Домой / Группы / Станции сотовой радиотелефонной связи. Вышки сотовой связи рядом с домом — есть ли вред для здоровья? Какие заболевания могут вызвать башни мобильной связи

Станции сотовой радиотелефонной связи. Вышки сотовой связи рядом с домом — есть ли вред для здоровья? Какие заболевания могут вызвать башни мобильной связи

И вновь немного общеобразовательного материала. На этот раз речь пойдет о базовых станциях. Рассмотрим различные технические моменты по их размещению, конструкции и дальности действия, а также заглянем внутрь самого антенного блока.

Базовые станции. Общие сведения

Так выглядят антенны сотовой связи, установленные на крышах зданий. Эти антенны являются элементом базовой станции (БС), а конкретно - устройством для приема и передачи радиосигнала от одного абонента к другому, и далее через усилитель к контроллеру базовой станции и другим устройствам. Являясь наиболее заметной частью БС, они устанавливаются на антенных мачтах, крышах жилых и производственных зданий и даже дымовых трубах. Сегодня можно встретить и более экзотические варианты их установки, в России их уже устанавливают на столбах освещения, а в Египте их даже "маскируют" под пальмы.

Подключение базовой станции к сети оператора связи может производиться по радиорелейной связи, поэтому рядом с "прямоугольными" антеннами блоками БС можно увидеть радиорелейную тарелку:

С переходом на более современные стандарты четвертого и пятого поколений, для удовлетворения их требований подключать станции нужно будет исключительно по волоконной оптике. В современных конструкциях БС оптоволокно становится неотъемлемой средой передачи информации даже между узлами и блоками самой БС. К примеру, на рисунке ниже показано устройство современной базовой станции, где оптоволоконный кабель используется для передачи данных от RRU (выносные управляемые модули) антенны до самой базовой станции (показано оранжевой линией).

Оборудование базовой станции располагается в нежилых помещениях здания, либо устанавливается в специализированные контейнеры (закрепленные на стенах или столбах), ведь современное оборудования выполняется довольно компактно и может запросто поместиться в системный блок серверного компьютера. Часто радиомодуль устанавливают рядом с антенным блоком, это позволяет уменьшить потери и рассеивание передаваемой в антенну мощности. Так выглядят три установленных радиомодуля оборудования базовой станции Flexi Multiradio, закрепленные прямо на мачте:

Зона обслуживания базовых станций

Для начала следует отметить, что бывают различные типы базовых станций: макро, микро, пико и фемтосоты. Начнем с малого. И, если кратко, то фемтосота не является базовой станцией. Это, скорее, Access Point (точка доступа). Данное оборудование изначально ориентируется на домашнего или офисного пользователя и владельцем такого оборудования является частное или юр. лицо, не относящееся к оператору. Главное отличие такого оборудования заключается в том, что оно имеет полностью автоматическую конфигурацию, начиная от оценки радиопараметров и заканчивая подключением к сети оператора. Фемтосота имеет габариты домашнего роутера:

Пикосота - это БС малой мощности, принадлежащая оператору и использующая в качестве транспортной сети IP/Ethernet. Обычно устанавливается в местах возможной локальной концентрации пользователей. Устройство по размерам сравнимо с небольшим ноутбуком:

Микросота - это приближенный вариант реализации базовой станции в компактном виде, очень распространено в сетях операторов. От "большой" базовой станции ее отличает урезанная емкость поддерживаемых абонентом и меньшая излучающая мощность. Масса, как правило, до 50 кг и радиус радиопокрытия - до 5 км. Такое решение используется там, где не нужны высокие емкости и мощности сети, или нет возможности установить большую станцию:

И наконец, макросота - стандартная базовая станция, на базе которой строятся мобильные сети. Она характеризуется мощностями порядка 50 W и радиусом покрытия до 100 км (в пределе). Масса стойки может достигать 300 кг.

Зона покрытия каждой БС зависит от высоты подвеса антенной секции, от рельефа местности и количества препятствий на пути до абонента. При установке базовой станции далеко не всегда на первый план выносится радиус покрытия. По мере роста абонентской базы может не хватить максимальной пропускной способности БС, в этом случае на экране телефона появляется сообщение "сеть занята". Тогда оператор со временем на этой территории может сознательно уменьшить радиус действия базовой станции и установить несколько дополнительных станций в местах наибольшей нагрузки.

Когда нужно увеличить емкость сети и снизить нагрузку на отдельные базовые станции, тогда и приходят на помощь микросоты. В условиях мегаполиса зона радиопокрытия одной микросоты может составлять всего 500 метров.

В условиях города, как ни странно, встречаются такие места, где оператору нужно локально подключить участок с большим количеством трафика (районы станций метро, крупные центральные улицы и др.). В этом случае применяются маломощные микросоты и пикосоты, антенные блоки которых можно располагать на низких зданиях и на столбах уличного освещения. Когда возникает вопрос организации качественного радиопокрытия внутри закрытых зданий (торговые и бизнес центры, гипермаркеты и др.) тогда на помощь приходят пикосотовые базовые станции.

За пределами городов на первый план выходит дальность работы отдельных базовых станций, так установка каждой базовой станции в удалении от города становится все более дорогостоящим предприятием в связи с необходимостью построения линий электропередач, дорог и вышек в сложных климатических и технологических условиях. Для увеличения зоны покрытия желательно устанавливать БС на более высоких мачтах, использовать направленные секторные излучатели, и более низкие частоты, менее подверженные затуханию.

Так, например, в диапазоне 1800 МГц дальность действия БС не превышает 6-7 километров, а в случае использования 900-мегагерцового диапазона зона покрытия может достигать 32 километров, при прочих равных условиях.

Антенны базовых станций. Заглянем внутрь

В сотовой связи чаще всего используют секторные панельные антенны, которые имеют диаграмму направленности шириной в 120, 90, 60 и 30 градусов. Соответственно для организации связи во всех направлениях (от 0 до 360) может потребоваться 3 (ширина ДН 120 градусов) либо 6 (ширина ДН 60 градусов) антенных блоков. Пример организации равномерного покрытия во всех направлениях показан на рисунке ниже:

А ниже вид типовых диаграмм направленности в логарифмическом масштабе.

Большинство антенн базовых станций широкополосные, позволяющие работать в одном, двух или трех диапазонах частот. Начиная с сетей UMTS, в отличие от GSM, антенны базовых станций умеют изменять площадь радиопокрытия в зависимости от нагрузки на сеть. Один из самых эффективных методов управления излучаемой мощностью - это управление углом наклона антенны, таким способом изменяется площадь облучения диаграммы направленности.

Антенны могут иметь фиксированный угол наклона, либо имеют возможность дистанционной регулировки с помощью специального программного обеспечения, располагаемого в блоке управления БС, и встроенных фазовращателей. Существуют также решения, позволяющие изменять зону обслуживания, от общей системы управления сети передачи данных. Таким образом, можно регулировать зону обслуживания всего сектора базовой станции.

В антеннах базовых станций применяется как механическое управление диаграммой, так и электрическое. Механическое управление проще реализуется, но часто приводит к искажению формы диаграммы направленности из-за влияния конструктивных частей. Большинство антенн БС имеет систему электрической регулировки угла наклона.

Современный антенный блок представляет собой группу излучающих элементов антенной решетки. Расстояние между элементами решетки выбирается таким образом, чтобы получить наименьший уровень боковых лепестков диаграммы направленности. Наиболее часто встречаются длины панельных антенн от 0,7 до 2,6 метров (для многодиапазонных антенных панелей). Коэффициент усиления варьируется от 12 до 20 dBi.

На рисунке ниже (слева) представлена конструкция одной из наиболее распространенных (но уже устаревающих) антенных панелей.

Здесь излучатели антенной панели представляют собой полуволновые симметричные электрические вибраторы над проводящим экраном, расположенные под углом 45 градусов. Такая конструкция позволяет формировать диаграмму с шириной главного лепестка 65 или 90 градусов. В такой конструкции выпускаются двух- и даже трехдиапазонные антенные блоки (правда, довольно крупногабаритные). Например, трехдиапазонная антенная панель такой конструкции (900, 1800, 2100 МГц) отличается от однодиапазонной, примерно в два раза большим размером и массой, что, конечно же, затрудняет ее обслуживание.

Альтернативная технология изготовления таких антенн предполагает выполнение полосковых антенных излучателей (металлические пластины квадратной формы), на рисунке выше справа.

А вот еще один вариант, когда в качестве излучателя используются полуволновые щелевые магнитные вибраторы. Линия питания, щели и экран выполняются на одной печатной плате с двухсторонним фольгированным стеклотекстолитом:

С учетом современных реалий развития беспроводных технологий, базовые станции должны поддерживать работу 2G, 3G и LTE сетей. И если блоки управления базовых станций сетей разных поколений удается вместить в один коммутационный шкаф без увеличения габаритного размера, то с антенной частью возникают значительные трудности.

Например, в многодиапазонных антенных панелях количество коаксиальных соединительных линий достигает 100 метров! Столь значительная длина кабеля и количество паяных соединений неизбежно приводит к потерям в линиях и снижению коэффициента усиления:

С целью снижения электрических потерь и уменьшения точек пайки часто делают микрополосковые линии, это позволяет выполнить диполи и систему запитки всей антенны по единой печатной технологии. Данная технологиях проста в производстве и обеспечивает высокую повторяемость характеристик антенны при ее серийном выпуске.

Многодиапазонные антенны

С развитием сетей связи третьего и четвертого поколений требуется модернизация антенной части как базовых станций, так и сотовых телефонов. Антенны должны работать в новых дополнительных диапазонах, превышающих 2.2 ГГц. Более того, работа в двух и даже трех диапазонах должна производиться одновременно. Вследствие этого антенная часть включает в себя довольно сложные электромеханические схемы, которые должны обеспечивать должное функционирование в сложных климатических условиях.

В качестве примера рассмотрим конструкцию излучателей двухдиапазонной антенны базовой станции сотовой связи Powerwave, работающей в диапазонах 824-960, МГц и 1710-2170, МГц. Ее внешний вид показан на рисунке ниже:

Этот двухдиапазонный облучатель состоит из двух металлических пластин. Та, что большего размера работает в нижнем диапазоне 900 МГц, над ней расположена пластина с щелевым излучателем меньшего размера. Обе антенны возбуждаются щелевыми излучателями и таким образом имеют единую линию запитки.

Если в качестве излучателей используются дипольные антенны, то необходимо ставить отдельный диполь для каждого диапазона волн. Отдельные диполи должны иметь свою линию запитки, что, конечно же, снижает общую надежность системы и увеличивает энергопотребление. Примером такой конструкции является антенна Kathrein для того же диапазона частот, что и рассмотренная выше:

Таким образом, диполи для нижнего диапазона частот находятся как бы внутри диполей верхнего диапазона.

Для реализации трех- (и более) диапазонного режимов работы наибольшей технологичностью обладают печатные многослойные антенны. В таких антеннах каждый новый слой работает в довольно узком диапазоне частот. Такая "многоэтажная" конструкция изготавливается из печатных антенн с индивидуальными излучателями, каждая антенна настраивается на отдельные частоты рабочего диапазона. Конструкция поясняется рисунком ниже:

Как и в любых других многоэлементных антеннах в такой конструкции происходит взаимодействие элементов, работающих в разных диапазонах частот. Само собой это взаимодействие оказывает влияние на направленность и согласование антенн, но данное взаимодействие может быть устранено методами, применяемыми в ФАР (фазированных антенных решетках). Например, одним из наиболее эффективных методов является изменение конструктивных параметров элементов путем смещения возбуждающего устройства, а также изменение размеров самого облучателя и толщины разделительного диэлектрического слоя.

Важным моментом является то, что все современные беспроводные технологии широкополосные, и ширина полосы рабочих частот составляет не менее 0,2 ГГц. Широкой рабочей полосой частот обладают антенны на основе взаимодополняющих структур, типичным примером которых являются антенны типа "bow-tie" (бабочка). Согласование такой антенны с линией передачи осуществляется подбором точки возбуждения и оптимизацией ее конфигурации. Чтобы расширить полосу рабочих частот по согласованию "бабочку" дополняют входным сопротивлением емкостного характера.

Моделирование и расчет подобных антенн производят в специализированных программных пакетах САПР. Современные программы позволяют моделировать антенну в полупрозрачном корпусе при наличии влияния различных конструктивных элементов антенной системы и позволяют тем самым произвести достаточно точный инженерный анализ.

Проектирование многодиапазонной антенны производят поэтапно. Сначала рассчитывают и проектируют микрополосковую печатную антенну с широкой полосой пропускания для каждого рабочего диапазона частот отдельно. Далее печатные антенны разных диапазонов совмещают (наложением друг на друга) и рассматривают их совместную работу, устраняя по возможности причины взаимного влияния.

Широкополосная антенна типа "бабочка" может быть удачно использована как основа для трехдиапазонной печатной антенны. На рисунке ниже изображены четыре различных варианта ее конфигурации.

Приведенные конструкции антенн отличаются формой реактивного элемента, который применяется для расширения рабочей полосы частот по согласованию. Каждый слой такой трехдиапазонной антенны представляет собой микрополосковый излучатель заданных геометрических размеров. Чем ниже частоты - тем больше относительный размер такого излучателя. Каждый слой печатной платы отделен от другого с помощью диэлектрика. Приведенная конструкция может работать в диапазоне GSM 1900 (1850-1990 МГц) - принимает нижний слой; WiMAX (2,5 - 2,69 ГГц) - принимает средний слой; WiMAX (3,3 - 3,5 ГГц) - принимает верхний слой. Подобная конструкция антенной системы позволит принимать и передавать радиосигнал без использования дополнительного активного оборудования, не увеличивая тем самым габаритных размеров блока антенны.

И в заключении немного о вреде БС

Порой, базовые станции операторов сотовой связи устанавливают прямо на крышах жилых домов, чем конкретно деморализуют некоторых их обитателей. У хозяев квартир перестают "рожать кошки", а на голове у бабушки начинают быстрее появляться седые волосы. А тем временем, от установленной базовой станции жители этого дома электромагнитного поля почти не получают, ибо "вниз" базовая станция не излучает. Да и, к слову сказать, нормы СаНПиНа для электромагнитного излучения в РФ на порядок ниже, чем в "развитых" странах запада, и поэтому в черте города базовые станции никогда на полную мощность не работают. Тем самым, вреда от БС нет, если только вы не устраиваетесь позагорать на крыше в паре метров от них. Зачастую, с десяток точек доступа, установленных в квартирах жителей, а также микроволновые печи и сотовые телефоны (прижатые к голове) оказывают на вас намного большее воздействие, нежели базовая станция, установленная в 100 метрах за пределами здания.

Большинству пользователей сотовой связи невдомек, какая огромная система обеспечивает их комфорт. Между тем это не только компьютеры-коммутаторы, специальные контроллеры, но и тысячи, нет - десятки тысяч базовых станций, чуткие антенны которых позволяют абонентам всегда оставаться на связи.

Больше «мозгов», чем «железа»

Основной элемент сотовой сети любого стандарта - это базовая станция (BSS, Base Station System), которая занимается распределением звонков и аутентификацией мобильных телефонов. В зависимости от стандарта связи базовые станции (БС) работают в диапазоне частот от 450 до 1880 МГц. БС составляют основу макроячеек, так называемых «сот». Поскольку рабочий радиус таких станций порядка 10-12 км за городом и около 5 км в городе, БС строят много и располагают относительно недалеко друг от друга. Полностью автономные и автоматизированные базовые станции представляют собой небольшие контейнеры, которые устанавливаются, как правило, на крыше зданий. Там обычно находится несколько компьютеров, источник автономного питания и кондиционер - все оборудование БС очень чувствительно к перепадам температуры. Все это богатство снабжено автоматической системой пожаротушения и сигнализацией. В обязательном порядке имеется беспроводной или кабельный канал связи с центром управления сетью, куда передается огромный поток данных - входящие и исходящие вызовы от абонентов.

Контейнер БС.

Безопасная связь

Бытует мнение, что базовые станции очень вредны для здоровья. По отечественным санитарным нормам и правилам, антенны БС размещаются на уже существующих постройках или на специальных мачтах. Есть два типа антенн: передающие (или приемопередающие), и приемные, которые вовсе не являются источниками электромагнитного поля. Основная энергия излучения передающей антенны сосредоточена в довольно узком «луче», который всегда направлен в сторону от сооружений и выше прилегающих построек. Это необходимое условие нормального функционирования сотовой связи и безопасности окружающей среды.

Начинка базовой станции.

Мощность излучения антенны БС не постоянна, она меняется в зависимости от нагрузки сети - количества активных сотовых телефонов в зоне обслуживания. При этом для станций, расположенных в различных районах города, загрузка варьируется. В ночные часы она практически равна нулю, к вечеру резко повышается.

Исследования электромагнитной обстановки на территории, прилегающей к БС, неоднократно проводились специалистами Швеции, Венгрии и России. Если изучить результаты этих измерений, видно, что в 100% случаев электромагнитная обстановка в здании, на котором установлена БС, не отличается от фоновой. На прилегающей территории в 91% случаев зафиксированный уровень электромагнитного поля был в 10 раз меньше ПДУ (предельно допустимого уровня), установленного для радиотехнических объектов в Москве. Максимально зафиксированное при измерениях значение было в 2 раза меньше установленного ПДУ, вблизи здания, на котором установлено сразу три станции разных стандартов. Таким образом, можно с уверенностью говорить, что базовые станции сотовой связи не опасны для здоровья населения.

Пришел, поставил, улетел

Базовые станции монтируются на высотных зданиях или на металлических вышках, которые строят специально. Высотные мачты (более 50 метров) обычно монтируются за чертой города с помощью вертолетов. Все конструкции привозят со специальных заводов на длинномерных тягачах и после этого собирают в 4 крупные секции, которые вертолету предстоит водрузить одну на другую. Первую секцию высотой в 20 метров ставят тяжелым автомобильным краном, а остальные - только с помощью винтокрылой машины.

Вертолеты для монтажа используются особые. С виду - обычный Ми-8, но на самом деле это кардинально модифицированная машина - летающая лаборатория стоимостью порядка $2 млн. Специально для монтажа сложных конструкций на нем предусмотрена внешняя подвеска, на которую крепят трос с блоками башни. Он управляется компьютером, который учитывает все порывы ветра и удерживает строго вертикально несколько тонн металла. Еще есть специальная прозрачная задняя кабина, из которой еще один пилот управляет монтажом. Весь процесс производится в режиме радиомолчания - управление осуществляется только по визуальным командам «флажкового» инженера с земли. Именно этот человек должен сам убедиться в том, что фланцы блоков соприкоснулись, и только после крепления секции дать команду пилоту вертолета отцепить трос с внешней подвески. Сам процесс сборки происходит очень быстро - всего лишь за 40 минут.

Монтаж базовой станции с вертолета.

Парад необычных проектов

Экзотики в строительстве базовых станций море. Шутка ли - у каждой сотовой компании может быть несколько тысяч объектов связи, причем не все из них расположены в мегаполисах. Например, у МТС есть БС с питанием от ветрогенератора - они установлены в Краснодарском крае. Есть БС в портативных контейнерах - коробка размером с небольшой телевизор, в котором смонтирован источник бесперебойного питания и кондиционер. Такие БС можно крепить практически где угодно, например прямо на столбах. В частности, в Москве подобная БС установлена в Гостином дворе. Есть БС, смонтированные на колокольнях - в Суздале и Сергиевом Посаде, например. Это самые высокие места в округе, возводить там мачту нерентабельно - вот и пришлось просить разрешения у церкви. Но совершенно уникальная система - базовая станция в Лефортовском тоннеле в Москве. Там антенной является щелевой излучающий кабель, протянутый в трехкилометровом тоннеле.

У компании «ВымпелКом» своя гордость - для обеспечения покрытия сети «Би Лайн GSM» на оживленном участке федеральной трассы Краснодар-Сочи, проходящем через поселок Молдавановка , была запущена базовая станция, работающая на солнечной энергии. На горном перевале в районе Молдавановки оказалось сложно обеспечить качественное покрытие. Одним из возможных положений базовой станции, обеспечивающих приемлемую зону покрытия, стала естественная площадка на высоте 711 метров на горе. Дорогостоящий проект по организации традиционного электропитания было решено заменить альтернативной системой на солнечных батареях. Пиковой мощности солнечных батарей хватает для питания самой станции, двух кондиционеров и подзарядки аккумуляторов на ночь. В дополнение к солнечным батареям был установлен еще и ветрогенератор. В «ВымпелКом » подчеркивают, что это первая базовая станция на альтернативных источниках энергии в России, но не первая в мире.

Базовая станция «Би Лайн» на солнечной энергии.

В апреле 2004 года в Западной Австралии в округе Кимберли также начала работу базовая станция мобильной связи на солнечных батареях. Всего в ней используется 60 солнечных батарей общим весом 7,4 тонны.

Отличились в строительстве «экзотики» и специалисты сотового оператора СМАРТС . К примеру, БС с расширенной до 100 км зоной покрытия используются в Астраханской области. В Самарской, Пензенской и Волгоградской областях базовые станции на большой высоте. Уж очень много там холмов. Монтировать такие станции приходится с помощью специально подготовленных подразделений альпинистов.

Большая пропускная способность необходима для мобильных БС, которые развертываются всего за несколько часов. К примеру, на Грушинском фестивале работает именно такая БС.

Надо отметить, что экзотические БС - это не выдумка «загадочной русской души». К примеру, в Великобритании стали устанавливать «зеленые» базовые станции сотовой связи. Наконец-то английские «зеленые», выступавшие против строительства базовых станций сотовой связи в заповедных местах Туманного Альбиона, могут спать спокойно. В самом центре Абердинширского леса установлена вторая автономная базовая станция с источником питания на водородно-топливных элементах. Первая такая станция была установлена в Шотландии, возле всемирно известного центра по лыжному спорту. Установка обычной станции потребовала бы прокладки около пяти километров электрического кабеля, что нанесло бы непоправимый ущерб природе в этих местах.

Кстати, для любителей и специалистов: сотовая конфигурация у базовых станций, построенных на многих отечественных и зарубежных курортах, очень интересна и необычна. На таких станциях, как правило, есть только две соты, одна «стреляет» в одну сторону побережья, вторая - в противоположную. В море с телефоном не полезешь, а сфотографировать себя на пляже и послать в заснеженную столицу - милое дело.

Но дальше всех пошли африканские операторы - они устанавливают базовые станции на специальных плотах посреди больших рек. В результате они «накрывают» и близлежащие селения, и саму реку. Дорог там нет, и основные транспортные пути идут по воде. Ну и украсть оборудование оттуда сложнее.

Тотальный контроль

Постоянный контроль покрытия сотовой сети, качества голосовой связи жизненно важен для любого оператора сотовой связи. Именно для этого каждый день в путь отправляются мобильные лаборатории, оснащенные по последнему слову техники. Типовой пример такой машины - микроавтобус Volkswagen Transporter или внедорожник Suzuki Grand Vitara , в них установлена измерительная аппаратура для тестирования сетей AMPS/DAMPS или GSM900/1800.

Volkswagen Transporter

В каждом регионе инженеры разрабатывают специальные маршруты для контроля сети. Как вариант - экипажи отправляются в путь по жалобам пользователей на плохое качество связи или невозможность дозвониться. Третий вариант объездов - это доскональная проверка работы новых базовых станций. Измерительный комплекс проверяет не только зону покрытия БС и сверяет ее планом, но и тестирует качество переключения между БС и соседями.

Специальное оборудование каждого автомобиля стоит десятки тысяч долларов и занимает примерно треть салона. Всего в машине может быть два комплекса, питаются они от бортовой сети. Задача первого состоит в том, чтобы в реальном режиме времени отслеживать качество покрытия сети сотовой связи. Он обычно состоит из мощного ноутбука от Toshiba , нескольких специальных устройств и трех телефонов Sagem , один из которых работает только в диапазоне GSM900, второй - GSM1800, третий - поддерживает оба стандарта связи. Каждый из телефонов непрерывно звонит на специальные технические номера в офисе компании так называемыми «длинными звонками» на 54-59 минут. В это время измерительная аппаратура анализирует качество покрытия, определяется, насколько успешно сотовый звонок передается из соты в соту, в каких случаях могут возникать обрывы связи. Все данные немедленно заносятся в компьютер для дальнейшего анализа.

Второй комплекс состоит из четырех телефонов Sagem. Два из них звонят друг другу «короткими звонками» длительностью 59 секунд. Еще один звонит на специальный сервисный номер в офис сотовой компании, еще один принимает звонки из офиса компании. После соединения передается короткое голосовое сообщение, произнесенное женским и мужским голосом. Так как эталон текста известен, полученный результат мгновенно с ним сравнивается и устанавливается мера сходства сообщения. Чем более они похожи, тем лучше качество связи. Одной из важных частей комплекса является система спутниковой навигации (GPS). С ее помощью компьютер определяет положение в городе и заносит в специальный «черный ящик» все параметры сотовой сети с привязкой к местности. Это позволяет с высокой точностью определять места сбоев.

Мобильные телефоны прочно вошли в повседневную жизнь современного человека. И даже несмотря на то, что многие слышали о вреде, который несет этот вид связи, никто не спешит отказываться от таких коммуникаций. Немного обезопасить себя и своих родных можно, если снизить время пользования мобильными телефонами, так как вред для здоровья вышек сотовой связи довольно ощутимый . В особенности это отражается на подрастающем поколении и людях с букетом хронических заболеваний.

Опасность излучения от башен

Абсолютно все экзогенные факторы, которые оказывают действие на организм человека, приводят к некоторым последствиям, и излучение от вышек сотовой связи совсем не является исключением из правил. Вышки излучают электромагнитные сигналы для связи между абонентами, что используют мобильную связь . Подобное излучение считают условно безвредным для людей, но башня мобильной связи рядом с жилым домом все же несет вредное действие на здоровье.

Опираясь на проведенные исследования можно точно сказать, что телефонные вышки, установленные в жилых кварталах, приводят к ряду патологий разных внутренних органов.

Любые башни мобильной связи, которые установлены поблизости с жилыми домами, несут вред здоровью, но интенсивность вредного действия напрямую зависима от сигнала, который эта вышка воспроизводит.

Распространенность импульса на различное расстояние зависит от некоторых факторов, среди которых можно выделить такие:

Истории наших читателей

Владимир
61 год

  • Какую нагрузку несет сама конструкция и есть ли похожие передающие вышки поблизости.
  • Специальная аппаратура, что использовалась оператором мобильной связи при построении башни, а также оборудование, которое используется для получения сигнала абонентами коммуникаций.
  • Плотность застройки около вышки мобильной связи. Чем больше плотность застройки, тем труднее поступление сигнала, поэтому при установке вышек имеет значимость не только территория, но и здания, которые есть поблизости.

Вред от работы вышки прямо пропорционален излучению от установленной антенны сотовой связи, а значит, интенсивности ее работы . Эта физическая величина зависима от прилагаемой нагрузки на непосредственный источник сигналов. Если сказать простым языком, чем больше людей будут пользоваться услугами излучения конкретной антенной опоры, тем интенсивнее она будет воспроизводить вредные импульсы.

При интенсивной работе вышки мобильной связи, которая расположена в непосредственной близости от жилых строений, здоровье проживающих там людей стойко ухудшается.

Физические особенности излучения

Негативное влияние вышек сотовой связи на здоровье человека уже доказано, но в то же время не утихают споры вокруг базовых станций мобильной связи. Застройщики в один голос твердят, что подобные вышки не несут вреда здоровью человека, ведь они возведены в соответствии с принятыми нормами и правилами. Опираясь на законодательство, воздействие от башен не должно превышать предельно допустимых показателей . Но ученные придерживаются другого мнения и советуют людям опасаться излучения данного типа, в особенности если антенная опора стоит рядышком с жилым зданием.

Операторы мобильной связи утверждают, что вред башен связи для человека косвенный, а значит, ощутимого ущерба здоровью не наносит. Они объясняют это тем, что сигналы, излучаемые вышкой мобильной связи, генерируются на самой верхней точке металлоконструкции и распространяются на приличной высоте от земли. На землю доходит доля излучения, но она почти в 1000 раз меньше, чем то, которое проходит наверху. Но не стоит забывать о физических законах. Согласно одному из них, рассеяние энергии прямо пропорциональное квадрату расстояния. Следовательно, чем больше расстояние к жилому объекту, тем больше негативного воздействия будет оказано на все живые организмы. Это даже при учете того факта, что вниз приходит на порядок меньше излучения, чем имеется в воздухе.

Вред от антенн сотовой связи, что установлены на крышах многоэтажек, тоже довольно ощутимый. Хотя эти металлоконструкции воспроизводят намного меньше излучения, чем башни, но габариты их тоже уменьшены пропорционально. Из-за чего расстояние между точкой, где генерируется сигнал, и помещением с людьми уменьшается. Обычно излучение на таких участках значительно превышает допустимые 10 мкВт/см, которые считаются условно безопасными для здоровья человека . К этому излучению добавляется то, которое воспроизводят другие приборы, находящиеся в каждом доме – телевизор, микроволновая печь, радио и прочие.

С точки зрения биологии опасное действие электромагнитного излучения может быть причиной многих болезней.

Какие заболевания могут вызвать башни мобильной связи


Башни мобильной связи, бесспорно, вредны, особенно если они установлены в непосредственной близости от домов, без соблюдения расстояния санитарной зоны
. Последствия зависят только от того, сколько вредного излучения приходится на организм человека. Стоит учитывать, что чем ближе проживают люди к источнику подобного излучения, тем больше энергии поглощается телом, что затем приводит к таким опасным последствиям:

  • Угнетаются функции центральной нервной системы. Это проявляется стойкими мигренями, апатией, слабостью, атипичной сонливостью и раздражительностью.
  • Увеличивается риск возникновения сердечно-сосудистых заболеваний, что в конечном итоге приводит к инфаркту или инсульту.
  • Изменяется гормональный фон, что приводит к возникновению болезней мочеполовой сферы. При постоянном действии излучения от башни мобильной связи у мужчин развивается импотенция, они теряют способность к оплодотворению, в то время как у женщин затруднен процесс вынашивания ребенка.
  • Развитие различных хронических заболеваний. Например, у людей, которые страдают аллергическими реакциями, может начаться бронхиальная астма.
  • Нарушение функций всех органов, за счет изменения гомеостаза в организме.

Нужно помнить, что влияние вышек сотовой связи на здоровье зависимо от генетических предрасположенностей человека и наличия у него хронических заболеваний. Так, крепкие и выносливые люди находятся в зоне наименьшего риска.

Беременные и кормящие женщины должны остерегаться вредного излучения от башен мобильной связи . Развивающийся плод в утробе матери очень восприимчив как к эндогенным, так и экзогенным факторам. Излучение может привести к различным патологиям у будущего ребенка, а в тяжких случаях возможно прерывание беременности на ранних сроках или замирание плода. У женщин в период лактации излучение может привести к изменениям в составе грудного молока, что отразится на нервной и пищеварительной системах грудничка.

Как обезопасить себя от негативного действия вышки связи

Есть несколько методов, которые позволяют снизить вредное воздействие башни мобильной связи или нейтрализовать его вообще:

  • Определенные строительные материалы снижают излучение. Так, стекло способно уменьшить этот показатель почти в 3 раза, а бетон в 30 раз . То есть человек, который находится внутри дома, практически защищен.
  • Уменьшить негативное действие поможет и частая уборка в помещении. Влага частично уменьшает вредную энергию, которая накопилась в доме.
  • По возможности нужно меньше пользоваться мобильными телефонами , особенно детям и подросткам.

В каждом доме есть мобильный телефон, а в некоторых семьях их около десятка. И хотя люди наслышаны о вреде мобильной связи, отказываться от нее никто не спешит. Опасность для здоровья человека представляют башни сотовой связи, что расположены в непосредственной близости от жилых домов. При выборе квартиры или частного дома стоит учитывать этот факт.

План:

1. Построение сотовой связи.

2. Структура сотовой связи.

3. История развития сотовой связи.

Сотовая связь - это наиболее современная и быстро развивающаяся область телекоммуникаций. Сотовой она называется потому, что территория, на которой обеспечивается связь, разбивается на отдельные ячейки или соты.

Как правило, в каждой соте абонент получает одинаковый набор услуг и в определенных территориальных границах получает эти услуги по равной цене. Таким образом, перемещаясь от одной соты к другой абонент не чувствует территориальной привязанности и может свободно пользоваться услугами связи. Также важным моментом является непрерывность соединения.

Перемещаясь соединение, установленное абонентом (голосовой звонок, пакетная передача данных) не должны прерываться. Это обеспечивается багодаря так называемому хэндовеу (Handover). Соединение установленное абонентом как бы похватывается соседними сотами по эстафете, а абонент продолжает неподозревая разговаривать или путешествовать по просторам сети Интернет.

Итак, рассмотрим из чего же состоит сеть сотовой связи. Вся сеть делиться на две подсистемы: подсистема базовых станций и подсистема коммутации.

Основными элементами подсистемы базовых станций (как не трудно догадаться) являются сами базовые станции (BTS ). Они то как раз и создают те соты, о которых говорилось в начале. Каждая базовая станция, как правило, обслуживает три соты. Радиосигнал от базовой станции излучается через 3 секторные антенны, каждая из которых направлена на свою соту. Иногда можно встретить ситуацию, когда на одну соту направлены сразу несколько антенн одной базовой станции. Это связано с тем, что сеть сотовой связи работает в нескольких диапазонах (900 и 1800). Кроме того, на данной базовой станции может присутствовать оборудование сразу нескольких поколений связи (2G и3G ).

Наболее привычным местом размещения базовой станции является башня или мачта, построенная специально для нее. Однако, в условиях городской местности трудно найти место под размещение массивного сооружения. Поэтому в крупных городах базовые станции размещаются на зданиях. Кроме того, в последнее время появляются мобильные варианты базовых станций, размещенных на грузовиках. Их очень удобно использовать во время стихийных бедствий или во местах массового собрания людей (футбольные стадионы, центральные площади) на время праздников, концертов, футбольных матчей. Но, к сожалению, из-за проблем в законодательстве широкого применения они пока не нашли.

Базовая станция на башне

Базовая станция на крыше здания

Мобильная базовая станция

Как это ни странно, но сотовые операторы часто разрешают своим конкурентам использовать свои башенные сооружения для размещения антенн (Естественно на взаимовыгодных условиях). Это вызвано тем, что строительство башни или мачты - это дорогое удовольствие, и такой обмен позволяет сэкономить не мало средств!

От подсистемы базовых станций сигнал передается в сторону подсистемы коммутации, где и происходит установление соединения с нужным абоненту направлением. В подсистеме коммутации есть ряд баз данных, в которых хранятся сведения об абонентах. Кроме того эта подсистема отвечает за безопасность.

Мы рассмотрели основные элементы сети сотовой связи. Здесь конкретно применялись термины стандарта GSM . Однако, и в предыдущих, и в последующих стандартах присутствуют аналогичные элементы и функции, лишь под другими названиями

Радиосвязь организуется не только с помощью сетей фиксированной радиосвязи, но и с использованием сетей с подвижными объектами (СРПО).

Сеть радиосвязи с подвижными объектами – это совокупность технических средств, с помощью которых можно предоставлять подвижным объектам связь между собой и с абонентами телефонной сети. Она предназначена для обслуживания абонентов при международном, национальном и региональном передвижениях (роуминг) и позволяет обеспечивать связь между абонентами при пересечении ими границ разных географических зон.

Сети радиосвязи с подвижными объектами классифицируются по нескольким признакам (рис. 3.8) . Технологические СРПО принадлежат определённым ведомствам и службам (газовая промышленность, железнодорожный транспорт, скорая помощь, пожарная охрана и др.). Они предназначены для предоставления услуг радиосвязи ограниченному контингенту физических и юридических лиц.

Классификация сетей радиосвязи с подвижными объектами

Технологические СРПО подразделяются на диспетчерские, транкинговые и радиосети передачи данных. Диспетчерские СРПО предназначены для радиотелефонной связи должностных лиц органов управления с подчинёнными подвижными объектами, а также абонентов между собой.

Сотовые СРПО относятся к общедоступным сетям наземной радиосвязи с подвижными объектами, которые предоставляют абонентам все виды услуг обычной телефонной связи. Они построены в виде совокупности сетей, покрывающих обслуживаемую территорию, в которых для обеспечения эффективного использования выделенного частотного ресурса и высокой ёмкости сети применяется повторное использование частот.

Транкинговые (радиальные и радиально-зоновые) сети предназначены для предоставления услуг связи в основном абонентам ведомственных сетей на базе реализации многостанционного доступа к небольшому числу радиоканалов с ограниченным выходом или без выхода на телефонную сеть общего пользования. Транкинговые сети позволяют заменить сети радиосвязи с фиксированным распределением частот и осуществить интеграцию в рамках одной сети связи различных групп пользователей с целью повышения эффективности применения радиочастотного спектра.

С топологической точки зрения сеть сотовой связи строится в виде совокупности ячеек, или сот, покрывающих обслуживаемую территорию. Общая структура сети сотовой радиосвязи с подвижными объектами показана на рис. 3.9 .

Структура сотовой сети радиосвязи

Сотовая структура сети основана на принципе повторного использования частот – главном принципе сотовой сети. Элементами сотовой сети, кроме того, являются:

– центр коммутации;

– базовые станции;

– подвижные станции, или абонентские радиотелефонные аппараты.

Базовая станция (БС) сотовой связи обслуживает все подвижные станции в пределах своей ячейки, при этом ресурс для установления соединений базовая станция предоставляет по требованию подвижных абонентов, как правило, на равноправной основе.

При перемещении абонента из одной ячейки в другую происходит передача его обслуживания от одной базовой станции к другой. Все базовые станции сети, в свою очередь, замыкаются на центр коммутации, с которого имеется выход в единую сеть электросвязи РФ.

В настоящее время широко используется общеевропейский стандарт GSM-900. В этом стандарте передатчики подвижных станций работают в диапазоне частот 890–915 МГц, передатчики базовых станций – в диапазоне 935–960 МГц. Между диапазонами приёма и передачи предусмотрен постоянный разнос в 45 МГц. Каждый из поддиапазонов разбит на 124 частотных канала с шагом 200 кГц. Максимальная дальность связи 35 км.

В стандарте GSMобеспечивается высокая степень безопасности передаваемых сообщений за счёт их шифрования по алгоритму шифрования с открытым ключом. Функциональное сопряжение элементов системы осуществляется рядом интерфейсов.

В технологии построения транкинговой связи используется принцип, при котором конкретный канал закрепляется для каждого сеанса связи индивидуально в зависимости от распределения нагрузки в системе, а трафик нагрузки в основном замыкается внутри сетей. Выход абонентов на сеть телефонной связи общего пользования (ТфОП) ограничен.

В настоящее время используют радиальные и радиально-зоновые транкинговые сети. Такая сеть включает:

базовую станцию, состоящую из антенно-фидерного устройства, модулей приёмопередатчиков, контроллеров для каждого модуля приёмопередатчика и базового контроллера;

– зоновое оборудование (станцию), состоящее из автономных ретрансляторов, соединительных линий с сетью общего пользования и контроллеров;

– оборудование управления, состоящее из системного терминала «менеджер системы», пультов диспетчера.

В транкинговых сетях, построенных по радиальному принципу, весь канальный ресурс закрепляется за одной центральной базовой станцией (ЦРС). Антенна такой станции размещается в наиболее высокой точке предполагаемого обслуживания рис. 3.10 . Примером такой архитектуры является советская сеть радиосвязи «Антей», созданная в 1960 г.

Структура транкинговой сети, построенной по радиальному принципу

Рассматриваемая схема имеет ряд недостатков, в частности, для расширения зоны обслуживания необходимо увеличить мощность абонентской станции (АС), что соответственно повышает общий уровень помех.

При небольшом количестве абонентов увеличения зоны обслуживания можно добиться, используя радиально-зоновый принцип. Формируется так называемая односотовая сеть с несколькими точками размещения антенн и с вещанием на общей волне. В этом случае наряду с главным пунктом размещения антенны (УКС) имеется ряд вспомогательных пунктов (ЗКС), соединённых линиями связи с главным (рис. 3.11) .

Структура транкинговой сети, построенной по радиально-зоновому принципу

В общем случае технология построения транкинговых сетей предусматривает следующее:

– использование метода свободного выбора незанятого канала радиодоступа из выделенного в каждой зоне обслуживания пучка каналов. Это достигается образованием общего для всех пользователей в каждой зоне служебного (сигнального) канала, по которому в соответствующую базовую станцию поступают сигналы вызовов, включая идентификацию вызываемого абонента, а также номер вызывающего абонента;

– они не обеспечивают непрерывной связи при пересечении абонентами границ зон радиоприкрытия базовых станций. «Эстафетная передача» заменена операцией повторного вхождения в сеть при ухудшении качества связи, обусловленного переходом пользователя из одной зоны в другую;

– наделение базовых станций функциями локального управления сотами путём непосредственного соединения абонентов, находящихся в зоне обеспечения, через локальный коммутатор, а также подключением подвижных пользователей к местной автоматической телефонной станцией (АТС), имеющей прямые выходы на локальный коммутатор базовой станции или через диспетчерский пункт.

15 ноября 2011 в 14:24

Мобильная базовая станция на КАМАЗе

  • Блог компании ВымпелКом (Билайн)

Мобильная базовая станция - это почти обычная сота, установленная на автошасси и снабженная кучей устройств для обеспечения автономности работы. У «Билайна» несколько таких мобильных станций на платформах различной грузоподъёмности. Они активно используются для создания покрытия или его уплотнения там, где это позарез нужно.

Что внутри машины?

  • Приёмо-передающие устройства (на 900 МГц, 1800 МГц или 2100 МГц). Проще говоря, абонентская .
  • Радиорелейное или спутниковое оборудование для связи с основной инфраструктурой «Билайна».
  • Телескопическая гидравлическая, либо сборно-разборная антенная опора, на которой устанавливаются приемо-передающие антенны.
  • Дизель-генератор, позволяющий работать автономно. Когда есть возможность, станция подключается к местной электросети, когда нет - работает автономно. Четверо суток для маленькой станции (чаще больше) и 12 суток для КАМАЗа в «автономке» - это норма.
  • Кондиционеры и устройства нагрева воздуха для обеспечения нормального терморежима для оборудования и персонала (потому что мобильные станции могут работать и в сильный мороз, и в жару).

Есть ещё такие штуки?

Это первое отечественное действительно мобильное решение. Да, до неё оборудование устанавливали на машинах, но оно отличалось рядом особенностей, например, очень долгим развёртыванием на месте. Наша, благодаря гидравлической опоре для антенны, разворачивается за 15 минут где угодно (большие станции разворачиваются за 40-50 минут). Сейчас у «Билайна» несколько мобильных базовых станций: в Москве на КАМАЗе, в регионах - на прицепах.

Зачем нужна МБС?

Во-первых , для локального увеличения ёмкости сети сотовой связи. Обычно - на массовые мероприятия, где нужно улучшить сервис. В таком раскладе станция способна «раздавать» вокруг себя как обычное голосовое покрытие, так и обеспечивать 3G-Интернет и другие сервисы.
Примеры: авиасалон «МАКС» в Подмосковье, Финал Лиги Чемпионов УЕФА на стадионе «Лужники» в Москве в мае 2008 г., ежегодные празднования Дня Победы, Дня Города, ежегодные Новогодние массовые празднования в парках отдыха и на городских площадях.

Во-вторых , машина может работать там, где сотового покрытия нет и не планируется, причём достаточно далеко от инфраструктуры оператора и обжитых мест вообще.
Например, на месте трагедии, связанной с затоплением теплохода «Булгария» в акватории Куйбышевского водохранилища в Республике Татарстан, на сабантуе в Башкортостане.

А подробнее?

6-7 июля 2011 В Учалинском районе республики Башкортостан проходит праздник весны (Сабантуй) в деревне Калканово на берегу озера Калкан. Сотовая связь на территории празднования отсутствует у всех операторов. Население деревни 395 человек, ориентировочное количество людей, посетивших праздник - 2000 человек. За две недели до праздника начинаются согласования, затем станция выезжает на место и в течение часа развёртывается и переходит в полностью функциональный режим. Экипаж - два человека: водитель-механик и инженер. Живут они непосредственно в машине, где есть два спальных места. Питаются едой и сухпайками «из дома», купленными на «командировочные», плюс имеют средства закупать горячую еду непосредственно на празднике. Фазовые центры антенн находятся на высоте 10-15 метров над землёй, поэтому на уровне машины плотность излучения в сотни раз ниже допустимого по стандарту, а внутри уменьшается ещё в сотни раз, и носить не нужно. За время работы БС суммарный трафик составил 385,14 Эрланг, причём пару раз были перегрузки (1 Эрланг – это один час разговора абонента в сети с учётом времени дозвона, то есть в общей сложности абоненты говорили примерно 16 суток за 2 дня: разумеется, это распределение было неравномерным).

Сколько бумажек нужно подписать, чтобы выехать из гаража?

Перед включением в эфир оборудования МБС необходимо рассчитать, а затем согласовать место установки, стандарт, диапазон, количество необходимых радиочастот, высоту антенн с регулятором, ввиду того, что в эпицентре событий могут проводить работы базовые станции других операторов и оборудование иных ведомств. Потом нужно внести данные в оборудование БС и сконфигурировать его, чтобы работа МБС должна быть интегрирована в существующую сеть оператора. Штатное использование предполагает пару недель на выезд, разведку и все согласования. Аварийные случаи – около двух-трёх суток. Теоретически этот процесс может быть форсирован до 1 дня. «Мгновенная» установка базовой станции в новом месте технологически возможна, но нелегальна, так как требуется разрешение на частоты: если делать без него, это грозит отзывом лицензии.

Как насчёт конкретных ТХ?

Например, у нас есть КамАЗ-53229, где в изотермическом кузове-фургоне находится антенна с опорой высотой 17 метров. Шасси предназначено для движения только по твёрдому покрытию (дороги, поле и т.п.), развёртывается без растяжек. На опоре находятся 3 секторные антенны высотой 1,3 метра, антенна РРС диаметром 0,6 метра. Опора оборудована устройством дистанционной юстировки антенны РРС, на крыше кузова установлена дополнительная трубостойка для монтажа антенны РРС. Изотермический кузов имеет три отсека – отсек аппаратной БС, отсек оборудования антенной опоры и отсек дизель-электрического генератора. В аппаратном отсеке кузова размещается 8 стоек технологического оборудования высотой до 1,9 м (стойки БС, ЭПУ с аккумуляторами, систем передачи). Высота отсека
аппаратной БС 2,5 метра. В составе имеет перевозимую земную станцию спутниковой связи (ПЗССС) с антенной диметром 1,2 метра с системой автоматического наведения на борт спутникового ретранслятора. ПЗССС обеспечивает привязку МБС к сети коммутации посредством четырех цифровых потоков 2 Мб/с.

Аппаратный отсек кузова оборудован системами кондиционирования, обогрева и приточно-вытяжной вентиляции. В составе имеет систему автономного электроснабжения – дизельэлектрический генератор мощностью 16 кВт с топливными баками. Время автономной работы в обычном режиме не менее 12 суток. Плюс кабели длиной 140 метров для подключения МБС к трехфазной сети внешнего
электроснабжения. Аппаратная БС оборудована рабочим местом оператора, а также двумя спальными местами (в помещении аппаратной БС и кабине автомобиля). Экипаж МБС – 2 человека. Имеется возможность использовать для подключения атмосферные лазеры, но в текущей конфигурации они не установлены. Станция приспособлена для российских условий: стойка к жаре, холоду, медведям и вандалам.

Растёт ли ёмкость сети при развёртывании рядом мобильной БС?

В общем случае – да, растёт. Но, например, если развернуть БС в районе, где покрытие уже достигло теоретического максимума по частотному распределению (центр мегаполиса, например), улучшится только уровень сигнала, но не количество одновременно звонящих абонентов.

Что дальше?

Скорее всего, скоро можно будет добиться большей автономности базовой станции, в частности, за счёт ёмких элементов питания или альтернативной энергии (у нас есть стационарные