляемому по реальным значениям токов фаз статора с помощью преобразователя фаз ПФ2 и координатного преобразователя КП1. Выходом регулятора тока РТ1 является задание напряжения U lu , к которому прибавляется сигнал компенсации второго канала е кшпи (6.57). Полученный сигнал задания напряжения преобразуют посредством координатного КП2 и фазного ПФ2 преобразователей в заданные значения и фазы напряжений на выходе преобразователя частоты.

Канал регулирования потокосцепления ротора обеспечивает поддержание постоянства потокосцепления Ч* 2 во всех режимах работы привода на уровне заданного значения х Р 2зад. При необходимости ослабления поля Ч*^ может изменяться в некоторых пределах с небольшим темпом изменения.

Второй канал предназначен для регулирования скорости (момента) двигателя. Он содержит внешний контур скорости и подчиненный ему внутренний контур тока / 1у. Задание на скорость поступает от задатчика интенсивности ЗИ, определяющего ускорение и требуемое значение скорости. Обратная связь по скорости реализуется посредством датчика скорости ДС или датчика углового положения ротора.

Регулятор скорости PC принимается пропорциональным или пропорционально-интегральным в зависимости от требований к электроприводу. Выходом регулятора скорости является задание на момент, развиваемый двигателем Л/ зад. Поскольку момент равен произведению тока, на потокосцепление ротора Ч / 2 , то, разделив в блоке деления БД значение задания момента М зад на Ч / 2 , получим значение задания тока, которая подается на вход регулятора тока РТ2. Дальнейшая обработка сигналов аналогична первому каналу. В результате получаем задание на напряжение питания двигателя по фазам, определяющее значение и пространственное положение в каждый момент времени обобщенного вектора напряжения статора!? Отметим, что сигналы, относящиеся к переменным в координатах - , являются сигналами постоянного тока, а сигналы, отражающие токи и напряжения в координатах аир, являются сигналами переменного тока, определяющими не только модуль, но частоту и фазу соответствующего напряжения и тока.

Рассмотренная система векторного управления реализуется в настоящее время в цифровом виде на базе микропроцессоров. Разработаны и широко используются различные структурные схемы векторного управления, отличные в деталях от рассматриваемой. Так, в настоящее время действительные значения потокосцеплений не измеряют датчиками магнитного потока, а рассчитывают по математической модели двигателя, исходя из замеренных фазных токов и напряжений.

В целом векторное управление можно оценить как наиболее эффективный способ управления двигателями переменного тока, обеспечивающий высокую точность и быстродействие управления.