Домой / Группы / Понятие о статической и динамической устойчивости. Области статической устойчивости энергосистемы

Понятие о статической и динамической устойчивости. Области статической устойчивости энергосистемы

Одним из главных условий надёжной работы ЭЭС является её устойчивость, т.е. способность ЭЭС восстанавливать исходный или близкий к исходному установившийся режим после его нарушения и после соответствующего переходного режима. Иными словами, устойчивость - это способность ЭЭС сохранять синхронную работу.

Различают два вида неустойчивости:

  • 1. «Самораскачивание», которое проявляется в нарастающих колебаниях параметров режима, так называемая колебательная неустойчивость.
  • 2. «Сползание» - апериодический уход от положения равновесия, так называемая апериодическая неустойчивость.

Причины раскачивания (колебательной неустойчивости): Э4

  • · Неправильная настройка АРВ СГ, когда регулирование возбуждения вместо демпфирования раскачивает режим.
  • · Неудачный выбор параметров системы регулирования мощности турбин.
  • · Работа генераторов на сеть с большой емкостью: линии с высокой степенью УПК, протяженные линии в режимах холостого хода или малых нагрузок.

Основной причиной апериодической неустойчивости является перегрузка электропередач.

Различают следующие три вида устойчивости:

  • · Статическая устойчивость (СУ) - это способность ЭЭС сохранять синхронную работу после малого возмущения режима.
  • · Динамическая устойчивость (ДУ) - это способность ЭЭС сохранять синхронную работу после большого возмущения режима. В тех случаях, как правило, когда возникает небаланс активных мощностей на валу хотя бы одного из генераторов.
  • · Результирующая устойчивость (РУ) - это способность ЭЭС восстанавливать синхронную работу после кратковременного её нарушения (после кратковременного, допустимого по условиям эксплуатации асинхронного режима).

Исследование статической устойчивости имеет обычно целью определение параметров предельного по устойчивости режима. Зная эти параметры и параметры исходного (планируемого) режима, легко можно определить запас статической устойчивости.

Характер нарушения апериодической СУ и ее обеспечения определяется с помощью характеристик генератора и турбины (рис. В.3).

д -Угол нагрузки

Рис.

Как отмечалось, устойчивы только те режимы, рабочие точки которых находятся на восходящей ветви характеристики генератора (точка «а»).

Наоборот, в точке «в» работа невозможна, режим неустойчив. Например, при малом увеличении угла д на валу ротора появляется ускоряющий небаланс. Под его действием ротор еще больше ускоряется, угол продолжает увеличиваться и т.д., процесс необратим. При уменьшении угла также возвращение в исходную точку не происходит, а угол продолжает уменьшаться.

Таким образом, падающая ветвь характеристики генератора является зоной апериодической неустойчивости.

Действительно, при этом малое увеличение угла Дд (точка а1) приведет к увеличению тормозящей электрической мощности. На валу генератора появляется тормозящий небаланс мощности. Под его действием скорость вращения уменьшится и угол уменьшится (т.е. исходный режим восстановится). Аналогично происходит при уменьшении угла.

В установившемся режиме работы генератора механический момент M 1 на валу первичного двигателя (паровая или гидротурбина) равен электромагнитному моменту M, развиваемому генератором (рис. 17.3). Момент М 1 не зависит от угла поворота ротора и поэтому изображен горизонтальной прямой, которая пересекается с характеристикой M = f(и) в точках 1 и 2 .

В этих точках М 1 = М. Это необходимое условие для установившегося движения, но не всегда для устойчивого. Устойчивая работа будет только в точке 1 потому, что если ротор по какой-то причине повернется на угол больший чем и 1 и станет и 1 + Ди (точка 1 "), то электромагнитный момент возрастает до значения M+ДM, что будет больше чем момент у первичного двигателя (M+ДM)> M 1 , это заставит ротор затормозиться и вернуться в положение 1 с углом и 1 . Если при работе в точке 1 угол и в результате случайного возмущения уменьшится, то при прекращении действия этого возмущения генератор также вернется в режим работы в точку 1 .

В точке 2 работа будет неустойчивой. Если при работе в точке 2 угол и увеличится на Ди (точка 2 ”), то момент генератора уменьшится и станет меньше момента первичного двигателя (M-ДM) < M 1 , ротор будет ускоряться, угол и еще больше возрастет и т. д. В результате генератор выйдет из синхронизма, перейдет в двигательный режим и т. д. Если же при работе в точке 2 угол и уменьшится, то вследствие нарушения баланса моментов будет уменьшаться и далее, пока этот баланс M = M 1 не восстановится в точке 1 .

Таким образом, работа неявнополюсного генератора устойчива в области 0 < и < 90° и неустойчива в области 90 < и < 180°. Поэтому угол

и = 90° является критическим углом, и кр = ±90°.

Расчеты устойчивости ЭЭС имеют следующие основные цели:

  • 1. Определение уровня устойчивости ЭЭС и сопоставление его с желаемым. При этом выявляется та область исходных режимов и те повреждения, при которых требуется противоаварийное управление.
  • 2. Обеспечить и повысить устойчивость ЭЭС можно путём воздействия на переходные режимы за счёт так называемых управляющих воздействий (УВ), исходящих от устройств автоматики: 1.релейной защиты, автоматического повторного включения (АПВ), АВР, 2.противоаварийной автоматики (ПАА) или 3.персонала.

Системы релейной защиты и АПВ обеспечивают простейшие УВ: отключение повреждённых элементов системы, различные виды повторных включений. Однако в современных сложных ЭЭС лишь эти простейшие УВ часто не обеспечивают устойчивость, поэтому приходится использовать более сложные УВ, обеспечиваемые системой ПАА, такие, как отключение генераторов, отключение нагрузки и другие, которые будут рассмотрены далее.

Характер протекания переходных режимов непосредственно влияет на условия работы ЭЭС, определяя надёжность её работы, устойчивость и живучесть. При отсутствии надлежащего управления или неправильном управлении переходными режимами в ЭЭС развивается системная авария, являющаяся самой тяжёлой, поскольку приводит к нарушению электроснабжения большого числа потребителей, погашению электростанций.


Статическая устойчивость

Под статической устойчивостью понимается способность энерго­системы сохранять синхронную параллельную работу генераторов при малых возмущениях и медленных изменениях параметров ре­жима.

На рис. 9.2, а показана схема электрической системы, состоя­щей из электростанции ЭС, линии электропередачи и приемной энер­госистемы бесконечно большой мощности. Известно, что электриче­ская мощность Р, развиваемая электростанцией и потребляемая на­грузкой энергосистемы, равна:

где Е т - ЭДС генераторов электростанции; U c - напряжение энер­госистемы; Хрез - результирующее сопротивление генераторов элек­тростанции, линии электропередачи и энергосистемы.

Если ЭДС генераторов Е г, напряжения системы U c и Х 9а не­изменны, то электрическая мощность, передаваемая электростанци­ей в энергосистему, зависит от угла между векторами £ г и 0 с (рис. 9.2,6). Эта зависимость имеет синусоидальный характер, она получила название угловой характеристики электропере­дачи (рис. 9.2, в).

Максимальное значение мощности, которая может быть передана в энергосистему, называется пределом статической устойчивости:

Мощность турбины не зависит от угла в и определяется толь­ко количеством энергоносителя, поступающего в турбину.

Условию (9.3) соответствуют точки / я 2 на рис. 9.2, в. Точка I является точкой устойчивого равновесия, а точка 2 - неустойчиво­го равновесия. Область устойчивой работы определяется диапазоном углов б от 0 до 90 е. В области углов, больших 90°, устойчивая па­раллельная работа невозможна. Работа на предельной мощности, соответствующей углу 90°, не производится, так как малые возму­щения, всегда имеющиеся в энергосистеме колебания нагрузки, мо­гут вызвать переход в -неустойчивую область и нарушение синхро­низма. Максимальное допустимое значение передаваемой мощности принимается меньшим предела статической устойчивости. Запас оце­нивается коэффициентом запаса статической устой­чивости, %:

Запас статической устойчивости для электропередачи в нормаль­ном режиме должен составлять не менее 20%, а в кратковремен­ном послеаварийном режиме (до вмешательства персонала в регу­лировании режима) - не менее 8 % .

Динамическая устойчивость

Под динамической устойчивостью понимается способность энер­госистемы сохранять синхронную параллельную работу генераторов при значительных внезапных.возмущениях, возникающих в энерго­системе (КЗ, аварийное отключение генераторов, линий, трансфор­маторов) . Для оценки динамической устойчивости применяется метод площадей . В качестве примера рассмотрим режим ра­боты двухцепной электропередачи, связывающей электростанцию с энергосистемой, при КЗ на одной из линий с отключением повреж­денной линии и ее успешным АПВ (рис. 9.3, а).

Исходный режим электропередачи характеризуется точкой /, расположенной на угловой характеристике /, которая соответствует исходной схеме электропередачи (рис. 9.3,6). При КЗ в точке К1 на линии W2 угловая характеристика электропередачи занимает положение //. Снижение амплитуды характеристики // вызвано зна­чительным увеличением результирующего сопротивления Х ре, меж­ду точками приложения Е г и U a . В момент КЗ происходит. сброс электрической" мощности на величину АР за счет снижения напря­жения на шинах станции (точка 2 на рис. 9.3,6). Сброс электриче­ской мощности зависит от вида КЗ и его места. В предельном слу­чае при трехфазном КЗ на шинах станции происходит сброс мощ­ности до нуля. Под действием избытка механической мощности турбин над электрической мощностью роторы генераторов станции начинают ускоряться, а угол 6" увеличивается. Процесс изменения мощности идет по характеристике //. Точка 3 соответствует мо­менту отключения поврежденной линии с двух сторон устройствами релейной защиты РЗ. После отключения линии режим электропере­дачи характеризуется точкой 4, расположенной на характеристи-

ке, которая соответствует схеме электропередачи с одной отклю­ченной линией. За время изменения угла от 6i до бз роторы генера­торов станции приобретают дополнительную кинетическую энергию. Эта энергия пропорциональна площади, ограниченной линией Р т, характеристикой // и ординатами в точках 1 п 3. Эта площадь по­лучила название площадки ускорения S y . В точке 4 начи­нается процесс торможения роторов, так как электрическая мощ­ность больше мощности турбин. Но процесс торможения происхо­дит с увеличением угла в. Увеличение угла в будет продолжаться до тех пор, пока вся запасенная кинетическая энергия не перейдет в потенциальную. Потенциальная энергия пропорциональна площа­ди, ограниченной линией Р т и угловыми характеристиками после-аварийного режима. Эта площадь получила название площадки торможения S T . В точке 5 по истечении некоторой паузы после отключения линии W2 срабатывает устройство АПВ (предполага­ется использование трехфазного быстродействующего АПВ с малой паузой). При успешном АПВ процесс увеличения угла будет про­должаться по характеристике Z, 1 соответствующей исходной схеме электропередачи. Увеличение угла прекратится в точке 7, которая характеризуется равенством площадок S y и S T . В точке 7 переход­ный процесс не останавливается: вследствие того что электрическая мощность превышает мощность турбин, будет продолжаться процесс торможения по характеристике /, но только с уменьшением уг­ла. Процесс установится в точке /после нескольких колебаний око­ло этой точки. Характер изменения угла б во времени показан на рис. 9.3, в.

С целью упрощения анализа мощность турбин Р т во время пе­реходного процесса принята неизменной. В действительности она несколько меняется вследствие действия регуляторов частоты вра­щения турбин.

Таким образом, анализ показал, что в условиях данного при­мера сохраняется устойчивость параллельной работы. Необходимым условием динамической устойчивости является выполнение условий статической устойчивости в послеаварийном режиме. В рассмотрен­ном примере это условие выполняется, так как мощность турбин не превышает предела статической устойчивости.

Устойчивость параллельной работы была бы нарушена, если бы в переходном процессе угол 6 перешел значение, соответствующее точке 8. Точка 8 ограничивает справа максимальную площадку торможения. Угол, соответствующий точке 8, получил название критического 6 KP . При переходе этой границы наблюдается лавинное увеличение угла б, т. е. выпадение генераторов из син­хронизма.

Запас динамической устойчивости оценивается коэффициентом, равным отношению максимально возможной площадки торможения к площадке ускорения:

При £ 3 ,дин>1 режим устойчив, при А 3 ,дии<1 происходит нару­шение устойчивости. В случае неуспешного АПВ (включение линии на неустранившееся КЗ) процесс из точки 5 перейдет на характери­стику //. Нетрудно убедиться, что в условиях данного примера устойчивость после повторного КЗ и последующего отключения линии не сохраняется.

Установившийся режим работы энергосистемы является квазиустановившемся, так как характеризуется малыми изменениями перетоков активной и реактивной мощности, значений напряжений и частоты. Таким образом, в энергосистеме постоянно один установившийся режим работы переходит к другому установившемуся режиму работы. Малые изменения режима работы энергосистемы возникают вследствие увеличения или снижения потребления электроустановок потребителя. Малые возмущения, вызывают реакцию системы в виде колебаний скорости вращения роторов генераторов, которые могут быть нарастающими или затухающими, колебательными или апериодическими. Характер получаемых колебаний определяет статическую устойчивость данной системы. Статическая устойчивость проверяется при перспективном и рабочем проектировании, разработке специальных устройств автоматического регулирования (расчеты и эксперименты), вводе в эксплуатацию новых элементов системы, изменении условий эксплуатации (объединение систем, ввод новых электростанций, промежуточных подстанций, линий электропередачи).

Под понятием статической устойчивости понимают способность энергосистемы восстанавливать исходный или близкий к исходному режим работы энергосистемы после малого возмущения или медленных изменениях параметров режима.

Статическая устойчивость является необходимым условием существования установившегося режима работы системы, но не предопределяет способность системы продолжать работу при возникновении конечных возмущений, например, коротких замыканий, включения или отключения линий электропередачи.

Различают два вида нарушений статической устойчивости: апериодическое (сползание) и колебательное (самораскачивание).

Статическая апериодическая (сползание) устойчивость связана с изменением баланса активной мощности в энергосистеме (изменение разности между электрической и механической мощностями), что приводит к росту угла δ, в результате может произойти выпадение машины из синхронизма (нарушение устойчивости). Угол δ изменяется без колебаний (апериодически), сначала медленно, а затем всё быстрее, как бы сползая (см. рис. 1,а).

Статическая периодическая (колебательная) устойчивость связана с настройками автоматических регуляторов возбуждения (АРВ) генераторов. АРВ должны быть настроены таким образом, чтобы исключить возможность самораскачивания системы в широком диапазоне режимов работы. Однако, при некоторых сочетаниях ремонтов (схемно-режимной ситуации) и настройках регуляторов возбуждения могут возникнуть колебания в системе регулирования, вызывающие нарастающие колебания угла δ вплоть до выпадения машины из синхронизма. Это явление и называется самораскачиванием (см. рис. 1,б).

Рис.1. Характер изменения угла δ при нарушении статической устойчивости в виде сползания (а) и самораскачивания (б)

Статическая апериодическая (сползание) устойчивость

Первый этап исследования статической устойчивости – это исследование статической апериодической устойчивости. При исследовании статической апериодической устойчивости предполагается, что вероятность колебательного нарушения устойчивости при увеличении перетока по межсистемным связям очень мала и можно пренебречь самораскачиванием. Для определения области апериодической устойчивости энергосистемы производят утяжеление режима работы энергосистемы. Метод утяжеления заключается в последовательном изменении параметров узлов или ветвей, или их групп заданными шагами с последующим расчетом нового установившегося режима на каждом шаге изменения и выполняется до тех пор, пока обеспечивается возможность расчета.

Рассмотрим простейшую схему сети, которая состоит из генератора, силового трансформатора, линии электропередачи и шин бесконечной мощности (см. рис.2).

Рис.2. Схема замещения расчетной цепи

В рассматриваемом простейшем случае электромагнитная мощность, которую можно передать от генератора к шинам бесконечной мощности, описывается следующим выражением:

В записанном выражении переменная представляет собой модуль линейного напряжения на шинах станции, приведенный к стороне ВН, а переменная - модуль линейного напряжения в точке шин бесконечной мощности.

Рис.3. Векторная диаграмма напряжений

Взаимный угол между вектором напряжения и вектором напряжения обозначается через переменную - , для которого в качестве положительного направления принимается направление против часовой стрелки от вектора напряжения .

Следует отметить, что формула для электромагнитной мощности написана в предположении, что генератор снабжен автоматическим регулятором возбуждения, который контролирует напряжение на стороне генераторного напряжения (), а также для простоты выкладок пренебрегли активным сопротивлением в элементах расчетной схемы.

Анализируя формулу для электромагнитной мощности можно сделать вывод, что величина передаваемой мощности в энергосистему зависит от угла между напряжениями. Данная зависимость получила название угловой характеристикой мощности электропередачи (см. рис.4).

Рис.4. Угловая характеристика мощности

Установившийся (синхронный) режим работы генератора определяется равенством двух моментов, действующих на вал турбогенератора (считаем, что можно пренебречь моментом сопротивления, обусловленным трением в подшипниках и сопротивлением охлаждающей среды): момент турбины Мт , вращающий ротор генератора и стремящийся ускорить его вращение, и синхронный электромагнитный момент Мэм , противодействующий вращению ротора.

Допустим, что в турбину генератора поступает пар, который создает крутящий момент на валу турбины (при некотором приближении он равен внешнему моменту Мвн , передаваемому от первичного двигателя). Установившийся режим работы генератора может быть в двух точках: А и Б, так как в данных точках соблюдается баланс между моментом турбины и электромагнитным моментом с учетом потерь.

точке А увеличение/уменьшение мощности турбины на величину ΔP приведет к увеличению/уменьшению угла d, соответственно. Таким образом, сохраняется равновесие моментов, действующих на вал ротора (равенство момента турбины и электромагнитного момента с учетом потерь), и тем самым нарушение синхронной машины с сетью не происходит.

При работе синхронной машины в точке В увеличение/уменьшение мощности турбины на величину ΔP приведет к уменьшению/ увеличению угла d, соответственно. Таким образом, равновесие моментов, действующих на вал ротора, нарушается. В результате либо генератор выпадает из синхронизма (т. е. ротор начинает вращаться с частотой, отличающейся от частоты вращения магнитного поля статора), либо синхронная машина переходит в точку устойчивой работы (точка А).

Таким образом, из рассмотренного примера видно, что простейшим критерием сохранения статической устойчивости является положительный знак у выражения, которое определяет отношение приращения мощности к приращению угла:

Таким образом, область устойчивой работы определяется диапазоном углов от 0 до 90 градусов, а в области углов от 90 до 180 градусов, устойчивая параллельная работа невозможна.

Максимальное значение мощности, которая может быть передана в энергосистему, называется пределом статической устойчивости, и соответствует значению мощности при взаимном угле 90 градусов:

Работа на предельной мощности, соответствующей углу 90 градусов, не производится, так как малые возмущения, всегда имеющиеся в энергосистеме (например, колебания нагрузки), могут вызвать переход в неустойчивую область и нарушение синхронизма. Максимальное допустимое значение передаваемой мощности принимается меньшим предела статической устойчивости на величину коэффициента запаса статической апериодической устойчивости по активной мощности.

Запас статической устойчивости для электропередачи в нормальном режиме должен составлять не менее 20%. Значение допустимого перетока активной мощности в контролируемом сечении по данному критерию определяется по формуле:

Запас статической устойчивости для электропередачи в послеаварийном режиме должен составлять не менее 8%. Значение допустимого перетока активной мощности в контролируемом сечении по данному критерию определяется по формуле:

Статическая периодическая (колебательная) устойчивость

Неправильно выбранный закон управления или неправильная настройка параметров автоматического регулятора возбуждения (АРВ) может привести к нарушению колебательной устойчивости. При этом нарушение колебательной устойчивости может происходить в режимах не превышающих предельного режима по апериодической устойчивости, что неоднократно наблюдалось в действующих электроэнергетических системах.

Исследование колебательной статической устойчивости сводится к следующим этапам:

1. Составление системы дифференциальных уравнений, которая описывает рассматриваемую электроэнергетическую систему.

2. Выбор независимых переменных и выполнение линеаризации записанных уравнений с целью формирования системы линейных уравнений.

3. Составление характеристического уравнения и определение области статической устойчивости в пространстве регулируемых (независимых) параметров настройки АРВ.

Об устойчивости нелинейной системы судят по затуханию переходного процесса, который определяется корнями характеристического уравнения системы. Для обеспечения устойчивости необходимо и достаточно, чтобы корни характеристического уравнения имели отрицательные вещественные части.

Для оценки устойчивости применяют различные методы анализа характеристического уравнения:

1. алгебраические методы (метод Рауса, метод Гурвица), основанные на анализе коэффициентов характеристического уравнения.

2. частотные методы (метод Михайлова, Найквиста, D-разбиения), основанные на анализе частотных характеристик.

Мероприятия по повышению предела статической устойчивости

Мероприятия по повышению предела статической устойчивости определяются при анализе формулы для определения электромагнитной мощности (формула записана в предположении, что генератор снабжен автоматическим регулятором возбуждения):

1. Применение АРВ сильного действия на генерирующем оборудовании.

Одним из эффективных средств повышения статической устойчивости является применение АРВ генераторов сильного действия. При использовании устройств АРВ генераторов сильного действия угловая характеристика видоизменяется: максимум характеристики смещается в область значений углов больших 90° (с учетом относительного угла генератора).

2. Поддержание напряжения в точках сети с помощью устройств компенсации реактивной мощности.

Установка устройств компенсации реактивной мощности (СК, УШР, СТК и т.п.) для поддержания напряжения в точках сети (устройства поперечной компенсации). Устройства позволяют поддерживать напряжения в точках сети, что благоприятно сказывается на пределе статической устойчивости.

3. Установка устройств продольной компенсации (УПК).

При увеличении длины линии соответственно возрастает ее реактивное сопротивление и вследствие этого существенно ограничивается предел передаваемой мощности (ухудшается устойчивость параллельной работы). Уменьшение реактивного сопротивления длинной линии электропередачи повышает ее пропускную способность. Для уменьшения индуктивного сопротивления линии электропередачи в рассечку линии устанавливают устройство продольной компенсации (УПК), которое представляет собой батарею статических конденсаторов. Таким образом результирующее сопротивление линии уменьшается, тем самым увеличивается пропускная способность.


Реферат

Пояснительная записка содержит 21 страницы, 6 таблиц, 14 рисунков,3 источников литературы, в которой подробно расписана методика расчёта, которая использовалась в данной работе.

Объект исследования: система электропередачи.

Цель работы: получить навыки расчёта электромеханических переходных процессов в системе электропередачи, рассчитать предельное снижение напряжения на шинах асинхронного двигателя, оценить статическую и динамическую устойчивость системы.

  • Введение
  • Исходные данные
  • 1. Рассчитать предел передаваемой мощности генератора Г-1 в систему при нормальном режиме работы
  • 2. Рассчитать аварийный и послеаварийный режимы работы системы
  • 3. Рассчитать предельное снижение напряжения на шинах асинхронного двигателя
  • Заключение

Введение

Устойчивость энергосистемы - это способность ее возвращаться в исходное состояние при малых или значительных возмущениях. По аналогии с механической системой установившийся режим энергосистемы можно трактовать как равновесное положение ее.

Параллельная работа генераторов электрических станций, входящих в энергосистему, отличается от работы генераторов на одной станции наличием линий электропередачи, связывающих эти станции. Сопротивления линий электропередачи уменьшают снихронизирующую мощность генераторов и затрудняют их параллельную работу. Кроме того, отклонения от нормального режима работы системы, которые происходят при отключениях, коротких замыканиях, внезапном сбросе или набросе нагрузки, также могут привести к нарушению устойчивости, что является одной из наиболее тяжелых: аварий, приводящей к перерыву электроснабжения потребителей Поэтому изучение проблемы устойчивости очень важно, особенно применительно к линиям электропередачи переменным током. Различают два вида устойчивости: статическую и динамическую.

Статической устойчивостью называют способность системы самостоятельно восстановить исходный режим при малых и медленно происходящих возмущениях, например при постепенном незначительном увеличении или уменьшении нагрузки.

Динамическая устойчивость энергосистемы характеризует способность системы сохранять синхронизм после внезапных и резких изменений параметров режима или при авариях в системе (коротких замыканиях, отключений часта генераторов, линий или трансформаторов). После таких внезапных нарушений нормальной работы в системе возникает переходный процесс, по окончании которого вновь должен наступить установившийся послеаварийный режим работы.

Именно такие внезапные нарушения в работе СЭС приводят к тяжелым экономическим последствия для населения и промышленных объектов.

Современная энергетика уделяет очень большое внимание борьбе с авариями на линиях, короткими замыканиями, большой вклад делает еще на стадии проектировании СЭС городов и предприятий.

Исходные данные

Схема для расчёта представлена на рисунке 1.

Рисунок 1 - Схема системы электропередачи

Исходные данные для расчёта первой и второй задачи принимаем по таблице в соответствии с номером варианта.

Технические данные трансформаторов:

Тип транс

форматора

Пределы регулиро

ТДЦ-250000/110

ТДЦ-630000/110

Параметры двухцепной воздушной линии электропередачи

Марка провода

Рисунок 2 - Схема системы для расчёта предельного снижения напряжения на шинах асинхронного двигателя

Исходные данные для расчёта третьей задачи принимаем ниже по таблице в соответствии с номером варианта.

Технические данные асинхронного электродвигателя

Номинальные данные

Пусковые характеристики

n 0 , об/мин

ДАЗО 17-39-8/10

Составляем схему замещения системы, которая представлена на рис.1 и рассчитываем индуктивные сопротивления всех элементов:

Рисунок 3 - Схема замещения системы

индуктивное сопротивлении задано,

индуктивное сопротивление трансформаторов:

индуктивное сопротивление ЛЭП:

Все сопротивления схемы замещения приводятся к номинальному напряжению генератора. Сопротивление трансформаторов:

сопротивление ЛЭП:

Определяем суммарное сопротивление системы:

Рассчитываем номинальную реактивную мощность генератора:

Определяем приближённое значение синхронной ЭДС генератора:

Определяем значение коэффициента запаса статической устойчивости:

По данным расчёта строим векторную диаграмму.

Рисунок 4 - Векторная диаграмма

Результаты расчёта заносим в таблицу 3.

Таблица 3

Рисунок 5 - Угловая характеристика мощности

Система является статически устойчивой, так как коэффициент запаса больше 20%. И предел передаваемой мощности генератора в систему достигается при угле д = 90 0 .

Рассчитываем режимы по очереди.

2.1 Расчёт аварийного и послеаварийного режима при однофазном коротком замыкании в точке К-1

2.1.1 Нормальный режим

2.1.2 Аварийный режим

Составляем схему замещения системы при однофазном КЗ

Рисунок 6 - Схема замещения для аварийного режима при однофазном КЗ

Суммарное сопротивление КЗ Х? при однофазном коротком замыкании равно сумме сопротивлению обратной последовательности и сопротивлению нулевой последовательности.

Преобразуем схему замещения системы при однофазном КЗ из соединения "звезда" в соединение "треугольник" со сторонами Х 1 , Х 2, Х 3.

Сопротивление Х 2 и Х 3 могут быть отброшены, т.к. поток мощности отдаваемый генератором в сеть не проходит через эти сопротивления.

Рисунок 7 - Преобразованная схема замещения

Определим суммарное сопротивлении системы:

Где X ? =X 2?+ X 0? - шунт несимметричного КЗ, который включается между началом и концом схемы прямой и обратной последовательности.

Определяем индуктивное сопротивление нулевой последовательности Х 0? :

Определим индуктивное сопротивление обратной последовательности X 2?

Определяем сопротивления шунта КЗ X ? :

X ? =X 2?+ X 0? = 3 +0,097 = 3,097 Ом

Х d?II = 20,2 + 0,1 + 3,5 +0,04 + = 47Ом.

Определяем предел передаваемой мощности генератора в систему:

Изменяя значения угла от 0 до 180 град., рассчитываем соответствующие значения мощности отдаваемой генератором в систему по формуле:

Результаты расчёта заносим в таблицу 4.

Таблица 4

2.1.3 Послеаварийный режим

Составляем схему замещения системы для послеаварийного режима.

Рисунок 8 - Схема замещения для послеаварийного режима при однофазном КЗ

Послеаварийный режим определяется отключением одной цепи ЛЭП, после чего сопротивление изменяется:

Определяем суммарное сопротивлении системы:

Определяем предел передаваемой мощности генератора в систему:

Рассчитываем значение углов:

Т откл = +

Поскольку линия имеет защиту, то через некоторое время она отключится выключателями. Следовательно, выбираем элегазовый выключатель серии ВГБЭ-35 - 110 с временем отключения = 0,07 с. Также должно быть предусмотрены устройства релейной защиты от КЗ. Выбираем токовое реле РТ-40 с временем уставки = 0,08 с.

0,07 + 0,08 = 0,15 с,

Находим время отключения КЗ:

Т откл = 0,07 + 0,15 = 0,22 с.

0,29 ? 0,22, что удовлетворяет условию? Т откл

Изменяя значения угла от 0 до 180 град., рассчитываем соответствующие значения мощности отдаваемой генератором в систему по формуле:

Таблица 5

Результаты расчёта заносим в таблицу 5.

Рисунок 9 - График угловых характеристик мощностей и площади ускорения и торможения при однофазном КЗ

2.2 Расчёт аварийного и послеаварийного режима при трёхфазном коротком замыкание в точке К-2

2.2.1 Нормальный режим

Расчёт нормального режима проведён в задаче 1.

2.2.2 Аварийный режим

Составляем схему замещения системы при трёхфазном КЗ

Рисунок 10 - Схема замещения системы при трёхфазном КЗ

При трёхфазном КЗ в точке К-2 взаимное сопротивление схемы становится бесконечно большим, т.к. сопротивление шунта КЗ Х? (3) = 0. При этом характеристика мощности аварийного режима совпадает с осью абсцисс.

2.2.3 Послеаварийный режим

Схема замещения при трехфазном коротком замыкании и и расчет послеаварийного режима аналогичем послеаварийному режиму, приведенному в п.2.1.3

Рассчитываем значение углов:

Находим предельный угол отключения КЗ д откл:

Рассчитываем предельное время отключения КЗ:

Выбираем соответствующие уставки срабатывания устройств РЗА:

Т откл = +

Поскольку линия имеет защиту, то через некоторое время она отключится выключателями. Следовательно, выбираем элегазовый выключатель серии

ВГТ - 110 с временем отключения = 0,055 с. Также должны быть предусмотрены устройства релейной защиты от КЗ. Выбираем токовое реле РТ-40 с временем уставки = 0,05 с.

Время действия релейной защиты определяется:

0,005 + 0,05 = 0,055 с,

Находим время отключения КЗ:

Т откл = 0,055 + 0,055 = 0,11 с.

0,17 ? 0,11, что удовлетворяет условию? Т откл

Строим в одной координатной плоскости угловые характеристики мощности в нормальном, аварийном и послеаварийном режимах, на графике указываем значение мощности турбины Р 0 . С учётом рассчитанного значения предельного угла отключения КЗ д откл на графике строим площади ускорения и торможения.

Рисунок 11 - График угловых характеристик мощностей и площади ускорения и торможения при трёхфазном КЗ

Для определения динамической устойчивости системы при однофазном КЗ необходимо рассмотреть площади ускорение F уск и торможения F торм. Условием для динамической устойчивости системы является неравенство: F уск? F торм. Невооруженным глазом видно по графику угловой характеристики, что площадь ускорения на порядок больше площади торможения, значит система не является динамически устойчивой. Следовательно, накопленная кинетическая энергия не успевает превратиться в потенциальную, в результате скорость вращения ротора и угол д будут расти и генератор выпадет из синхронизма. Для определения статической устойчивости системы необходимо найти коэффициент запаса. Вычислив коэффициент запаса, можно сделать вывод, что система является статически устойчивой, так как.

Рассчитываем параметры элементов электропередачи и параметры нагрузки, приведённые к базисному напряжению U б = 6 кВ и базисной мощности:

S б = S АД ном = ,

Сопротивление линии:

Индуктивное сопротивление рассеяния магнитной цепи двигателя:

Определяем активную мощность потребляемая в исходном режиме двигателя:

Находим активное сопротивление ротора двигателя в исходном режиме (упрощенная схема замещения асинхронного двигателя):

0,0392 +0,05 = ,

произведём замену на х и получим:

0,05х 2 - х + 0,0392 = 0;

Д = в 2 - 4ас = 1 2 - 4 0,05 0,0392 = 0,99216;

Выбираем наибольший из корней уравнения и получаем:

Определяем реактивную мощность, потребляемую в исходном режиме двигателем:

Определяем напряжение на шинах системы в исходном режиме:

Определяем напряжение на шинах системы, при котором происходит затормаживание двигателя:

Определяем запас статической устойчивости двигателя по напряжению:

Для построения механической характеристики М = f (S) по уравнению

М = , необходимо произвести следующий расчёт:

Определяем номинальную частоту вращения ротора:

n ном = n 0 (1 - S ном) = 741 (1-0,01) = 734 об/мин.

Находим критическое скольжение:

S кр = S ном (5° +) = 0,01 (2,1 +) = 0,039.

Определяем номинальный и максимальный (критический) моменты двигателя:

М ном = = Н м,

М max = 5° М ном = 2,1 6505,3 = 13661, 4 Н м.

Для построения механической характеристики воспользуемся формулой Клосса:

Задавшись различными значениями скольжения S, найдём соответствующие им значения момента М. Результаты расчёта занесем в таблицу 6.

Таблица 6

По данным таблицы 6 строим график М = f (S):

Рисунок 12 - График механической характеристики асинхронного двигателя

Система является статически устойчивой, так как коэффициент запаса двигателя по напряжению больше 20%

Заключение

После выполнения данной курсовой работы были отработаны и закреплены теоретические знания, приобретенные в течение семестра по расчету различных видов КЗ; проверки системы на статическую и динамическую устойчивать; построения угловых характеристик мощности и механической характеристики асинхронных.

Научился выполнять анализ системы на устойчивость, рассчитывать режимы работы системы до, после, и во время различных видов КЗ.

Можно сделать вывод, что расчет электромеханических переходных процессов занимает одну из значимых позиций по расчету и проектировании различных простых и сложных систем энергоснабжения.

Список используемой литературы

1. Куликов Ю.А. Переходные процессы в электрических системах: Учеб. пособие. - Новосибирск: НГТУ, М.: Мир: ООО "Издательство АСТ", 2008. -

2. Боровиков В.Н. и др. Электроэнергетические системы и сети - Москва: Метроиздат., 2010. - 356 с.

3. Аполлонов А.А. Расчет и проектирование релейной защиты и автоматики - С. - Петербург, 2009г. - 159 с.

Подобные документы

    Расчет и анализ установившихся режимов схемы электроэнергетической системы (ЭЭС). Оценка статической устойчивости ЭЭС. Определение запаса статической устойчивости послеаварийного режима системы. Отключение сетевого элемента при коротком замыкании.

    курсовая работа , добавлен 11.09.2015

    Анализ статической устойчивости электроэнергетической системы по действительному пределу передаваемой мощности с учетом нагрузки и без АРВ на генераторах. Оценка динамической устойчивости электропередачи при двухфазном и трехфазном коротком замыкании.

    курсовая работа , добавлен 13.08.2012

    Анализ особенностей электромеханических переходных процессов и критериев устойчивости электрических систем. Расчет предела передаваемой мощности и сопротивлений всех элементов системы с точным приведением к одной ступени напряжения на шинах нагрузки.

    курсовая работа , добавлен 05.09.2011

    Учет явлений переходных процессов на примере развития электромашиностроения. Определение параметров схемы замещения, расчёт исходного установившегося режима. Расчёт устойчивости узла нагрузки, статической и динамической устойчивости (по правилу площадей).

    курсовая работа , добавлен 28.08.2009

    Определение запаса статической устойчивости по пределу передаваемой мощности при передаче от генератора в систему мощности по заданной схеме электропередачи. Расчет статической и динамической устойчивости. Статическая устойчивость асинхронной нагрузки.

    курсовая работа , добавлен 12.06.2011

    Параметры элементов электропередачи. Схема замещения нормального режима (прямая последовательность). Аварийное отключение при двухфазном коротком замыкании. Преобразованная замещающая схема обратной последовательности. Расчет послеаварийного режима.

    курсовая работа , добавлен 13.12.2012

    Составление эквивалентной электрической схемы. Расчёт аналитического режима электропередачи. Построение угловой характеристики активной мощности электропередачи, оценка запаса устойчивости. Составление параметров регулирования при замыкании системы.

    курсовая работа , добавлен 12.12.2012

    Определение основных параметров электростанций, составление комплексной схемы замещения и расчет ее параметров. Критическое напряжение и запас устойчивости узла нагрузки по напряжению в аварийных режимах энергосистемы с АРВ и без АРВ на шинах генераторов.

    курсовая работа , добавлен 07.08.2011

    Расчет установившихся режимов электрической системы. Определение критического напряжения и запаса устойчивости узла нагрузки по напряжению в аварийных режимах энергосистемы с АРВ и без АРВ на генераторах. Комплексная схема замещения, расчет параметров.

    курсовая работа , добавлен 09.03.2016

    Определение тока холостого хода, сопротивлений статора и ротора асинхронного двигателя. Расчет и построение механических и электромеханических характеристик электропривода, обеспечивающего законы регулирования частоты и напряжения обмотки статора.

УСТОЙЧИВОСТЬ ЭНЕРГОСИСТЕМ

Устойчивость энергосистем - способность сохранять синхронизм между электростанциями, или, другими словами, возвращаться к установившемуся режиму после различного рода возмущений.

Связь - последовательность элементов, соединяющих две части энергосистемы. Данная последовательность может включать в себя кроме линий электропередачи трансформаторы, системы (секции) шин, коммутационные аппараты, рассматриваемые как сетевые элементы.

Сечение - совокупность таких сетевых элементов одной или нескольких связей, отключение которых приводит к полному разделению энергосистемы на две изолированные части.

Схема и режим энергосистемы

Исходя из требований к устойчивости, схемы энергосистемы подразделяются на нормальные, когда все сетевые элементы, определяющие устойчивость, находятся в работе, и ремонтные, отличающиеся от нормальной тем, что из-за отключенного состояния одного или нескольких элементов электрической сети (а при эксплуатации - также из-за отключенного состояния устройств противоаварийной автоматики) уменьшен максимально допустимый переток в каком-либо сечении.

Различают установившиеся и переходные режимы энергосистем.

К установившимся относятся режимы, которые характеризуются неизменными параметрами. Медленные изменения режима, связанные с внутрисуточными изменениями электропотребления и генераций, нерегулярными колебаниями мощностей, передаваемых по связям, работой устройств регулирования частоты и активной мощности и т. п., рассматриваются как последовательность установившихся режимов.

К переходным относятся режимы от начального возмущения до окончания вызванных им электромеханических процессов (с учетом первичного регулирования частоты энергосистемы).

При эксплуатации исходя из требований к устойчивости энергосистем перетоки мощности в сечениях в установившихся режимах подразделяются следующим образом:

нормальные (наибольший допустимый переток называется максимально допустимым);

вынужденные (наибольший допустимый переток называется аварийно допустимым).

Вынужденные перетоки допускаются для предотвращения или уменьшения ограничений потребителей, потери гидроресурсов, при необходимости строгой экономии отдельных видов энергоресурсов, неблагоприятном наложении плановых и аварийных ремонтов ос­новного оборудования электростанций и сети, а также в режимах минимума нагрузки при невозможности уменьшения перетока из-за недостаточной маневренности АЭС (кроме сечений, примыкающих к АЭС).

При проектировании перетоки мощности в сечениях при установившихся режимах подразделяются следующим образом:

нормальные (наибольший допустимый переток называется максимально допустимым),

утяжеленные.

Утяжеленным считается переток, характеризующийся неблаго приятным наложением ремонтов основного оборудования электростанций в режимах максимальных и минимальных нагрузок, если общая продолжительность существования таких режимов в течение года не превышает 10 %.

Наиболее тяжелые возмущения, которые учитываются в требованиях к устойчивости энергосистем, называемые нормативными возмущениями, подразделены на три группы: I, II и III. В состав групп входят следующие возмущения:

а) короткое замыкание (КЗ) с отключением элемента(ов) сети.

Таблица 1. Распределение по группам возмущений

Возмущения

Группы нормативных возмуще­ний в сетях с ном. напряжением, кВ

КЗ на сетевом элементе, кроме системы (секции) шин

Отключение сетевого элемента основ­ными защитами при однофазном КЗ с успешным АПВ (для сетей 330 кВ и выше - ОАПВ, 110-220 кВ - ТАПВ)

То же, но с неуспешным АПВ* 2

Отключение сетевого элемента основ­ными защитами при трехфазном КЗ с успешным и неуспешным АПВ* 2

Отключение сетевого элемента резерв ными защитами при однофазном КЗ с успешным и неуспешным АПВ* 2

Отключение сетевого элемента основ ными защитами при двухфазном КЗ на землю с неуспешным АПВ* 2

Отключение сетевого элемента действи­ем УРОВ при однофазном КЗ с отказом одного выключателя* 4

То же, но при двухфазном КЗ на землю

То же, но при трехфазном КЗ

КЗ на системе (секции) шин

Отключение СШ с однофазным КЗ, не связанное с разрывом связей между узлами сети

То же, но с разрывом связей

Примечание. Расчетная длительность КЗ принимается по верхней границе фактических значений. При проектировании должны приниматься меры, обеспечивающие при работе основной защиты длительности КЗ, не превышающие следующих значений:

Номинальное напряжение, кВ 110 220 330 500 750 1150

Время отключения КЗ, с 0,18 0,16 0,14 0,12 0,10 0,08

б) скачкообразный аварийный небаланс активной мощности по любым причинам: отключение генератора или блока генераторов с общим выключателем, крупной подстанции, вставки постоянного тока (ВПТ) или крупного потребителя и др.

Таблица 2. Распределение небалансов по группам возмущений

Кроме того, в группу III включаются следующие возмущения:

в) одновременное отключение двух ВЛ , расположенных в общем коридоре более чем на половине длины более короткой линии, в результате возмущения группы I в соответствии с табл. 1;

г) возмущения групп I и II с отключением элемента сети или генератора , которые вследствие ремонта одного из выключателей приводят к отключению другого элемента сети или генератора, подключенных к тому же распредустройству.

Коэффициент запаса устойчивости по активной мощности

Коэффициент запаса статической (апериодической) устойчивости активной мощности в сечении K р вычисляется по формуле:

где Р пр - предельный по апериодической статической устойчивости переток активной мощности в рассматриваемом сечении;

Р-переток в сечении в рассматриваемом режиме, Р > 0;

∆Р нк - амплитуда нерегулярных колебаний активной мощности в этом сечении (принимается, что под действием нерегуляр­ных колебаний переток изменяется в диапазоне Р ± ∆Рнк).

Запас устойчивости по активной мощности может быть задан также в именованных единицах, ∆Рзап = Рпр - (Р + ∆Рнк).

Значение амплитуды нерегулярных колебаний активной мощно­сти устанавливается для каждого сечения энергосистемы (в том чис­ле частичного) по данным измерений. При отсутствии таких данных расчетная амплитуда нерегулярных колебаний активной мощности сечения может быть определена по выражению:

где Р н1 , Р н2 - суммарные мощности нагрузки с каждой из сторон рас­сматриваемого сечения, МВт;

коэффициент К принимается равным 1,5 при ручном регулиро­вании и 0,75 при автоматическом регулировании (ограничении) пе­ретока мощности в сечении.

Амплитуда нерегулярных колебаний, найденная для сечения, может быть распределена по частичным сечениям в соответствии с коэффициентами распределения мощности в этом сечении.

Вычисление предельного по статической устойчивости перетока в сечении осуществляется утяжелением режима (увеличением перетока). При этом рассматриваются траектории утяжеления режима, представляющие собой последовательности установившихся режимов, которые при изменении некоторой группы параметров по­зволяют достичь границы области статической устойчивости.

Следует рассматривать увеличение перетока в сечении для ряда траекторий утяжеления, которые характерны для данной энергосис­темы и различаются перераспределением мощности между узлами, находящимися по разные стороны рассматриваемого сечения. Зна­чение Р п определяется по траектории, которой соответствует наи­меньшая предельная мощность.

Рассматриваются, как правило, сбалансированные по мощности способы утяжеления режима, т. е. такие, при которых частота оста­ется практически неизменной.

Перетоки, предельные по статической устойчивости, и перетоки, допустимые в послеаварийных режимах, определяются с учетом перегрузки оборудования (в частности по току ротора генераторов), допустимой в течение 20 мин. Большую перегрузку, допустимую в течение меньшего времени, можно учитывать, если она обеспечивается соответствующим обо­рудованием и если эта перегрузка оперативно или автоматически ликвидируется за допустимое время благодаря снижению перетока в сечении (автоматический пуск гидрогенераторов, перевод их из компенсаторного режима в активный и т. п.).

В эксплуатации для контроля соблюдения нормативных запасов устойчивости следует, как правило, использовать значения перетоков активной мощности.

При необходимости максимально допустимые и аварийно допу­стимые перетоки задаются как функции от режимных параметров (загрузки отдельных электростанций и/или числа работающих гене­раторов, перетоков в других сечениях, напряжений в узловых точках и др.). Такие параметры включатся в число контролируемых.

В зависимости от конкретных условий в качестве контролируе­мых могут использоваться и другие параметры режима энергосисте­мы, в частности, значения углов между векторами напряжений по концам электропередачи. Допустимые значения контролируемых параметров устанавливаются на основе расчетов.

Коэффициент запаса по напряжению

Значения коэффициента запаса по напряжению К ц отно­сятся к узлам нагрузки и вычисляются по формуле:

где U- напряжение в узле в рассматриваемом режиме;

Uкр- критическое напряжение в том же узле, соответствующее гра­нице статической устойчивости электродвигателей. Критическое напряжение в узлах нагрузки 110 кВ и выше при от­сутствии более точных данных следует принимать равным большей из двух величин: 0,7 Uном и 0,75 Uнорм, где Uнорм - напряжение в рассматриваемом узле нагрузки при нормальном режиме энергосистемы.

Для контроля за соблюдением нормативных запасов по на­пряжению в узле нагрузки в эксплуатационной практике могут ис­пользоваться напряжения в любых узлах сети энергосистемы. Допу­стимые значения напряжений в контролируемых узлах устанавлива­ются расчетами режимов энергосистемы.

ТРЕБОВАНИЯ К УСТОЙЧИВОСТИ ЭНЕРГОСИСТЕМ

По условиям устойчивости энергосистем нормируются ми­нимальные коэффициенты запаса статической апериодической ус­тойчивости по активной мощности в сечениях и по напряжению в узлах нагрузки. Кроме того, устанавливаются группы возмущений, при которых должны обеспечиваться как динамическая устойчивость, так и нормируемые коэффициенты запаса статической устойчивости в послеаварийных режимах.

В области допустимых режимов должно быть обеспечено отсут­ствие самораскачивания. Если самораскачивание проявляется, то должны приниматься меры по устранению его причин, а оперативно должно быть дополнительно разгружено сечение, в котором наблюдаются колебания, до исключения этих колебаний.

Допустимые перетоки определяются также допустимыми токо­выми нагрузками (перегрузками с учетом их длительности) обору­дования в заданном и в нормативных послеаварийных режимах и другими имеющимися ограничениями.

Таблица 3. Показатели устойчивости должны быть не ниже указанных:

Режим, переток в сечении

Минималь­ные коэффи­циенты запа­са по актив­ной мощно­сти

Минималь­ные коэф­фициенты запаса по напряже­нию

Группы возмущений, при которых должна обеспе­чиваться устойчивость энергосистемы

в нормаль­ной схеме

в ремонт­ной схеме

Нормальный Утяжеленный Вынужденный

При отключении элемента сети 750 кВ и выше, в том числе в результате неуспешного АПВ после однофазного КЗ, возможно применение ПА для обеспечения устойчивости, но без воздействия на разгрузку АЭС и при объеме нагрузки, отключаемой ПА, не более 5-7 % нагрузки приемной энергосистемы (большее число относится к энергосистеме, меньшее - к энергообъединению).При проектировании энергосистем в нормальной схеме и при нормальном перетоке устойчивость при возмущении группы I в сети 500 кВ и ниже должна обеспечиваться без применения ПА.

При эксплуатации энергосистем в нормальной схеме и при нор­мальном перетоке в случае возмущения группы I устойчивость дол­жна обеспечиваться без применения ПА, за исключением тех случа­ев, когда:

    выполнение требования приводит к необходимости ограничения потребителей, потери гидроресурсов или к ограничению загрузки (запиранию мощности) отдельных электростанций, в том числе АЭС;

    в результате возмущения предел статической устойчивости в се­чении уменьшается более чем на 25%.

В указанных случаях устойчивость должна обеспечиваться без воздействия ПА на разгрузку АЭС, если возможны другие управля­ющие воздействия.

Послеаварийный режим после нормативных возмущений должен удовлетворять следующим требованиям:

    коэффициенты запаса по активной мощности - не менее 0,08;

    коэффициенты запаса по напряжению - не менее 0,1;

    токовые перегрузки сетевых элементов и генераторов не превышают значений, допустимых в течение послеаварийного режима.

Длительность послеаварийного режима определяется временем, необходимым диспетчеру для восстановления условий нормального режима, не большим 20 мин. В течение этого времени возникновение дополнительных возму­щений (т. е. наложение аварии на аварию) не учитывается.

Динамическая устойчивость должна быть обеспечена для максимально допустимых перетоков в сечении, увеличенных на ∆.

Устойчивость может не сохраняться в следующих случаях: при возмущениях более тяжелых чем нормативные в данных схемно-режимных условиях;

    если при возмущении, приводящем к ослаблению сечения, пре­дел статической апериодической устойчивости в рассматриваемом сечении не превышает утроенной амплитуды нерегулярных колеба­ний мощности или уменьшается более чем на 70 %;

    если аварийный небаланс мощности приводит к приращению мощности в сечении, превышающем 50 % предела статической апе­риодической устойчивости в рассматриваемом сечении.

При не сохранении устойчивости деление по сечению должно не приводить к каскадному развитию аварии при правильной работе ПА или к погашению дефицитной по мощности подсистемы из-за недостаточности объема АЧР.

В эксплуатации любое отступление от требований, относящихся к нормальному перетоку (первая строка табл. 3) или к дли­тельности послеаварийного режима (20 мин), означает переход к вынужденному перетоку и должно быть разрешено высшей опера­тивной инстанцией, в ведении или управлении которой находятся связи этого сечения. Такое решение, как правило, принимается при планировании ре­жимов исходя из располагаемых оперативных резервов активной мощности.

Переход к вынужденному перетоку в сечении на время прохож­дения максимума нагрузки, но не более 40 мин (дополнительно к 20 мин, разрешенных для послеаварийного режима), или на время, необходимое для ввода ограничений потребителей и/или мобилиза­ции резерва, может быть выполнен оперативно по разрешению де­журного диспетчера указанной высшей оперативной инстанции.

При планировании режимов энергосистем должна быть ис­ключена работа сечений, обеспечивающих выдачу мощности АЭС, с вынужденными перетоками.

На связях, по которым возможны асинхронные режимы, пре­дусматриваются устройства ликвидации асинхронных режимов, дей­ствующих, в том числе, на деление энергосистем. Ресинхронизация, как с применением автоматических устройств, так и самопроизвольная, должна резервироваться делением.

Допустимая длительность асинхронного режима и способ его прекращения устанавливаются для каждого сечения с учетом необ­ходимости предотвращения повреждений оборудования энергосис­темы, дополнительных нарушений синхронизма и нарушений элек­троснабжения потребителей. При этом особое внимание следует уде­лять устойчивости электростанций и крупных узлов нагрузки, вблизи которых может оказаться центр качаний.

ОПРЕДЕЛЕНИЕ ДОПУСТИМЫХ РЕЖИМОВ, УДОВЛЕТВОРЯЮЩИХ НОРМАТИВНЫМ ТРЕБОВАНИЯМ (предыдущего раздела)

Расчеты устойчивости энергосистем и расчетная проверка мероприятий по ее обеспечению осуществляются при проектирова­нии и эксплуатации энергосистем.

Расчеты устойчивости выполняются для:

    выбора основной схемы энергосистемы и уточнения размеще­ния основного оборудования;

    определения допустимых режимов энергосистемы;

    выбора мероприятий по повышению устойчивости энергосисте­мы, включая средства ПА и параметры их настройки;

    определения параметров настройки систем регулирования и уп­равления, релейной защиты, АПВ и т. д.

Кроме того, расчеты устойчивости проводятся при разработке и уточнении требований к основному оборудованию энергосистемы, релейной защите, автоматике и системам регулирования по услови­ям устойчивости энергосистем.

Так как принимается, что переток в сечении под действием нерегулярных колебаний мощности меняется в диапазоне Р ± ∆Р нк, то требованиям к устойчивости должен соответство­вать переток Р м + ∆Р нк, где Р м - максимально допустимый переток.

Переток Р м должен соответствовать коэффициенту запаса устойчивости по активной мощности КР, не меньшему 20 % (см. табл. 3): РМ ≤0,8РПР - ∆РНК.

Переток Р м должен соответствовать коэффициенту запаса по напряжению, не меньшему 15 % во всех узлах нагрузки: Р м ≤ P(U) - ∆Р к, при U= UКР/0,85.

Зависимость перетока от наименьшего напряжения строится на основе численного моделирования при различных перетоках мощ­ности в рассматриваемом сечении. Это требование означает, что при исчерпании других возможностей регулирования напряжения необ­ходимый запас по напряжению обеспечивается за счет снижения пе­ретока мощности в сечении.

Переток Р м должен быть таким, чтобы во всех послеаварийных схемно-режимных условиях, которые могут возникнуть в результате нормативных возмущений (ослабление сечения и/или ава­рийный небаланс мощности) с учетом действия ПА и/или первично­го регулирования частоты, выполнялось требование:

При

где
- переток активной мощности в рассматриваемом сечении в доаварийном режиме;

- активной мощности в сечении в послеаварийном установившемся режиме, в том числе после аварийного небаланса мощности, приводящего к увеличению перето­ка в сечении;

- предельная мощность в сечении по апериодической стати­ческой устойчивости в послеаварийной схеме, которая, в частности, в случае аварийного небаланса мощности мо­жет совпадать с исходной (рассматриваемой) схемой или измениться в случае ослабления сечения при аварийном отключении сетевых элементов или его усиления за счет отключения шунтирующих реакторов и т. п.;

∆Р ПА - приращение допустимого перетока мощности в сечении за счет управляющих воздействий ПА долговременного действия на изменение мощности.

Переток в доаварийном режиме представляется в виде функции от перетока в послеаварийном режиме для возможности учета влия­ющих факторов, например, изменения потерь мощности или шунти­рующих связей, не включенных в рассматриваемое частичное сече­ние.

Приращение активной мощности в сечении, обусловленное ава­рийным небалансом мощности или управлением мощностью ПА, зависит от динамических харакгеристик всех параллельно работаю­щих энергосистем. Так как расчет указанного приращения по пол­ной модели может оказаться затруднительным, допускается его рас­чет по упрощенной формуле с использованием обобщенной инфор­мации о подсистемах:

где ∆Р сеч - приращение мощности в сечении за счет аварийного небаланса или применения ПА;

n = 1, 2, ..., N - подсистемы передающей части энергосистемы;

т = 1,2,..., М- подсистемы приемной части энергосистемы;

- аварийный избыток мощности (отключаемая гене­рация - с минусом) в передающей части;

- аварийный дефицит мощности (отключаемая нагруз­ка - с минусом) в приемной части;

Кfn, Kfm - соответственно коэффициент частотной статической характеристики подсистем: n - передающей и т -приемной частей энергосистемы;

Р н m , Р н n - соответственно суммарная нагрузка подсистем n и т.

4.2.4. В каждом из нормативных послеаварийных режимов во всех узлах нагрузки коэффициент запаса по напряжению должен быть не менее 10 %:

При

Зависимость перетока в исходном (доаварийном) режиме от наи­меньшего напряжения в установившемся послеаварийном режиме строится на основе численного моделирования нормативных возму­щений и действия ПА при различных исходных перетоках мощнос­ти в рассматриваемом сечении.

Максимально допустимый переток мощности в любом се­чении в рассматриваемом режиме должен не превышать предельно­го по динамической устойчивости перетока в том же сечении при всех нормативных возмущениях с учетом действия ПА:

Переток Р м в послеаварийных режимах не должен приводить к токовым перегрузкам, превышающим допустимые значения:

При

где
- ток в наиболее загруженном сетевом элементе в послеава­рийном установившемся режиме;

- допустимый ток с перегрузкой, разрешенной в течение 20 мин при заданной температуре окружающей среды в том же элементе.