Домой / Музыка / LCD-мониторы

LCD-мониторы

Жидкокристаллические телевизоры на рынке появились довольно давно и все уже успели к ним привыкнуть. Однако с каждым годом появляются все новые и новые модели, отличающиеся внешним видом, диагональю экрана, интерфейсом и не только. Кроме того, существуют и такие модели жидкокристаллических дисплеев, которые отличаются особой скоростью обновления, видами светодиодов и подсветки. Однако, обо всем по очереди. Для начала предлагаю разобраться с тем, что же это такое – ЖК мониторы.


Наверное, многие из вас слышали такое понятия, как LCD панели. LCD это аббревиатура, которая расшифровывается, как: Liquid Crystal Display. В переводе на русский это означает жидкокристаллический дисплей, а значит, LCD и ЖК панели это одно и то же.

Технология отображения картинки основывается на использовании кристаллов в жидком виде и их удивительных свойств. Подобные панели обладают огромным количеством положительных качеств, благодаря использованию данной технологии. Поэтому давайте разберемся, как это работает.

Как устроен LCD монитор

Кристаллы, которые используются для создания данных мониторов, называются цианофенилами. Когда они находятся в жидком состоянии, у них появляются уникальные оптические и другие свойства, в том числе умение правильно располагаться в пространстве.

Состоит такой экран из пары прозрачных отполированных пластин, на которые наносятся прозрачные электроды. Между этими двумя пластинами и располагаются цианофенилы в определенном порядке. Через электроды на пластинах подается напряжение, которое поступает к участкам матрицы экрана. Также возле пластин имеются два расположенные параллельно друг другу фильтра.

Получающейся матрицей можно управлять, заставляя кристаллы пропускать луч света или не пропускать. Для того чтоб получались разные цвета, перед кристаллами устанавливают фильтры трех базовых цветов: зеленого, синего и красного. Свет от кристалла проходит через один из этих фильтров и образуется соответствующий цвет пикселя. Определенная комбинация цветов, позволяет создавать другие оттенки, которые будут соответствовать движущейся картинке.

Виды матриц

В ЖК мониторах может использоваться несколько видов матриц, которые отличаются друг от друга своей технологией.

TN+ film . Это одна из самых простых стандартных технологий, которая отличается своей популярностью и небольшой стоимостью. Такой тип модуля обладает низким потреблением электроэнергии и сравнительно небольшой частотой обновления. Особенно часто можно встретить подобный модуль в старых моделях панелей. «+film» в названии значит, что использовался еще один слоя пленки, который должен сделать угол обзора больше. Однако, так как сегодня ее применяют везде, название матрицы может быть сокращено до TN.

Подобный ЖК монитор имеет большое количество недостатков. Во-первых, у них плохая цветопередача из-за использования для каждого цветового канала только 6 бит. Большинство оттенков при этом получается при смешивании основных цветов. Во-вторых, контрастность ЖК мониторов и угол обзора также оставляет желать лучшего. А если у вас перестанут работать какие-то сабпиксели или пиксели, то скорей всего они будут постоянно светиться, что мало кого порадует.

IPS . Такие матрицы отличаются от других видов тем, что имеют наилучшую передачу оттенков и большой угол обзора. Контрастность в таких матрицах также не самая лучшая, а частота обновления меньше, чем даже у TN матрицы. Это значит, что при быстром движении за картинкой может появляться заметный шлейф, что будет мешать смотреть телевизор. Однако если на такой матрице сгорит пиксель, он не будет светиться, а, наоборот, останется черным навсегда.

На основе данной технологии существуют и другие типы матрицы, которые также нередко используются в мониторах, дисплеях, экранах телевизоров и т.д.

  • S-IPS. Такой модуль появился в 1998 году и отличался только меньшей частотой обновления отклика.
  • AS-IPS. Следующий тип матрицы, в котором кроме скорости обновления улучшили еще и контрастность.
  • A-TW-IPS. Это, по сути, та же S-IPS матрица, к которой был добавлен цветовой фильтр под названием «Настоящий белый». Чаще всего такой модуль использовали в мониторах, предназначенных для издательств или фотолабораторий, так как он делал белый цвет более реалистичным и увеличивал спектр его оттенков. Минус такой матрицы заключался в том, что черный цвет обладал при этом фиолетовым оттенком.
  • H-IPS. Появился этот модуль в 2006 году и отличался однородностью экрана и улучшенным контрастом. У него нет такой неприятной засветки черного цвета, правда и угол обзора стал меньше.
  • E-IPS. Появился в 2009 году. Такая технология помогла улучшить угол обзора, яркость и контрастность ЖК мониторов. Кроме того, было уменьшено время обновления экрана до 5 миллисекунд и уменьшено количество потребляемой энергии.
  • P-IPS. Данный тип модуля появился относительно недавно, в 2010 году. Это наиболее усовершенствованная матрица. Она обладает 1024 градациями для каждого сабпикселя, благодаря чему появляется 30-битный цвет, чего не могла достичь ни одна другая матрица.

VA . Это самый первый вид матриц для ЖК дисплеев, который представляет собой компромиссное решение между предыдущими двумя видами модулей. Такие матрицы лучше всего передают контрастность изображения и его цвета, но при определенном угле обзора могут пропадать некоторые детали и изменяться цветовой баланс белого.

У такого модуля также существует несколько производных версий, отличающихся друг от друга по своим характеристикам.

  • MVA – одна из первых и наиболее популярных матриц.
  • PVA – данный модуль был выпущен компанией Samsung и отличается улучшенной контрастностью видео.
  • S- PVA – также была изготовлена компанией Samsung для жидкокристаллических панелей.
  • S-MVA
  • P-MVA, A-MVA – производства AU Optronics. Все дальнейшие матрицы отличаются только компаниями-производителями. Все улучшение основываются только на уменьшении скорости отклика, которая достигается благодаря подачи более высокого напряжения в самом начале изменения положения сабпикселей и использовании полноценной 8-битной системы, которая кодирует цвет на каждом канале.

Также имеется и еще несколько видов ЖК матриц, которые также используются в некоторых моделях панелей.

  • IPS Pro – их используют в телевизорах компании Panasonik.
  • AFFS – матрицы от компании Samsung. Используются только в некоторых специализированных устройствах.
  • ASV - матрицы от корпорации Sharp для жидкокристаллических телевизоров.

Виды подсветки

Жидкокристаллические дисплеи различаются также видами подсветки.

  • Плазменные или газоразрядные лампы. Изначально все LSD мониторы обладали подсветкой из одной или нескольких ламп. В основном такие лампы обладали холодным катодом и имели название CCFL. Позднее начали использовать лампы EEFL. Источником света в таких лампах является плазма, которая появляется в результате электрического разряда проходящего через газ. При этом не нужно путать ЖК ТВ с плазменными, в которых каждый из пикселей является самостоятельным источником света.
  • Светодиодная подсветка или LED. Такие ТВ появились относительно недавно. Такие дисплеи обладают одним или несколькими светодиодами. Однако стоит заметить, что это только тип подсветки, а не сам дисплей, которые состоит из этих миниатюрных диодов.

Быстрота отклика и необходимое значение для просмотра видео в формате 3D

Быстрота отклика – это то, сколько кадров в секунду может показывать телевизор. Этот параметр влияет на качество изображения и его плавность. Для того чтоб было достигнуто данное качество, частота обновления должна составлять 120 Гц. Для того чтоб достичь такой частоты, в телевизорах используют видеокарту. Кроме того, такая частота смены кадров не создает мерцания экрана, что в сою очередь лучше влияет на глаза.

Для просмотра фильмов в 3D формате такой частоты обновления будет вполне достаточно. При этом во многих ТВ устанавливают подсветку, которая обладает частотой обновления 480 Гц. Достигается она при помощи использования специальных TFT транзисторов.

Другие характеристики ЖК телевизоров

Яркость, глубина черного и контрастность Яркость у таких ТВ находится на довольно высоком уровне, но контрастность оставляет желать лучшего. Это связано с тем, что при эффекте поляризации глубина черного цвета будет такой, насколько это позволит лампа подсветки. Из-за недостаточного уровня глубины черного цвета и контрастности, темные оттенки могут сливаться в один цвет.
Диагональ экрана На сегодняшний день можно с легкостью найти ЖК панели как с большой диагональю, которые можно использовать в качестве домашнего кинотеатра, так и модели с довольно маленькой диагональю.
Угол обзора Современные модели ТВ обладают довольно хорошим углом обзора, который может достигать 180 градусов. Но старые модели имеют недостаточный угол, из-за чего при взгляде на экран с определенного ракурса он может выглядеть довольно темным или цвета будут искажены.
Цветопередача Цветопередача у таких дисплеев не всегда довольно хорошего качества. Это опять-таки касается в основном старых моделей экранов. Но и современные модели нередко уступают другим видам ТВ.
Энергоэффективность Жидкокристаллические дисплеи потребляют на 40% меньше электроэнергии, чем другие виды.
Габариты и вес Такие ТВ имеют довольно небольшой вес и толщину, однако на сегодняшний день существуют панели и с меньшей толщиной и весом.

Жидкие кристаллы были открыты еще в 1888 году. Но практическое применение они нашли только тридцать лет назад. «Жидкокристаллическим» называют переходное состояние вещества, при котором оно приобретает текучесть, но при этом не теряет свою кристаллическую структуру. Наибольший практический интерес, как оказалось, представляют оптические свойства жидких кристаллов. Благодаря сочетанию полужидкого состояния и кристаллической структуры можно легко менять способность пропускать свет.

Типы ЖК-матриц

Первым массовым продуктом с использованием жидких кристаллов стали электронные часы. Монохромный дисплей состоял, как известно, из отдельных полей, заполненных жидкими кристаллами. При подаче напряжения, с помощью которого кристаллы упорядочиваются, нужные поля препятствуют прохождению света и выглядят черными на светлом фоне. Цветные дисплеи появились, когда размеры ячейки удалось значительно уменьшить и снабдить каждую цветным фильтром. Кроме того, в современных ЖК мониторах используется задняя подсветка.

Для подсветки используется обычно 4 или 6 ламп и зеркала для более обеспечения равномерности. В основе работы ЖК-панели - поляризация света. На пути светового потока две поляризационные пленки с перпендикулярными направлениями поляризации. То есть в сумме эти две пленки задерживают весь свет. Расположенные между пленками жидкие кристаллы разворачивают часть потока, поляризованного первой пленкой, и таким образом регулируют свечение экрана.

Схема субпикселя ЖК-матрицы.
Каждый пиксель составляют синий, красный и зеленый субпиксели

Слой жидкокристаллического вещества «зажат» между двумя направляющими пленками с мельчайшими засечками, по направлению которых и выстраиваются кристаллы. Изменить направление ориентации кристаллов можно, например, с помощью электрического импульса, как это и делается в матрицах ЖК-мониторов. В современных матрицах каждая ячейка имеет собственный транзистор, резистор и конденсатор. Собственно в цветных матрицах каждый пиксель представляет собой три ячейки: красную, зеленую и синюю.

Матрица TN. Самая старая и самая распространенная

Самый старый тип матриц, из тех, которые сейчас применяются - TN. Название технологии расшифровывается как Twisted Nematic. Нематические жидкокристаллические субстанции состоят из продолговатых кристаллов с пространственной ориентацией, но без жесткой структуры. Такое вещество легко поддается внешним воздействиям.

В матрицах TN кристаллы выстроены параллельно плоскости экрана, а верхний и нижний слой кристаллов повернуты перпендикулярно относительно друг друга. Все остальные «скручены» по спирали. Таким образом, весь пропущенный свет так же скручивается и беспрепятственно проходит через внешнюю поляризующую пленку. Так что в выключенном состоянии ячейка TN матрицы светится, а при подаче напряжения кристаллы постепенно проворачиваются. Чем выше напряжение, тем больше кристаллов разворачивается, и тем меньше проходит света. Как только все кристаллы развернутся параллельно световому потоку, ячейка «закрывается». Но для TN матриц добиться идеально черного цвета очень трудно.

Кристаллы в матрице TN "скручены" по спирали (1).
При подаче напряжения они начинают поворачиваться (2).
Когда все кристаллы перпендикулярны поверхности (3), свет не проходит.

Главная проблема TN матриц в несогласованности поворота кристаллов: одни уже развернуты полностью, другие только начали поворачиваться. Из-за этого происходит рассеивание светового потока и, в конечном счете, картинка под разными углами выглядит не одинаково. Горизонтальные углы обзора современных матриц можно считать приемлемыми, но при повороте по вертикали даже в небольших пределах, искажения существенные. Цветопередача матриц TN далека от идеальной - они в принципе не могут выводить полную палитру цветов, компенсирую недостаток оттенков с помощью хитрых алгоритмов. Такие алгоритмы с частотой не заметной глазу воспроизводят в ячейке попеременно оттенки, ближайшие к тому, который воспроизвести не удается. Зато технология TN обеспечивает максимальную скорость срабатывания ячейки, минимальное энергопотребление и максимально дешева. Эти два обстоятельства и делают самую старую технологию самой популярной и самой распространенной.

IPS. Идеально для фото и графики. Но дорого

Второй по времени разработки стала технология IPS (In Plane Switch). Такие матрицы производят заводы Hitachi, LG.Philips. NEC производит матрицы сделанные по сходной технологии, но с собственной аббревиатурой SFT (Super Fine TFT).

Как следует из названия технологии, все кристаллы расположены постоянно параллельно плоскости панели и поворачиваются одновременно. Для этого пришлось расположить на нижней стороне каждой ячейки по два электрода. В выключенном состоянии ячейка черная, так что если она «умерла», на экране будет черная точка. А не постоянно светящаяся, как у TN.


В матрице IPS кристаллы всегда параллельны поверхности экрана

IPS технология обеспечивает наилучшую цветопередачу и максимальные углы обзора. Из существенных недостатков - болшее, чем у TN , время отклика, более заметная межпиксельная сетка и высокая цена. Улучшенные матрицы получили название S -IPS и SA -SFT (соответственно у LG .Philips и NEC ). Они обеспечивают уже приемлемое время отклика на уровне 25 мс, а новейшие и того меньше - 16 мс. Благодаря хорошей цветопередаче и углам обзора IPS матрицы стали стандартом для графических профессиональных мониторов.

MVA/PVA. Разумный компромисс?

Как компромисс между TN и IPS можно рассматривать разработанную Fujitsu технологию VA (Vertical Alignment). В матрицах VA кристаллы в выключенном состоянии расположены перпендикулярно плоскости экрана. Соответственно черный цвет обеспечивается максимально чистый и глубокий. Но при повороте матрицы относительно направления взгляда, кристаллы будут видны не одинаково. Для решения проблемы применяется мультидоменная структура. Разработанная Fujitsu технология Multi-Domain Vertical Alignment (MVA) предусматривает выступы на обкладках, которые определяют направление поворота кристаллов. Если два поддомена поворачивается в противоположных направлениях, то при взгляде сбоку один из них будет темнее, а другой светлее, таким образом для человеческого глаза отклонения взаимно компенсируются. В матрицах PVA , разработанных Samsung нет выступов, и в выключенном состоянии кристаллы строго вертикальны. Для того, чтобы кристаллы соседних субдоменов поворачивались в противоположных направлениях, нижние электроды сдвинуты относительно верхних.


В матрицах VA типа в выключенном состоянии кристаллы перпендикулярны поверхности экрана

Для уменьшения времени отклика в матрицах Premium MVA и S -PVA применяется система динамического повышения напряжения для отдельных участков матрицы, которую обычно называют Overdrive . Цветопередача матриц PMVA и SPVA почти так же хороша как и у IPS , время отклика немного уступает TN , углы обзора максимально широкие, черный цвет наилучший, яркость и контраст максимально возможные среди всех существующих технологий. Однако даже при небольшом отклонении направления взгляда от перпендикуляра, даже на 5–10 градусов можно заметить искажения в полутонах. Для большинства это останется незамеченным, но профессиональные фотографы продолжают за это недолюбливать технологии VA .

Что выбрать?

Для домашнего использования и для работы в офисе часто цена является решающим аргументом, и из-за этого мониторы с матрицей TN пользуются максимальной популярностью. Они обеспечивают приемлемое качество изображения при минимальном времени отклика, что является критически важным параметром для любителей динамичных игр. PVA и MVA матрицы не столь широко распространены из-за более высокой цены. Они обеспечивают очень высокий контраст (особенно PVA ), большой запас по яркости и хорошую цветопередачу. В качестве основы для домашнего мультимедийного центра (замена телевизора), это лучший выбор. Матрицы IPS все реже устанавливаются в мониторы с диагональю до 20 дюймов. По качеству лучшие модели S -IPS и SA -SFT не уступают CRT мониторам и все чаще применяются профессионалами в области фото, полиграфии и дизайна. Практические рекомендации по выбору монитора можно прочитать в статье «Выбираем ЖК-монитор. Что предпочесть фотографу, геймеру и домохозяйке?»

Немного помечтаем

Совсем недавно, т.е. лет 15 назад, вряд ли многие предполагали, что ЖК-мониторы смогут вытеснить кинескопные. Качество LCD было низким, а цена крайне высокой. Но и сейчас нельзя назвать технологию производства панелей на жидких кристаллах идеальной. Для улучшения цветопередачи, увеличения контрастности и обеспечения равномерности подсветки в профессиональном NEC Reference 21 применена диодная подсветка. Стоит этот монитор около $6000 и пока его можно считать скорее полиграфическим оборудованием, чем компьютерной перефирией. Но мы знаем множество примеров, когда профессиональные технологии "спускаются" к любителям.

Многие крупные компании (Sanyo, Samsung, Epson) разрабатывают экраны на основе OLED - органических кристаллов. Сами кристаллы испускают свет при подаче напряжения, эти экраны чрезвычайно экономичные, яркие и контрастные. Но пока применяются только в мелкой портативной технике из-за дороговизны и технических проблем, связанных с долговечностью, воспроизведением некоторых цветов. В совсем отдаленной перспективе могут появиться и абсолютно новые технологии, о которых сейчас слышали только специалисты, а экран можно будет свернуть в трубочку или наклеить на стену. А может быть и не будет мониторов в нашем привычном понимании? А может быть, все перейдут на проекторы? И в качестве экрана можно будет использовать практически любую поверхность. Заманчивая перспектива.

Ещё несколько лет назад выбор монитора для персонального компьютера осуществлялся по ценовой категории, где было ясно, что более дорогое устройство имеет качественную матрицу, а дешёвый монитор характеристиками не блещет. На данный момент на рынке мониторов разделение происходит по размерам экрана, каждый производитель выпускает устройства с разными технологиями матрицы. Из-за этого выбор при покупке усложнился. Данная статья поможет пользователям правильно выбрать тип матрицы монитора. Какой лучше экран приобретать на рынке, для каких целей и чем он отличается от конкурентов, будет изложено в доступном виде.

Чтобы было понятнее

Перед тем как выбрать тип матрицы монитора, нужно понять принцип её действия, а также выявить все достоинства и недостатки. Составив список потребностей (в каких целях приобретается данное устройство), будет очень легко сопоставить действительное с желаемым. Если не затрагивать размер экрана, использование монитора распределяется по потребностям на несколько групп:

  1. Офисный монитор. Высокий уровень контрастности - единственное требование.
  2. Компьютер дизайнера (фото, предпечатная подготовка). Важна точная цветопередача.
  3. Мультимедиа. Просмотр фильмов требует широких углов обзора и реального чёрного цвета на экране.
  4. Игровой компьютер. Важный показатель - время отклика матрицы.

Технология производства и движение электронов между матрицами вряд ли кому-то интересны, поэтому в данной статье будут рассмотрены достоинства и недостатки, а также использованы данные из средств массовой информации - отзывы владельцев и рекомендации продавцов. Выяснив, какие существуют технологии, останется лишь их совместить с заявленными требованиями и финансами, выделенными на покупку монитора.

Бюджетник не сдаёт позиций

Тип матрицы монитора TN (Twisted Nematic) считается на рынке долгожителем среди конкурентов. Благодаря низкой цене и доступности мониторы с этой матрицей установлены во всех государственных и учебных заведениях, офисах многих компаний мира и на больших предприятиях. По статистике, 90% всех мониторов в мире имеют TN-матрицу. Наряду с ценой ещё одним достоинством такого монитора является малое время отклика матрицы. Данный параметр очень важен в динамических играх, где скорость прорисовки играет первостепенную роль.

А вот с цветопередачей и углом обзора у таких мониторов не сложилось. Даже модернизация TN-матрицы путём добавления дополнительного слоя для увеличения углов обзора не дала нужных результатов, лишь добавила к названию типа экрана «+film». Нельзя забывать и про энергопотребление, которое значительно превышает в режиме работы всех конкурентов.

И всё же

Помимо офисного применения, TN+film - это лучший тип матрицы монитора для игр. Ведь большинство геймеров предпочитают переплатить за производительные комплектующие, такие как процессор или видеокарта, а на экране можно и сэкономить. Однако не стоит забывать про цветопередачу, в современных играх разработчики стараются сделать сюжет максимально реалистичным, а без реальной передачи всех цветов и оттенков добиться этого будет очень трудно.

В результате, кроме низкой цены и малого времени отклика, TN-матрица ничем не сможет удивить потенциального покупателя. Ведь на недостатки очень тяжело не обращать внимания:

  1. Низкая цветопередача с невозможностью отображения идеального чёрного цвета. Дефект виден во время просмотра динамических фильмов, где все действия происходят в темноте - «Ван Хельсинг», «Гарри Поттер и дары смерти», «Дракула» и тому подобные.
  2. Дешевизна производства приводит к высокой вероятности приобретения дефектной матрицы, битый пиксель которой сразу виден, ведь он окрашивается в белый цвет.
  3. Очень низкие углы обзора не позволяют созерцать картинку на экране в кругу большой семьи.

Шаг в правильном направлении

Тип матрицы монитора VA (Vertical Alignment) использует технологию с вертикальным упорядочиванием молекул, и на постсоветском пространстве больше известен под маркировками MVA или PVA. А совсем недавно к существующим модификациям добавился суффикс «S», имеющий расшифровку «Super», однако особых характеристик по сравнению с конкурентами мониторы не приобрели, разве что немного подорожали в цене.

Технология VA предназначалась для устранения дефектов в матрицах TN+film, и производителям удалось добиться определённых результатов, однако при сравнении этих двух экранов пользователь обнаружит, что они обладают противоположными характеристиками. То есть недостатки VA матриц - это достоинства TN, а достоинства VA - недостатки дешёвых матриц. О чём думали производители, неизвестно, но ситуация на рынке до сих пор для этих матриц не изменилась, даже с введением маркировки «Super».

Достоинства и недостатки технологии VA

Если VA-технологию сравнивать с самой дешёвой матрицей на рынке TN+film, то достоинства налицо: великолепные углы обзора, очень качественная передача оттенков с глубоким чёрным цветом. По сути, этот тип матрицы монитора для фото является лучшим в своей ценовой категории. Единственное, что смущает, - время отклика. По сравнению с дешёвым экраном TN оно в несколько раз выше. Естественно, любителям игр устройство с такой матрицей не подойдёт, так как динамическая картинка будет постоянно размыта.

А вот дизайнерам, верстальщикам, фотолюбителям и всем профессионалам, которым необходимо работать с реальным цветом и его оттенками, мониторы с VA-технологией придутся по душе. Кроме этого, широкий угол обзора даже с сильным наклоном не искажает изображение на экране. Такие мониторы подойдут для мультимедиа - просмотр любых фильмов в кругу семьи будет интересен, ведь экран предоставляет возможность увидеть настоящий чёрный цвет, а не его подобие в виде пятидесяти оттенков серого.

Без недостатков?

Матрицы IPS и их всевозможные модификации существуют на рынке довольно давно. Однако их стоимость не настолько привлекательна для покупателей, как безукоризненные характеристики экранов, в которых используется дорогой тип матрицы монитора. Какой лучше экран для бизнесмена и дизайнера, президента компании или путешественника, знает только компания Apple, ведь все её устройства без исключения имеют технологию матрицы IPS (In-Plane Switching).

Из года в год появляются всевозможные технологии, специалисты стараются улучшить качество и без того дорогой и качественной матрицы, в результате чего на рынке существует целый ряд модификаций: AH-IPS, P-IPS, H-IPS, S-IPS, e-IPS. Отличие между ними незначительное, но есть. Например, e-IPS (Enhanced) имеет технологию увеличения контрастности и яркости экрана, а также уменьшено время отклика. Профессиональная серия P-IPS умеет отображать 30-битный цвет, жаль только, пользователь этого наглядно не заметит.

Дотянуться до мечты

Не вдаваясь в расшифровку модификаций IPS-матрицы, можно заметить, что данная технология представляет собой некий симбиоз VA- и TN+film-производств. Естественно, были отобраны лишь достоинства, которые воплотились в одном устройстве. Например, тип матрицы монитора AH-IPS (Advanced High performance) является прямым конкурентом плазменных панелей, которые по качеству воспроизведения картинки высокой чёткости не имеют аналогов в мире. Такое серьёзное заявление сделано в далёком 2011 году, однако кроме завышенной цены на устройство с матрицей AH-IPS доказать превосходство пока не удалось.

И всё же, если у любителя игр стоит вопрос о том, какой выбрать тип матрицы монитора - IPS или TN, то правильным будет решение приобрести более дорогой и качественный экран. Пусть цена на устройство и превосходит дешёвого конкурента в несколько раз, зато времяпрепровождение за любимой игрушкой будет более интересным. Ведь реалистичное качество картинки всегда будет оставаться на первом месте.

Забавные игры производителей

Речь пойдёт в первую очередь о корейском гиганте Samsung, который постоянно стремится выдумать новую технологию, но не всегда это у него получается, ведь наряду с качеством покупателю интересна и стоимость устройства, которая почему-то стремится непропорционально увеличиться.

Введением технологии разделения одного пикселя компании Samsung удалось добиться лучшей чёткости изображения. В первую очередь это заметно на экране при наборе мелким шрифтом разноцветного текста. Технология была одобрена многими верстальщиками, и мониторы с PVA-маркировкой быстро нашли поклонников.

Тип матрицы монитора WVA был улучшенным вариантом технологии от Samsung, и, судя по низкой стоимости устройств, свободно конкурировал на рынке. Недостаток со скоростью отклика матрицы во всех устройствах, созданных по технологии VA, так и не был устранён.

Радикальное решение

Тип матрицы монитора AH-IPS заинтересовал только покупателей в развитых странах мира. Ведь за лучшее качество приходится платить очень большую сумму, которая не по карману жителям постсоветского пространства. Да и смысла нет приобретать монитор, который немного дороже современного персонального компьютера в сборе. Поэтому заводам-изготовителям дорогого устройства пришлось удешевить технологии за счёт снижения качества в производстве комплектующих. Так на рынке появился новый тип матрицы монитора PLS (plane-to-line switching).

Проведя анализ характеристик и изучив принцип работы новой матрицы, можно подумать, что это всего лишь усовершенствованная модификация PVA-матрицы от Samsung. Это так. Как оказалось, данную технологию производитель разработал давно, но внедрение произошло совсем недавно, когда между устройствами среднего класса и дорогого оказалась огромная разница в цене, и срочно требовалось занять пустующую ценовую нишу.

А кто выиграл?

Видимо, это единственный случай, когда в войне между производителями за рынок сбыта выигрывает покупатель, который получает достойное устройство по своим характеристикам за вполне приемлемую для него цену. К недостатку можно отнести небольшой выбор производителей, ведь Samsung не выпустил технологию за пределы своих концернов, поэтому у корейского бренда конкурентов немного - Philips и AOC.

Зато, находясь перед выбором, какой лучше тип матрицы монитора - IPS или PLS, потенциальный покупатель, решивший сэкономить денежные средства, однозначно отдаст предпочтение последнему. Ведь, по сути, особой разницы между устройствами нет. А если обратить внимание на то, что большинство мобильных устройств, включая планшеты, имеют матрицу PLS, которая очень часто продавцом презентуется как более дорогая IPS, то вывод напрашивается всего один.

В погоне за безукоризненностью

Не так давно компания Sharp представила тип матрицы монитора, изготовленный по технологии IGZO (оксиды индия, галлия и цинка). По заявлениям производителя, материал имеет очень высокую проводимость и меньшее электропотребление, благодаря чему удалось добиться более высокой плотности пикселей на одном квадратном дюйме. По сути, технология IGZO подходит для производства мониторов с разрешением 4К и всех мобильных устройств, производимых в формате Ultra HD.

Технология далеко не дешёвая, и цены на мониторы и телевизоры с матрицей IGZO бьют мировые рекорды. Однако известная компания Apple сориентировалась очень быстро, заключив контракты с производителем матриц. Значит, за данной технологией будущее, осталось только дождаться снижения цены на мировом рынке.

Лучший выбор для геймера

Изучив существующие технологии производства, можно без раздумий определить, какой тип матрицы монитора лучше. Для игр в приоритете время отклика и цветопередача, поэтому выбор тут невелик. Желающим сэкономить вполне подойдёт устройство с PLS-матрицей. Хоть выбор среди производителей и небольшой, зато есть возможность определиться среди модификаций. Помимо стандартного типа матрицы завод-изготовитель предлагает улучшенную модель Super-PLS, в которой выше яркость, контрастность, а также экран позволяет отображать разрешение, превышающее FullHD.

Но если цена вопроса не критична для покупателя, то экран с IPS позволит насладиться максимально реалистичной картинкой. Запутаться в маркировках не удастся, ведь все они сводятся к улучшению угла обзора и динамической контрастности. Отличие лишь в цене - чем лучше, тем дороже. Отдав предпочтение устройству, имеющему тип матрицы монитора IPS, геймер не прогадает.

Обработка фото и графика в приоритете

Понятно, что IPS-устройство подойдёт дизайнерам и верстальщикам. Но есть ли смысл переплачивать? Ведь обработка фотографий и вёрстка предполагают работу с цветами и их оттенками. Время отклика матрицы вообще не рассматривается. Профессионалы рекомендуют не тратить деньги понапрасну и выбрать VA-тип матрицы монитора. Да, это старая технология, да, это прошлый век, но по критерию "цена-качество" у матриц данного типа нет конкурентов. И если есть желание приобрести что-то из новинок, то выбор можно остановить на PLS-матрице.

Если есть необходимость работать за монитором с высоким разрешением, например 4K, то предпочтение профессионалы рекомендуют отдать IGZO-устройствам. Их цена не так далеко ушла от популярных экранов IPS, но по качеству они, бесспорно, лучше.

Любителям мультимедиа можно и сэкономить

Как ни странно, но любителям просматривать фильмы на экране монитора и заниматься сёрфингом в сети Интернет вполне достаточно приобретения устройства с TN+film-матрицей. Недорогой гаджет с улучшенным экраном без проблем заменит небольшой телевизор. Проблема может появиться лишь в тёмных динамических сценах, где вместо чёрного фона зрителю придётся наблюдать серое облако. Если это критично, необходимо посмотреть в сторону VA-матриц. Да, цена выше, но проблема с цветопередачей будет решена. В придачу покупатель получит очень высокую контрастность и большие углы обзора. Не стоит забывать про физическое разрешение матрицы - чем оно выше, тем качественнее картинка.

Офисный вариант

Казалось бы, что универсальный тип матрицы монитора TN+film как нельзя кстати подойдёт для работы с текстом. Но, как показывает практика, работа с мелким шрифтом за таким экраном крайне неудобна. И если монитор приобретается непосредственно для работы с большими объёмами текста, то стоит побеспокоиться о своём зрении. Близлежащая технология к TN по доступной цене - это VA. Вне зависимости от производителя и размера экрана, такое устройство позволит без проблем усидеть за компьютером не один час.

Выбирая монитор для офисной работы, внимание нужно уделить и размеру, и физическому разрешению матрицы. Диагональ экрана для работы с текстом не должна превышать расстояния от глаз пользователя до матрицы. Также офисные мониторы рекомендуется подбирать с соотношением сторон 4:3, ведь в таком соотношении больше удобочитаемой информации размещается на экране.

Новый тренд: для себя любимого

Изучив все существующие технологии жидкокристаллических экранов, перед тем как выбрать тип матрицы монитора, потенциальному покупателю стоит познакомиться с информацией, которая получена путём опросов пользователей в СМИ.

  1. Монитор - покупка долговечная. То есть следующее приобретение, с высокой вероятностью, будет не раньше, чем через 10 лет.
  2. В 99% случаев заявленные требования, предъявляемые к технике, не совпадают с условиями эксплуатации. То есть на офисном мониторе идут игровые баталии, а на элитных устройствах просматриваются лишь ленты новостей.
  3. Мультиподключение. Для удобства работы 25% пользователей в мире к одному компьютеру подключают несколько мониторов (2, 3, 4), и число таких владельцев постоянно растёт. Удобство в том, что для каждого подключённого устройства отведена определённая роль - игры, фильмы, офис и т. п.

Вышеприведенная информация позволяет переосмыслить полученные раннее знания. Совершать покупку рекомендуется, опираясь не на потребности, а на желание и возможности. По сути, ориентироваться стоит на самое дорогое и высококачественное устройство, которое пользователь сможет себе позволить. Экономить здесь нельзя.

В заключение

Выяснив, какой лучше для пользователя тип матрицы монитора, что значит буквенная маркировка на дисплее устройства и как она влияет на цену и качество, можно приступать к выбору диагонали. Однако многие специалисты в области ИТ-технологий рекомендуют уделить внимание разрешительной способности экрана - сколько точек на один квадратный дюйм он способен отобразить. Очень часто правильный выбор необходимого разрешения приводит к приобретению монитора с меньшей диагональю, а соответственно, и к значительной экономии денежных средств. Немаловажную роль играет производитель мониторов - матрица собственного производства, наличие сервисного центра по месту жительства и большой гарантийный срок намекают будущему владельцу, что он приобретает достойное устройство, которое никогда не подведёт.

Сейчас технология плоскопанельных мониторов, и жидкокристаллических в том числе, является наиболее перспективной. Хотя в настоящее время на долю ЖК-мониторов приходится лишь около 10% продаж во всем мире, этот сектор рынка является наиболее быстрорастущим (65% в год).

Принцип работы

Экраны LCD-мониторов (Liquid Crystal Display, жидкокристаллические мониторы) сделаны из вещества (цианофенил), которое находится в жидком состоянии, но при этом обладает некоторыми свойствами, присущими кристаллическим телам. Фактически это жидкости, обладающие анизотропией свойств (в частности оптических), связанных с упорядоченностью в ориентации молекул.
Как ни странно, но жидкие кристаллы старше ЭЛТ почти на десять лет, первое описание этих веществ было сделано еще в 1888 г. Однако долгое время никто не знал, как их применить на практике: есть такие вещества и все, и никому, кроме физиков и химиков, они не были интересны. Итак, жидкокристаллические материалы были открыты еще в 1888 году австрийским ученым Ф. Ренитцером, но только в 1930-м исследователи из британской корпорации Marconi получили патент на их промышленное применение. Впрочем, дальше этого дело не пошло, поскольку технологическая база в то время была еще слишком слаба. Первый настоящий прорыв совершили ученые Фергесон (Fergason) и Вильямс (Williams) из корпорации RCA (Radio Corporation of America). Один из них создал на базе жидких кристаллов термодатчик, используя их избирательный отражательный эффект, другой изучал воздействие электрического поля на нематические кристаллы. И вот в конце 1966 г. корпорация RCA продемонстрировала прототип LCD-монитора – цифровые часы. Значительную роль в развитии LCD-технологии сыграла корпорация Sharp. Она и до сих пор находится в числе технологических лидеров. Первый в мире калькулятор CS10A был произведен в 1964 г. именно этой корпорацией. В октябре 1975 г. уже по технологии TN LCD были изготовлены первые компактные цифровые часы. Во второй половине 70-х начался переход от восьмисегментных жидкокристаллических индикаторов к производству матриц с адресацией каждой точки. Так, в 1976 г. Sharp выпустила черно-белый телевизор с диагональю экрана 5,5 дюйма, выполненного на базе LCD-матрицы разрешением 160х120 пикселов.
Работа ЖКД основана на явлении поляризации светового потока. Известно, что так называемые кристаллы поляроиды способны пропускать только ту составляющую света, вектор электромагнитной индукции которой лежит в плоскости, параллельной оптической плоскости поляроида. Для оставшейся части светового потока поляроид будет непрозрачным. Таким образом поляроид как бы "просеивает" свет, данный эффект называется поляризацией света. Когда были изучены жидкие вещества, длинные молекулы которых чувствительны к электростатическому и электромагнитному полю и способны поляризовать свет, появилась возможность управлять поляризацией. Эти аморфные вещества за их схожесть с кристаллическими веществами по электрооптическим свойствам, а также за способность принимать форму сосуда, назвали жидкими кристаллами.
Основываясь на этом открытии и в результате дальнейших исследований, стало возможным обнаружить связь между повышением электрического напряжения и изменением ориентации молекул кристаллов для обеспечения создания изображения. Первое свое применение жидкие кристаллы нашли в дисплеях для калькуляторов и в электронных часах, а затем их стали использовать в мониторах для портативных компьютеров. Сегодня, в результате прогресса в этой области, начинают получать все большее распространение LCD-дисплеи для настольных компьютеров.

Экран LCD монитора представляет собой массив маленьких сегментов (называемых пикселями), которыми можно манипулировать для отображения информации. LCD монитор имеет несколько слоев, где ключевую роль играют две панели, сделанные из свободного от натрия и очень чистого стеклянного материала, называемого субстрат или подложка, которые собственно и содержат тонкий слой жидких кристаллов между собой [см. рис. 2.1]. На панелях имеются бороздки, которые направляют кристаллы, сообщая им специальную ориентацию. Бороздки расположены таким образом, что они параллельны на каждой панели, но перпендикулярны между двумя панелями. Продольные бороздки получаются в результате размещения на стеклянной поверхности тонких пленок из прозрачного пластика, который затем специальным образом обрабатывается. Соприкасаясь с бороздками, молекулы в жидких кристаллах ориентируются одинаково во всех ячейках. Молекулы одной из разновидностей жидких кристаллов (нематиков) при отсутствии напряжения поворачивают вектор электрического (и магнитного) поля в световой волне на некоторый угол в плоскости, перпендикулярной оси распространения пучка. Нанесение бороздок на поверхность стекла позволяет обеспечить одинаковый угол поворота плоскости поляризации для всех ячеек. Две панели расположены очень близко друг к другу. Жидкокристаллическая панель освещается источником света (в зависимости от того, где он расположен, жидкокристаллические панели работают на отражение или на прохождение света).

Плоскость поляризации светового луча поворачивается на 90° при прохождении одной панели [см. рис. 2.2].
При появлении электрического поля, молекулы жидких кристаллов частично выстраиваются вертикально вдоль поля, угол поворота плоскости поляризации света становится отличным от 90 градусов и свет беспрепятственно проходит через жидкие кристаллы [см. рис. 2.3].
Поворот плоскости поляризации светового луча незаметен для глаза, поэтому возникла необходимость добавить к стеклянным панелям еще два других слоя, представляющих собой поляризационные фильтры. Эти фильтры пропускают только ту компоненту светового пучка, у которой ось поляризации соответствует заданному. Поэтому при прохождении поляризатора пучок света будет ослаблен в зависимости от угла между его плоскостью поляризации и осью поляризатора. При отсутствии напряжения ячейка прозрачна, так как первый поляризатор пропускает только свет с соответствующим вектором поляризации. Благодаря жидким кристаллам вектор поляризации света поворачивается, и к моменту прохождения пучка ко второму поляризатору он уже повернут так, что проходит через второй поляризатор без проблем [см. рис 2.4а].

В присутствии электрического поля поворота вектора поляризации происходит на меньший угол, тем самым второй поляризатор становится только частично прозрачным для излучения. Если разность потенциалов будет такой, что поворота плоскости поляризации в жидких кристаллах не произойдет совсем, то световой луч будет полностью поглощен вторым поляризатором, и экран при освещении сзади будет спереди казаться черным (лучи подсветки поглощаются в экране полностью) [см. рис 2.4б]. Если расположить большое число электродов, которые создают разные электрические поля в отдельных местах экрана (ячейки), то появится возможность при правильном управлении потенциалами этих электродов отображать на экране буквы и другие элементы изображения. Электроды помещаются в прозрачный пластик и могут иметь любую форму. Технологические новшества позволили ограничить их размеры величиной маленькой точки, соответственно на одной и той же площади экрана можно расположить большее число электродов, что увеличивает разрешение LCD монитора, и позволяет нам отображать даже сложные изображения в цвете. Для вывода цветного изображения необходима подсветка монитора сзади, таким образом, чтобы свет исходил из задней части LCD дисплея. Это необходимо для того, чтобы можно было наблюдать изображение с хорошим качеством, даже если окружающая среда не является светлой. Цвет получается в результате использования трех фильтров, которые выделяют из излучения источника белого света три основные компоненты. Комбинируя три основные цвета для каждой точки или пикселя экрана, появляется возможность воспроизвести любой цвет.
Вообще-то в случае с цветом несколько возможностей: можно сделать несколько фильтров друг за другом (приводит к малой доле проходящего излучения), можно воспользоваться свойством жидкокристаллической ячейки - при изменении напряженности электрического поля угол поворота плоскости поляризации излучения изменяется по-разному для компонент света с разной длиной волны. Эту особенность можно использовать для того, чтобы отражать (или поглощать) излучение заданной длины волны (проблема состоит в необходимости точно и быстро изменять напряжение). Какой именно механизм используется, зависит от конкретного производителя. Первый метод проще, второй эффективнее.
Первые LCD дисплеи были очень маленькими, около 8 дюймов, в то время как сегодня они достигли 15" размеров для использования в ноутбуках, а для настольных компьютеров производятся 20" и более LCD мониторы. Вслед за увеличением размеров следует увеличение разрешения, следствием чего является появление новых проблем, которые были решены с помощью появившихся специальных технологий, все это мы опишем далее. Одной из первых проблем была необходимость стандарта в определении качества отображения при высоких разрешениях. Первым шагом на пути к цели было увеличение угла поворота плоскости поляризации света в кристаллах с 90° до 270° с помощью STN технологии.

Преимущества и недостатки ЖК-мониторов

Среди преимуществ TFT можно отметить отличную фокусировку, отсутствие геометрических искажений и ошибок совмещения цветов. Кроме того, у них никогда не мерцает экран. Почему? Ответ прост - в этих дисплеях не используется электронный луч, рисующий слева направо каждую строку на экране. Когда в ЭЛТ этот луч переводится из правого нижнего в левый верхний угол, изображение на мгновение гаснет (обратный ход луча). Напротив, пиксели дисплея TFT никогда не гаснут, они просто непрерывно меняют интенсивность своего свечения.
В таблице 1.1 показаны все главные отличия рабочих характеристик для разных типов дисплеев:

Таблица 1.1. Сравнительные характеристики ЭЛТ и ЖК-мониторов.

Условные обозначения: (+ ) достоинство, (~ ) допустимо, (- ) недостаток

ЖК-мониторы ЭЛТ-мониторы
Яркость (+ ) от 170 до 250 Кд/м 2 (~ ) от 80 до 120 Кд/м 2
Контрастность (~ ) от 200:1 до 400:1 (+ ) от 350:1 до 700:1
Угол обзора
(по контрасту)
(~ ) от 110 до 170 градусов (+ ) свыше 150 градусов
Угол обзора
(по цвету)
(- ) от 50 до 125 градусов (~ ) свыше 120 градусов
Разрешение (- ) Одно разрешение с фиксированным размером пикселей. Оптимально можно использовать только в этом разрешении; в зависимости от поддерживаемых функций расширения или компрессии можно использовать более высокое или более низкое разрешение, но они не оптимальны. (+ ) Поддерживаются различные разрешения. При всех поддерживаемых разрешениях монитор можно использовать оптимальным образом. Ограничение накладывается только приемлемостью частоты регенерации.
Частота вертикальной развертки (+ ) Оптимальная частота 60 Гц, чего достаточно для отсутствия мерцания (~ ) Только при частотах свыше 75 Гц отсутствует явно заметное мерцание
Ошибки совмещения цветов (+ ) нет (~ ) от 0.0079 до 0.0118 дюйма (0.20 - 0.30 мм)
Фокусировка (+ ) очень хорошая (~ ) от удовлетворительной до очень хорошей>
Геометрические/ линейные искажения (+ ) нет (~ ) возможны
Неработающие пиксели (- ) до 8 (+ ) нет
Входной сигнал (+ ) аналоговый или цифровой (~ ) только аналоговый
Масштабирование
при разных разрешениях
(- ) отсутствует или используются методы интерполяции, не требующие больших накладных расходов (+ ) очень хорошее
Точность отображения цвета (~ ) Поддерживается True Color и имитируется требуемая цветовая температура (+ ) Поддерживается True Color и при этом на рынке имеется масса устройств калибровки цвета, что является несомненным плюсом
Гамма-коррекция
(подстройка цвета под особенности человеческого зрения)
(~ ) удовлетворительная (+ ) фотореалистичная
Однородность (~ ) часто изображение ярче по краям (~ ) часто изображение ярче в центре
Чистота цвета/качество цвета (~ ) хорошее (+ ) высокое
Мерцание (+ ) нет (~ ) незаметно на частоте выше 85 Гц
Время инерции (- ) от 20 до 30 мсек. (+ ) пренебрежительно мало
Формирование изображения (+ ) Изображение формируется пикселями, число которых зависят только от конкретного разрешения LCD панели. Шаг пикселей зависит только от размера самих пикселей, но не от расстояния между ними. Каждый пиксель формируется индивидуально, что обеспечивает великолепную фокусировку, ясность и четкость. Изображение получается более целостным и гладким (~ ) Пиксели формируются группой точек (триады) или полосок. Шаг точки или линии зависит от расстояния между точками или линиями одного цвета. В результате четкость и ясность изображения сильно зависит от размера шага точки или шага линии и от качества ЭЛТ
Энергопотребление и излучения (+ ) Практически никаких опасных электромагнитных излучений нет. Уровень потребления энергии примерно на 70% ниже, чем у стандартных CRT мониторов (от 25 до 40 Вт). (- ) Всегда присутствует электромагнитное излучение, однако их уровень зависит от того, соответствует ли ЭЛТ какому-либо стандарту безопасности. Потребление энергии в рабочем состоянии на уровне 60 - 150 Вт.
Размеры/вес (+ ) плоский дизайн, малый вес (- ) тяжелая конструкция, занимает много места
Интерфейс монитора (+ ) Цифровой интерфейс, однако, большинство LCD мониторов имеют встроенный аналоговый интерфейс для подключения к наиболее распространенным аналоговым выходам видеоадаптеров (- ) Аналоговый интерфейс

Из таблицы 1.1 следует, что дальнейшее развитие ЖК-мониторов будет связано с повышением четкости и яркости изображения, увеличением угла обзора и уменьшением толщины экрана. Так, например, уже существуют перспективные разработки LCD-мониторов, выполненных по технологии с использованием поликристаллического кремния. Это позволяет, в частности, создавать очень тонкие устройства, поскольку микросхемы управления размещаются в этом случае непосредственно на стеклянной подложке дисплея. Кроме того, новая технология обеспечивает высокую разрешающую способность на сравнительно небольшом по размеру экране (1024x768 точек на 10,4-дюймовом экране).

STN, DSTN, TFT, S-TFT

STN - это сокращение, означающее "Super Twisted Nematic".Технология STN позволяет увеличить торсионный угол (угол кручения) ориентации кристаллов внутри LCD дисплея с 90° до 270°, что обеспечивает лучшую контрастность изображения при увеличении размеров монитора.
Часто STN ячейки используются в паре. Такая конструкция называется DSTN (Double Super Twisted Nematic), в которой одна двухслойная DSTN-ячейка состоит из 2 STN-ячеек, молекулы которых при работе поворачиваются в противоположные стороны. Свет, проходя через такую конструкцию в "запертом" состоянии, теряет большую часть своей энергии. Контрастность и разрешающая способность DSTN достаточно высокая, поэтому появилась возможность изготовить цветной дисплей, в котором на каждый пиксель приходится три ЖК-ячейки и три оптических фильтра основных цветов. Цветные дисплеи не способны работать от отраженного света, поэтому лампа задней подсветки -- их обязательный атрибут. Для сокращения габаритов лампа находится с боку, а напротив нее зеркало [см. рис. 2.5], поэтому большинство LCD-матриц в центре имеют яркость выше, чем по краям (это не относится к настольным ЖК мониторам).

Также STN ячейки используются в режиме TSTN (Triple Super Twisted Nematic), когда два тонких слоя полимерной пленки добавляются для улучшения цветопередачи цветных дисплеев или для обеспечения хорошего качества монохромных мониторов.
Термин пассивная матрица (passive matrix) появился в результате разделения монитора на точки, каждая из которых, благодаря электродам, может задавать ориентацию плоскости поляризации луча, независимо от остальных, так что в результате каждый такой элемент может быть подсвечен индивидуально для создания изображения. Матрица называется пассивной, потому что технология создания LCD дисплеев, которая была описана выше, не может обеспечить быструю смену информации на экране. Изображение формируется строка за строкой путем последовательного подвода управляющего напряжения на отдельные ячейки, делающего их прозрачными. Из-за довольно большой электрической емкости ячеек напряжение на них не может изменяться достаточно быстро, поэтому обновление картинки происходит медленно. Такой дисплей имеет много недостатков с точки зрения качества, потому что изображение не отображается плавно и дрожит на экране. Маленькая скорость изменения прозрачности кристаллов не позволяет правильно отображать движущиеся изображения.
Для решения части вышеописанных проблем применяют специальные технологии, Для улучшения качества динамического изображения было предложено увеличить количество управляющих электродов. То есть вся матрица разбивается на несколько независимых подматриц (Dual Scan DSTN - два независимых поля развертки изображения), каждая из которых содержит меньшее количество пикселей, поэтому поочередное управление ими занимает меньше времени. В результате чего можно сократить время инерции ЖК.
Также лучших результатов с точки зрения стабильности, качества, разрешения, гладкости и яркости изображения можно добиться, используя экраны с активной матрицей, которые, впрочем, стоят дороже.
В активной матрице (active matrix) используются отдельные усилительные элементы для каждой ячейки экрана, компенсирующие влияние емкости ячеек и позволяющие значительно уменьшить время изменения их прозрачности. Активная матрица (active matrix) имеет массу преимуществ по сравнению с пассивной матрицей. Например, лучшая яркость и возможность смотреть на экран даже с отклонением до 45° и более (т.е. при угле обзора 120°-140°) без ущерба качеству изображения, что невозможно в случае с пассивной матрицей, которая позволяет видеть качественное изображение только с фронтальной позиции по отношению к экрану. Заметим, что дорогие модели LCD мониторов с активной матрицей обеспечивают угол обзора в 160° [см рис. 2.6], и есть все основания предполагать, что технология будет совершенствоваться и в дальнейшем. Активная матрица может отображать движущиеся изображения без видимого дрожания, так как время реакции дисплея с активной матрицей около 50 мс против 300 мс для пассивной матрицы, кроме того, контрастность мониторов с активной матрицей выше, чем у ЭЛТ-мониторов. Следует отметить, что яркость отдельного элемента экрана остается неизменной на всем интервале времени между обновлениями картинки, а не представляет собой короткий импульс света, излучаемый элементом люминофором ЭЛТ-монитора сразу после похождения по этому элементу электронного луча. Именно поэтому для LCD мониторов достаточной является частота вертикальной развертки, равная 60 Гц.

Функциональные возможности LCD мониторов с активной матрицей почти такие же, как у дисплеев с пассивной матрицей. Разница заключается в матрице электродов, которая управляет ячейками жидких кристаллов дисплея. В случае с пассивной матрицей разные электроды получают электрический заряд циклическим методом при построчном обновлении дисплея, а в результате разряда емкостей элементов изображение исчезает, так как кристаллы возвращаются к своей изначальной конфигурации. В случае с активной матрицей к каждому электроду добавлен запоминающий транзистор, который может хранить цифровую информацию (двоичные значения 0 или 1) и в результате изображение сохраняется до тех пор, пока не поступит другой сигнал. Частично проблема отсрочки затухания изображения в пассивных матрицах решается за счет использования большего числа жидкокристаллических слоев для увеличения пассивности и уменьшения перемещений, теперь же, при использовании активных матриц появилась возможность сократить число жидкокристаллических слоев. Запоминающие транзисторы должны производиться из прозрачных материалов, что позволит световому лучу проходить сквозь них, а значит, транзисторы можно располагать на тыльной части дисплея, на стеклянной панели, которая содержит жидкие кристаллы. Для этих целей используются пластиковые пленки, называемые "Thin Film Transistor" (или просто TFT).
Thin Film Transistor (TFT), т.е. тонкопленочный транзистор - это те управляющие элементы, при помощи которых контролируется каждый пиксель на экране. Тонкопленочный транзистор действительно очень тонкий, его толщина 0,1 - 0,01 микрона.
В первых TFT-дисплеях, появившихся в 1972г., использовался селенид кадмия, обладающий высокой подвижностью электронов и поддерживающий высокую плотность тока, но со временем был осуществлен переход на аморфный кремний (a-Si), а в матрицах с высоким разрешением используется поликристаллический кремний (p-Si).
Технология создания TFT очень сложна, при этом имеются трудности с достижением приемлемого процента годных изделий из-за того, что число используемых транзисторов очень велико. Заметим, что монитор, который может отображать изображение с разрешением 800х600 пикселей в SVGA режиме и только с тремя цветами имеет 1440000 отдельных транзисторов. Производители устанавливают нормы на предельное количество транзисторов, которые могут быть нерабочими в LCD дисплее. Правда, у каждого производителя свое мнение о том, какое количество транзисторов могут не работать.
Пиксель на основе TFT устроен следующим образом: в стеклянной пластине друг за другом интегрировано три цветных фильтра (красный, зеленый и синий). Каждый пиксель представляет собой комбинацию трех цветных ячеек или субпиксельных элементов [см. рис. 2.7]. Это означает, например, что у дисплея, имеющего разрешение 1280x1024, существует ровно 3840x1024 транзистора и субпиксельных элемента. Размер точки (пикселя) для 15.1" дисплея TFT (1024x768) приблизительно равен 0.0188 дюйма (или 0.30 мм), а для 18.1" дисплея TFT - около 0.011 дюйма (или 0.28 мм).

TFT обладают рядом преимуществ перед ЭЛТ-мониторами, среди которых - пониженное потребление энергии и теплоотдача, плоский экран и отсутствие следа от движущихся объектов. Последние разработки позволяют получить изображение более высокого качества, чем обычные TFT.

Совсем недавно специалистами компании Hitachi была создана новая технология многослойных ЖК-панелей Super TFT, которая значительно увеличила угол уверенного обзора ЖК панели. Технология Super TFT использует простые металлические электроды, установленные на нижней стеклянной пластине и заставляет молекулы вращаться, постоянно находясь в плоскости, параллельной плоскости экрана [см. рис. 2.8]. Так как кристаллы обычной ЖК-панели поворачиваются к поверхности экрана оконечностями, то такие ЖКД более зависимы от угла зрения, чем ЖК-панели Hitachi с технологией Super TFT, В результате изображение на дисплее остается ярким и четким даже при больших углах обзора, достигая качества, сопоставимого с изображением на ЭЛТ-экране.

Японская компания NEC недавно объявила, что по качеству изображения ее LCD дисплеи вскоре достигнут уровня лазерных принтеров, перешагнув порог в 200 ppi, что соответствует 31 точке на мм 2 или шагу точек 0,18 мм. Как сообщили в NEC, применяемые сегодня многими производителями жидкие кристаллы TN (twisted nematic) позволяет строить дисплеи с разрешение до 400 точек на дюйм. Однако главным сдерживающим фактором в повышении разрешения является необходимость создания соответствующих светофильтров. В новой технологии "color filter on TFT" светофильтры, закрывающие тонкопленочные транзисторы, формируются с помощью фотолитографии на нижней стеклянной подложке. В обычных дисплеях светофильтры наносятся на вторую, верхнюю подложку, что требует очень точного совмещения двух пластин.

На прошедшей в 1999 году в США конференции "Society for information Display" было сделано несколько докладов, свидетельствующих об успехах в создании жидкокристаллических дисплеев на пластиковой подложке. Компания Samsung представила прототип монохромного дисплея на полимерном субстрате с диагональю 5,9 дюйма и толщиной 0,5 мм. Толщина самой подложки составляет около 0,12 мм. Дисплей имеет разрешение 480х320 точек и контрастность 4:1. Вес - всего 10 грамм.

Инженеры из Лаборатории кинотехники Университете Штуттгарта использовали не тонкопленочные транзисторы (TFT), а диоды MIM (металл-изолятор-металл). Последнее достижение этой команды - двухдюймовый цветной дисплей с разрешением 96х128 точек и коэффициентом контрастности 10:1.

Группа специалистов IBM разработала технологию производства тонкопленочных транзисторов с применением органических материалов, позволяющую изготавливать гибкие экраны для электронной книги и других устройств. Элементы разработанных IBM транзисторов напыляются на пластиковую подложку при комнатной температуре (традиционные LCD-дисплеи изготавливаются при высокой температуре, что исключает применение органических материалов). Вместо обычного диоксида кремния для изготовления затвора используется цирконат титоната бария (BZT). В качестве полупроводника применяется органическое вещество под названием пентацен (pentacene), представляющее собой соединение фенилэтиламмония с иодидом олова.

Для повышения разрешения LCD-экранов компания Displaytech предложила не создавать изображение на поверхности большого LCD-экрана, а вывести картинку на маленький дисплей высокого разрешения, а затем с помощью оптической проекционной системы увеличить ее до нужных размеров. При этом Displaytech использовала оригинальную технологию Ferroelectric LCD (FLCD). Она основана на так называемых кирально-смектических жидких кристаллах, предложенных для использования еще в 1980 г. Слой материала, обладающего ферроэлектрическими свойствами и способного отражать поляризованный свет с вращением плоскости поляризации, наносится на подающую управляющие сигналы CMOS-подложку. При прохождении отраженного светового потока через второй поляризатор возникает картинка из темных и светлых пикселов. Цветное изображение получается за счет быстрого чередования освещения матрицы красным, зеленым и синим светом.. На базе FLCD-матриц можно производить экраны большого размера с высокой контрастностью и качеством цветопередачи, с широкими углами обзора и малым временем отклика. В 1999 году альянс корпораций Hewlett-Packard и DisplayTech объявил о создании полноцветного микродисплея на базе технологии FLCD. Разрешение матрицы составляет 320х240 точек. Отличительными особенностями устройства являются малое энергопотребление и возможность воспроизведения полноцветного “живого” видео. Новый дисплей предназначен для использования в цифровых камерах, камкодерах, портативных коммуникаторах и мониторах для надеваемых компьютеров.

Развитием низкотемпературной технологии с использованием поликристаллического кремния LTPS занимается Toshiba. По словам представителей этой корпорации, они позиционируют новые устройства пока только как предназначенные для рынка мобильных устройств, не включая сюда ноутбуки, где господствует технология a-Si TFT. Уже выпускаются VGA-дисплеи размером 4 дюйма, а на подходе 5,8-дюймовые матрицы. Специалисты полагают, что 2 млн. пикселов на экране - это далеко не предел. Одной из отличительных черт данной технологии является высокая разрешающая способность.

По оценкам экспертов корпорации DisplaySearch, занимающейся исследованиями рынка плоских дисплеев, в настоящее время при изготовлении практически любых жидкокристаллических матриц происходит замена технологий: TN LCD (Twisted Nematic Liquid Crystal Display) на STN (Super TN LCD) и особенно на a-Si TFT LCD (amorphous-Silicon Thin Film Transistor LCD). В ближайшие 5-7 лет во многих областях применения обычные LCD-экраны будут заменены или дополнены следующими устройствами:

  • микродисплеи;
  • светоизлучающие дисплеи на базе органических материалов LEP;
  • дисплеи на базе автоэлектронной эмиссии FED (Field Emisson Display);
  • дисплеи с использованием низкотемпературного поликристаллического кремния LTPS (Low Temperature PolySilicon);
  • плазменные дисплеи PDP (Plasma Display Panel).

Взято с http://monitors.narod.ru

Доброго времени суток.

Многие пользователи при выборе монитора не обращают внимание на технологию изготовления матрицы (матрица - главная деталь любого жк-монитора, которая формирует изображение ), а от нее, между прочем, очень сильно зависит качество картинки на экране (да и цена устройства тоже!).

Кстати, многие могут возразить что это мелочь, и любой современный ноутбук (к примеру) - обеспечивает отличную картинку. Но эти же пользователи, если их поставить к двум ноутбукам с разными матрицами - заметят отличие в картинке невооруженным глазом (см. рис. 1) !

Так как в последнее время появилось достаточно много сокращенных аббревиатур (ADS, IPS, PLS, TN, TN+film, VA) - запутаться в этом проще простого. В этой статье я хочу немного описать каждую технологию, ее плюсы и минусы (получиться что-то в виде небольшой справочной статьи, которая очень пригодится при выборе: монитора, ноутбука и т.д.). И так…

Рис. 1. Разница в картинке при повернутом экране: TN-матрица VS IPS-матрица

Матрица TN, TN+film

Описание технических моментов опущено, некоторые термины «трактованы» своими словами так, чтобы статья была понятна и доступна для неподготовленного пользователя.

Самый распространенный тип матрицы. При выборе недорогих моделей мониторов, ноутбуков, телевизоров - если заглянете в расширенные характеристики выбираемого вами устройства, наверняка увидите данную матрицу.

Плюсы:

  1. очень маленькое время отклика : благодаря этому вы сможете наблюдать хорошую картинку в любых динамичных играх, фильмах (да и любых сценах с быстро меняющейся картинкой). Кстати, у мониторов с большим временем отклика - картинка может начать «плыть» (например, многие жалуются на «плывущую» картинку в играх при времени отклика более 9мс). Для игр, вообще желательно время отклика менее 6мс. В общем, этот параметр очень важен и если вы покупаете монитор для игр - вариант TN+film это одно из лучших решений;
  2. доступная цена : этот тип мониторов один из самых доступных по цене.

Минусы:

  1. плохая цветопередача : многие жалуются на не яркие цвета (особенно после перехода с мониторов с другим типом матрицы). Кстати, возможно так же некоторое искажение цветов (поэтому, если вам нужно очень тщательно подбирать цвет - то этот тип матрицы выбирать не стоит);
  2. маленький угол обзора : наверное, многие замечали, что если подойти к монитору сбоку - то часть картинки уже невидно, она искажается и цвет ее изменяется. Конечно, технология TN+film несколько улучшила этот момент, но тем не менее проблема осталась (хотя многие мне могут возразить: например, на ноутбуке данный момент полезен - никто рядом сидящий не сможет увидеть точно ваше изображение на экране);
  3. высокая вероятность появления битых пикселей : наверное, даже многие начинающие пользователи слышали данное высказывание. При появлении «битого» пикселя - на мониторе будет точка, которая не будет отображать картинку - то есть будет просто светящаяся точка. Если их станет много - то работать за монитором будет невозможно…

В целом, мониторы с данным типом матрицы весьма неплохи (несмотря на все их недостатки). Подойдут большинству пользователей, кто любит динамичные фильмы и игры. Так же на таких мониторах весьма неплохо работать с текстом. Дизайнерам же и тем кому нужно видеть очень красочную и точную картинку - данный тип рекомендовать не стоит.

Матрица VA/MVA/PVA

(Аналоги: Super PVA, Super MVA, ASV)

Данная технология (VA - вертикальное выравнивание в переводе с англ.) была разработана и внедрена компанией Fujitsu. На сегодняшний день данный тип матрицы не сильно распространен, но тем не менее, пользуется спросом у некоторых пользователей.

Плюсы:

  1. одна из лучших цветопередач черного цвета : при перпендикулярном взгляде на поверхность монитора;
  2. более качественные цвета (в целом) по сравнению с TN матрицей;
  3. достаточно неплохое время отклика (вполне сравнимое с TN матрицей, хоть и уступает ей);

Минусы:

  1. более высокая цена;
  2. искажение цветов при большом угле обзора (особенно это замечают профессиональные фотографы и дизайнеры);
  3. возможно «пропажа» мелких деталях в тенях (при определенном угле обзора).

Мониторы с данной матрицей являются хорошим решением (компромиссом), кого не устраивает цветопередача TN монитора и кому нужно при этом малое время отклика. Тем, кому нужны цвета и качество картинки - выбирает IPS матрицу (о ней далее в статье…).

Матрица IPS

Разновидности : S-IPS, H-IPS, UH-IPS, P-IPS, AH-IPS, IPS-ADS и др.

Данная технология была разработана компанией Hitachi. Мониторы с данным типом матрицы, чаще всего, самые дорогие на рынке. Рассматривать каждый тип матрицы, думаю, смысла нет, а вот выделить основные преимущества - стоит.

Плюсы:

  1. лучшая цветопередача по сравнению с другими типами матриц. Картинка получается «сочной» и яркой. Многие пользователи говорят, что при работе на таком мониторе практически не устают глаза (утверждение весьма спорно…);
  2. самый большой угол обзора : даже если вы встанете под углом в 160-170 гр. - картинка на мониторе будет такой же яркой, красочной и четкой;
  3. хорошая контрастность;
  4. отличный черный цвет.

Минусы:

  1. высокая цена;
  2. большое время отклика (может не устроить некоторых любителей игр и динамичных фильмов).

Мониторы с данной матрицей идеально подойдут всем тем, кому нужна качественная и яркая картинка. Если взять монитор с маленьким временем отклика (менее 6-5 мс) - то и играть на нем будет вполне комфортно. Самый главный недостаток - высокая цена…

Матрица PLS

Этот тип матрицы бал разработан компанией Samsung (планировался как альтернатива ISP матрице). Имеет как свои плюсы, так и минусы…

Плюсы : более высокая плотность пикселей, высокая яркость, меньшее энергопотребление.

Минусы : низкий цветовой охват, более низкая контрастность по сравнению с IPS.

Кстати, последний совет. При выборе монитора, обращайте внимание не только на технические характеристики, но и на производителя. Лучшего из них я назвать не смогу, но рекомендую выбрать известную марку: Samsung, Hitachi, LG, Proview, Sony, Dell, Philips, Acer.

На этой ноте статью завершаю, всем удачного выбора 🙂