Домой / Группы / Элемент пельтье применение на теле человека. Элемент Пельтье: характеристики, описание, применение

Элемент пельтье применение на теле человека. Элемент Пельтье: характеристики, описание, применение

Стандартные термоэлектрические модули имеют взаимообратный принцип действия. В этой статье мы расскажем о применении модулей Пельтье-Зеебека в теплообменных устройствах и приведём пример сборки кулера для воды и базовой охлаждающей системы для воздуха с возможностью обратного запуска (нагрева).

Принцип действия термоэлектрических модулей (ТЭМ), используемых для охлаждения, основан на эффекте Зеебека — обратном процессе относительно эффекта Пельтье. Основной элемент — всё тот же ТЭМ, описанный в первой части . При подаче постоянного тока на поле термопар наблюдается разность температур на плоскостях керамической пластины. Это факт, основанный на термодинамическом процессе, который мы описывать не будем (чтобы не утомлять научными выкладками), но покажем, как применить его в быту.

Примечание. Для постройки агрегатов, инструкции к которым приведены ниже, понадобятся базовые практические навыки сборки электрических цепей. Приведённые модели узлов являются примерными и могут быть заменены на аналогичные (или более/менее мощные) по усмотрению мастера.

Как самостоятельно изготовить кулер для охлаждения воды

Догадливый читатель уже понял, что «чудо-ковшик» из первой части можно использовать для охлаждения жидкости, если запустить его «в обратную сторону», подключив постоянный ток.

ТЭМ применены в каждом кулере для воды. Аналог этого заводского прибора вполне можно построить своими руками, при этом работать он будет не хуже. Мы опишем сам принцип работы и схему сборки. Компоновку и варианты исполнения можно подобрать, исходя из собственных потребностей. Например, сделать его переносным или стационарным, интегрированным в кухонную мебель или систему подготовки питьевой воды. Последний вариант оптимален, поскольку охлаждение в системе будет управляемым (по факту подачи питания).

Для этого нам понадобится:

  1. Прямоугольная плоская герметичная ёмкость из нержавейки с размерами 100х100х30 (фляга-теплообменник) с резьбовыми выходами на ½ дюйма по коротким сторонам. Это единственный элемент, изготовление которого лучше заказать мастеру на заводе.
  2. Подводка питьевой воды с фитингом на ½ дюйма (из ёмкости или водопровода).
  3. Блок питания на 10-12 вольт с регулировкой силы тока.
  4. Термоэлектрические модули TEC1-12705 (40x40) — 2 шт.
  5. Провода сечением 0,2 мм.
  6. Термоклей или термопаста.
  7. Ключ на 2 канала (тумблер, кнопка).
  8. Кран, паяльник, припой.

При помощи термоклея фиксируем ТЭМ на флягу. Соединяем провода по соответствующим группам (плюс и минус). Определяем удобное место расположения ключа, учитывая возможность замены при ремонте и доступность при использовании. Включаем его в схему. Присоединяем провода к блоку питания. Проводим испытания цепи.

Внимание! При испытаниях ограничьтесь наблюдением самого факта правильной работы, но не пытайтесь дать максимальную нагрузку насухую — это может привести к выходу из строя ТЭМ (ремонту не подлежит).

Затем соединяем входной фитинг фляги-теплообменника с каналом подачи воды, а выходной — с подводкой (гибкой или жёсткой) к крану.

Заполняем систему водой и выставляем оптимальную силу тока при нужном напоре струи. Оптимальный напор — чуть сильнее самотёка. Для забора прохладной питьевой воды этого будет вполне достаточно. Остальные нюансы — крепёж, длина проводов, расположение — сугубо индивидуальны в каждом отдельном случае.

Данную базовую систему можно развивать и совершенствовать. Например, установить термостат в теплообменнике и включить его в цепь вместо ключа (тумблера) — подойдёт там, где постоянно нужна вода определённой температуры. Флягу-теплообменник можно выполнить из серебра для дополнительной ионизации воды. Включив в систему повышающий преобразователь постоянного напряжения ЕК-1674, можно сократить расход электроэнергии до минимума.

Расчёт затрат на построение кулера:

В этой системе не задействован ребристый радиатор, т. к. поставленная цель — охлаждение (но не заморозка) небольшого объёма воды (300 мл) — достигается и без него.

Как изготовить мини-холодильник, чиллер или кондиционер на теплоэлектрических модулях своими силами

Более сложная задача — охлаждение воздуха. Если в случае с водой эффективность работы кулера гарантирована разницей плотности сред (вода — воздух), то в случае с однородной средой (воздух — воздух) дело обстоит сложнее. Основная трудность — отвод температуры с горячей стороны поверхности ТЭМ. Точнее — синхронный отвод температуры с обеих поверхностей. Если просто запустить элемент Пельтье-Зеебека, нагретый и охлаждённый воздух смешаются, и температура выровняется.

В замкнутых пространствах малого объёма (до 0,7 м 3) вполне применима система охлаждения на основе ТЭМ с двусторонним воздушным отводом. Это позволяет построить новый охлаждающий бокс или дать вторую жизнь старому холодильнику (морозильной камере). Для этого придётся немного усложнить систему, включив в неё пару отводящих вентиляторов обоюдной мощности, реле температуры, ребристый радиатор и использовать более производительные теплоэлектрические модули.

Нам понадобится (для одной базовой точки охлаждения):

  1. ТЭМ ТЕС1-12712 (40Х40), 106 ватт — 1 шт.
  2. Вентилятор RQA 12025HSL 110VAC (или мощнее) — 2 шт.
  3. Радиатор HS 036-100 (100x85x25 мм).
  4. Термостат ТАМ-133-1м (реле температуры с датчиком).
  5. Блок питания постоянного тока 12 вольт, 6 ампер (с регулировкой).
  6. Лист дюралюминия.
  7. Провода, термопаста, крепёж

В готовом боксе, в верхней части охлаждаемой зоны, делаем прямоугольное окно размерами 100х100 мм. Вырезаем две пластины дюралюминия размерами 130х130 мм и 180х180 мм. Закрепляем вентилятор по центру меньшей пластины таки образом, чтобы оставался продух 1 см. Устанавливаем реле температуры внутри бокса. Монтируем меньшую из пластин изнутри бокса (вентилятором внутрь бокса) на шурупы или клёпки через герметик. Наклеиваем ТЭМы на смонтированную пластину и выводим провода. Вырезаем и выгибаем большую пластину так, чтобы она входила в монтажное отверстие, но при этом оставались бортики для фиксации к стенке бокса снаружи. Закрепляем на неё радиатор и второй вентилятор. Обильно смазываем термопастой ТЭМы и монтируем пластину к стенке бокса через герметик.

Внимание! Обязательно должен быть максимальный контакт площади ТЭМ и пластины!

Собираем электрическую цепь. Рекомендуем включить вентиляторы на постоянную максимальную мощность, а силу тока для ТЭМ — через регулятор. Это обеспечит эффективный съём температуры и перемешивание воздуха при работе в разных режимах (не на полную мощность).

Преимущества данной конструкции:

  • бесшумная по сравнению с компрессорными холодильниками работа;
  • отсутствие механизмов и движущихся частей, силы трения (нечему ломаться);
  • не используются жидкие теплоносители (фреон);
  • общая потребляемая мощность около 200 ватт;
  • можно модернизировать конструкцию, варьировать производительность;
  • доступность и ремонтопригодность отдельных агрегатов.

Недостатки:

  • возможно появление конденсата на пластинах дюралюминия;
  • наружный блок управления;
  • многие факторы и нюансы работы выявляются опытным путём при использовании;
  • малая область применения.

Расчёт затрат на построение базовой охлаждающей системы холодильника и кондиционера:

Наименование Ед. изм. Кол-во Цена ед./руб. Ст-ть, руб.
ТЭМ ТЕС1-12712 (40Х40), 106 ватт шт. 1 600 600
Вентилятор RQA 12025HSL 110VAC шт. 2 150 300
Дюралюминий 3 мм шт. 1 300 300
Блок питания постоянного тока шт. 1 300 300
Термостат ТАМ-133-1м шт. 1 250 250
Радиатор HS 036-100 шт. 1 220 220
Провода, термопаста, крепёж, припой - - 300 300
Итого 2270

В принципе, данная конструкция — готовый встраиваемый кондиционер, который можно установить в кабине автомобиля, трактора, в закрытом вольере или будке охраны. Следует лишь продумать конструктивную защиту от атмосферных осадков.

Запас мощности модуля ТЕС1-12712 довольно велик. Амплитуда температур на сторонах элемента может достигать 50 градусов. При температуре воздуха в помещении +27 °С и применении системы жидкостного охлаждения (радиатор + вентилятор), можно извлечь на выходе впечатляющие минус 25 °С! Это позволяет создавать бескомпрессорные и тихие морозильные камеры даже в домашних условиях.

Где ещё применяют термоэлектрические модули

Эффект Пельтье-Зеебека известен с 1840-х годов. Его активно используют и по сей день, благодаря устойчивости законов физики. Термоэлектрическому модулю всегда найдётся место там, где есть избыточная энергия или нужно быстро и бесшумно совершить теплообмен.

Основное применения теплоэлектрических модулей:

  1. Охлаждение микросхем. Вентиляторы, как основной теплообменник, уходят в прошлое. Им на смену идут компактные, бесшумные и практически вечные ТЭМ.
  2. Машиностроение. Даже самый современный ДВС выделяет отработавшие газы из камеры сгорания. Инженеры используют их высокую температуру для получения дополнительной энергии при помощи элементов Пельтье. Собранная энергия подаётся обратно в системы двигателя, но уже в виде постоянного тока, что позволяет экономить топливо.
  3. Бытовая техника. Всё, что описано выше плюс большинство бытовых приборов, работающих на охлаждение или подогрев (кроме компрессорных холодильников).

И маленький секрет напоследок. Наш модуль имеет почти чудесное свойство — обратимость. Это значит, что при перемене полярности постоянного тока на проводах модуля (с помощью переключателя) горячая и холодная поверхность меняются местами. Кулер превращается в нагреватель, холодильник в тепловую камеру (инкубатор), а кондиционер — в маломощный тепловентилятор. Для этого не придётся изменять схему устройства. Достаточно просто поменять полярность.

Этот принцип использован в устройстве под названием рекуператор. Он представляет собой бокс, состоящий из двух изолированных камер, которые сообщаются между собой при помощи вентиляторов. При помощи модулей Пельтье холодный воздух с улицы подогревается энергией, извлечённой из нагретого воздуха, который отводится из помещения. Приспособление позволяет экономить на отоплении дома.

Виталий Долбинов, рмнт.ру

2 июня 2012 в 23:47

Элементы Пельтье или мой путь к криогенным температурам

  • DIY или Сделай сам

Многие слышали про «магические» элементы Пельтье - при прохождении тока через них одна сторона охлаждается, а другая - нагревается. Это работает и в обратную сторону - если одну сторону нагревать, а другую охлаждать - вырабатывается электричество. Эффект Пельтье известен с 1834 года, но и по сей день нас не перестают радовать инновационные продукты на его основе (нужно только помнить, что при генерации электричества, как и у солнечных батарей - есть точка максимальной мощности, и если работать далеко от неё - КПД генерации сильно снижается).

В последнее время китайцы поднажали, и заполонили интернеты своими относительно дешевыми модулями , так что эксперименты с ними уже не отнимают слишком много денег. Китайцы обещают максимальную разницу температуры между горячей и холодной стороной в 60-67 градусов. Хммм… А что если мы возьмем 5 элементов, подключим последовательно, тогда у нас должно получиться 20С-67*5 = -315 градусов! Но что-то мне подсказывает, что все не так просто…

Краткая теория

Классические «китайские» элементы Пельтье - это 127 элементов, включенных последовательно, и припаянных к керамической «печатной плате» из Al2O3. Соответственно, если рабочее напряжение 12В - то на каждый элемент приходится всего по 94мВ. Бывают элементы и с другим количеством последовательных элементов, и соответственно другим напряжением (например 5В).

Нужно помнить, что элемент Пельтье - это не резистор, его сопротивление нелинейно, так что если мы прикладываем 12В - у нас может не получится 6 ампер (для 6-и амперного элемента) - ток может изменятся в зависимости от температуры (но не слишком сильно). Также при 5В (т.е. меньше номинала) ток будет не 2.5А, а меньше.

Кроме того, количество перенесенного тепла сильно зависит от разницы температуры между поверхностями. При разнице 60-67С - перенос тепла стремится к 0, а при нулевой разнице - 51 Ватт для 12*6 = 72-х Ваттного элемента. Очевидно, уже это не позволяет так просто соединять элементы в серию - нужно чтобы каждый следующий был по размерам меньше предыдущего, иначе самый холодный элемент будет пытаться отдать больше тепла (72Вт), чем элемент следующей ступени может пропустить через себя при желаемой разнице температур (1-51Вт).

Элементы пельтье собираются легкоплавким припоем с температурой плавления 138С - так что если элемент случайно останется без охлаждения и перегреется - то достаточно будет отпаяться одному из 127*2 контактов чтобы выкинуть элемент на свалку. Ну и элементы очень хрупкие - как керамика, так и сами охлаждающие элементы - я нечаянно разодрал 2 элемента «вдоль» из-за присохшей намертво термопасты:

Пробуем



Итак, маленький элемент - 5В*2А, большой - 12*9А. Кулер на тепловых трубках, температура комнатная. Результат: -19 градусов. Странно… 20-67-67 = -114, а получились жалкие -19…

Идея - вынести все на морозный воздух, но есть проблема - кулер на тепловых трубках хорошо охлаждает только если температура «горячей» и «холодной» стороны кулера лежит по разные стороны фазового перехода газ-жидкость наполнителя трубки. В нашем случае это означает, что кулер в принципе не способен охладить что-либо ниже +20С (т.к. ниже работают только тонкие стенки тепловых трубок). Придется возвращаться к истокам - к цельно-медной системе охлаждения. А чтобы ограниченная производительность кулера не сказывалась на измерениях - добавим килограммовую медную пластину - тепловой аккумулятор.


Результат шокирующий - те же -19 как с одной, так и с двумя стадиями. Температура окружающего воздуха - -10. Т.е. с нулевой нагрузкой мы еле-еле выжали жалкие 9 градусов разницы.

Выкатываем тяжелую артиллерию

Оказалось, неподалеку от меня хладокомбинат #7, и я решил к ним заглянуть с картонной коробкой. Вернулся с 5-ю килограммами сухого льда (температура сублимации -78С). Опускаем медную конструкцию туда - подключаем ток - на 12В температура моментально начинает расти, при 5В - падает на 1 градус на секунду, и дальше быстро растет. Все надежды разбиты…

Выводы и видео на сладкое

Эффективность обычных китайских элементов Пельтье быстро падает при температуре ниже нуля. И если охладить банку колы еще можно с видимой эффективностью, то температуры ниже -20 добиться не удается. И проблема не в конкретных элементах - я пробовал элементы разных моделей от 3-х разных продавцов - поведение одно и то же. Похоже на криогенные стадии нужны элементы из других материалов (и возможно для каждой стадии нужен свой материал элемента).

Ну а с оставшимся сухим льдом можно поступить следующим образом:

PS. А если смешать сухой лед с изопропиловым спиртом - получится жидкий азот для «бедных» - в нем так же весело замораживаются и разбиваются цветы и проч. Вот только из-за того что спирт не кипит при контакте с кожей - получить обморожение существенно легче.

Многие слышали про «магические» элементы Пельтье - при прохождении тока через них одна сторона охлаждается, а другая - нагревается. Это работает и в обратную сторону - если одну сторону нагревать, а другую охлаждать - вырабатывается электричество. Эффект Пельтье известен с 1834 года, но и по сей день нас не перестают радовать инновационные продукты на его основе (нужно только помнить, что при генерации электричества, как и у солнечных батарей - есть точка максимальной мощности, и если работать далеко от неё - КПД генерации сильно снижается).

В последнее время китайцы поднажали, и заполонили интернеты своими относительно дешевыми модулями , так что эксперименты с ними уже не отнимают слишком много денег. Китайцы обещают максимальную разницу температуры между горячей и холодной стороной в 60-67 градусов. Хммм… А что если мы возьмем 5 элементов, подключим последовательно, тогда у нас должно получиться 20С-67*5 = -315 градусов! Но что-то мне подсказывает, что все не так просто…

Краткая теория

Классические «китайские» элементы Пельтье - это 127 элементов, включенных последовательно, и припаянных к керамической «печатной плате» из Al2O3. Соответственно, если рабочее напряжение 12В - то на каждый элемент приходится всего по 94мВ. Бывают элементы и с другим количеством последовательных элементов, и соответственно другим напряжением (например 5В).

Нужно помнить, что элемент Пельтье - это не резистор, его сопротивление нелинейно, так что если мы прикладываем 12В - у нас может не получится 6 ампер (для 6-и амперного элемента) - ток может изменятся в зависимости от температуры (но не слишком сильно). Также при 5В (т.е. меньше номинала) ток будет не 2.5А, а меньше.

Кроме того, количество перенесенного тепла сильно зависит от разницы температуры между поверхностями. При разнице 60-67С - перенос тепла стремится к 0, а при нулевой разнице - 51 Ватт для 12*6 = 72-х Ваттного элемента. Очевидно, уже это не позволяет так просто соединять элементы в серию - нужно чтобы каждый следующий был по размерам меньше предыдущего, иначе самый холодный элемент будет пытаться отдать больше тепла (72Вт), чем элемент следующей ступени может пропустить через себя при желаемой разнице температур (1-51Вт).

Элементы пельтье собираются легкоплавким припоем с температурой плавления 138С - так что если элемент случайно останется без охлаждения и перегреется - то достаточно будет отпаяться одному из 127*2 контактов чтобы выкинуть элемент на свалку. Ну и элементы очень хрупкие - как керамика, так и сами охлаждающие элементы - я нечаянно разодрал 2 элемента «вдоль» из-за присохшей намертво термопасты:

Пробуем



Итак, маленький элемент - 5В*2А, большой - 12*9А. Кулер на тепловых трубках, температура комнатная. Результат: -19 градусов. Странно… 20-67-67 = -114, а получились жалкие -19…

Идея - вынести все на морозный воздух, но есть проблема - кулер на тепловых трубках хорошо охлаждает только если температура «горячей» и «холодной» стороны кулера лежит по разные стороны фазового перехода газ-жидкость наполнителя трубки. В нашем случае это означает, что кулер в принципе не способен охладить что-либо ниже +20С (т.к. ниже работают только тонкие стенки тепловых трубок). Придется возвращаться к истокам - к цельно-медной системе охлаждения. А чтобы ограниченная производительность кулера не сказывалась на измерениях - добавим килограммовую медную пластину - тепловой аккумулятор.


Результат шокирующий - те же -19 как с одной, так и с двумя стадиями. Температура окружающего воздуха - -10. Т.е. с нулевой нагрузкой мы еле-еле выжали жалкие 9 градусов разницы.

Выкатываем тяжелую артиллерию

Оказалось, неподалеку от меня хладокомбинат #7, и я решил к ним заглянуть с картонной коробкой. Вернулся с 5-ю килограммами сухого льда (температура сублимации -78С). Опускаем медную конструкцию туда - подключаем ток - на 12В температура моментально начинает расти, при 5В - падает на 1 градус на секунду, и дальше быстро растет. Все надежды разбиты…

Выводы и видео на сладкое

Эффективность обычных китайских элементов Пельтье быстро падает при температуре ниже нуля. И если охладить банку колы еще можно с видимой эффективностью, то температуры ниже -20 добиться не удается. И проблема не в конкретных элементах - я пробовал элементы разных моделей от 3-х разных продавцов - поведение одно и то же. Похоже на криогенные стадии нужны элементы из других материалов (и возможно для каждой стадии нужен свой материал элемента).

Ну а с оставшимся сухим льдом можно поступить следующим образом:

PS. А если смешать сухой лед с изопропиловым спиртом - получится жидкий азот для «бедных» - в нем так же весело замораживаются и разбиваются цветы и проч. Вот только из-за того что спирт не кипит при контакте с кожей - получить обморожение существенно легче.

В 1834 году французский учёный-физик Жан Шарль Пельтье, исследуя воздействие электричества на проводники, обнаружил очень интересный эффект. Если пропускать ток через два разнородных проводника, находящихся в непосредственной близости друг от друга, то один из этих проводников начинает сильно греться, а второй, наоборот, сильно охлаждаться. Количество выделяемого и поглощаемого тепла, напрямую зависит от силы и направления электрического тока. Если поменять направление тока, то поменяются местами холодная и горячая стороны. Чуть позже этот феномен получил название эффекта Пельтье и был благополучно забыт из-за практической невостребованности на тот момент.

И лишь спустя сто с лишним лет, с расцветом полупроводниковой эры , появилась настоятельная необходимость в компактных, недорогих и эффективных охладителях. Так, в 60х годах 20 века появились первые полупроводниковые термоэлектрические модули, которые получили название элементы Пельтье.

В основе любого термоэлектрического модуля лежит тот факт, что разные проводники имеют разные уровни энергии электронов. Иными словами, один проводник можно представить как высокоэнергетическую область, второй проводник, как низкоэнергетическую область. При контакте двух токопроводящих материалов, во время пропускания через них электрического тока, электрону из низкоэнергетической области необходимо перейти в высокоэнергетическую область.

Этого не произойдет, если электрон не приобретёт необходимое количество энергии. В момент поглощения этой энергии электроном, происходит охлаждение места контакта двух проводников. Если поменять направление протекания тока, возникнет, наоборот, эффект нагревания места контакта.

Можно использовать любые проводники , но этот эффект становится физически заметным и значимым только в случае использования полупроводников. Например, при контактировании металлов, эффект Пельтье настолько незначителен, что практически незаметен на фоне омического нагрева.

Термоэлектрический модуль (ТЭМ), независимо от своего размера и места применения состоит из разного количества, так называемых термопар. Термопара - это тот самый кирпичик, из которых строится любой ТЭМ. Она состоит из двух полупроводников различающихся типом проводимости. Как известно, существуют два типа проводимости p и n типа. Соответственно существует и два типа полупроводников. Два этих разнородных элемента соединяются в термопаре с помощью медного мостика. В качестве полупроводников применяют соли таких металлов, как висмут, теллур, селен или сурьма.

ТЭМ - совокупность подобных термопар, соединённых друг с другом последовательно. Все термопары располагаются между двух керамических пластин. Пластина Пельтье. Пластины изготовлены из нитрида или оксида алюминия. Непосредственно само количество термопар в одном элементе может варьировать в очень широких пределах , от нескольких штук, до нескольких сотен или тысяч.

Иными словами, элементы Пельтье могут быть абсолютно любой мощности, от сотых долей, до нескольких сот или тысяч ватт. Постоянный ток последовательно проходит через все термопары и в результате верхняя керамическая пластина охлаждается, а нижняя, наоборот, греется. Если поменять направление тока, то пластины поменяются местами, верхняя начнёт греться, а нижняя охлаждаться.

В работе элемента присутствует одна особенность, которую активно используют для усиления охлаждающей эффективности этого приспособления. Как известно, при пропускании тока через элемент Пельтье возникает разность температур между поверхностью, разогревающейся и поверхностью охлаждающейся. Так вот, если ту поверхность, что активно нагревается подвергнуть принудительному охлаждению. Например, с помощью специального кулера, то это приведёт к ещё более сильному охлаждению поверхности, то есть той, что охлаждается. При этом разница температур с окружающим воздухом может достигнуть нескольких десятков градусов.

Достоинства и недостатки

Как у любого технического устройства, у термоэлектрического модуля есть свои достоинства и свои недостатки:

Проблема повышения КПД у ТЭМов упирается в неразрешимую пока, техническую головоломку. Свободные электроны обладают, по сути, двойной природой, что на практике проявляется и они одновременно являются переносчиками как электрического тока, так и тепловой энергии. Как следствие, высокоэффективный элемент Пельтье должен быть изготовлен из материала, обладающего одновременно двумя взаимоисключающими свойствами. Материал этот должен хорошо проводить электрический ток и плохо проводить тепло. Пока такого материала не существует в природе, но учёные активно работают в этом направлении.

Все термоэлектрические модули обладают соответствующими техническими характеристиками:

Применение ТЭМов

Несмотря на серьёзный недостаток присущий всем без исключения элементам Пельтье, а именно очень низкий КПД, эти устройства нашли довольно широкое применение как в науке и технике, так и в быту.

Термоэлектрические модули являются важными элементами конструкции таких устройств, как:

Элемент Пельтье в руках домашнего мастера

Нужно сразу оговориться, самостоятельное изготавливание термоэлектрического элемента занятие по меньшей мере бессмысленное и никому не нужное. Если только изготавливающий не является учеником седьмого класса и не закрепляет таким образом, полученные на уроках физики, знания.

Гораздо проще купить новый термоэлектрический элемент в соответствующем магазине. Благо стоят они недорого и недостатка в выборе конкретной модели не наблюдается. А кроме того, что в них нечему ломаться или изнашиваться, любой термоэлемент, снятый со старого компьютера или автомобильного кондиционера, не будет отличаться по своим техническим характеристикам от нового.

Наибольшей популярностью пользуется модель термоэлемента: TEC1-12706. Размеры этого устройства 40 на 40 миллиметров. Состоит он из 127 термопар, соединённых между собою последовательно. Рассчитан на ток в 5 А, при напряжении цепи 12 В. Стоит такой элемент в среднем от 200 до 300 рублей. Но можно найти и за сто, или, вообще, за так, если снять со старого компьютера или какого другого ненужного устройства.

Изготовить с помощью такого элемента можно, как минимум два очень интересных и полезных в хозяйстве устройства.

Как сделать холодильник своими руками

Производство портативных холодильников, в частности, для машин целиком основано на эффекте Пельтье. Для изготовления подобного устройства в домашних условиях понадобиться:

  • Термоэлемент марки TEC1-12706. Стоит 200 рублей в ближайшем магазине (специализированном).
  • Радиатор и вентилятор. Снимаются с отслужившего своё старого компьютера.
  • Контейнер. Любая ненужная ёмкость из пластика, металла или дерева. Снаружи и изнутри такая ёмкость оклеивается теплосберегающими пластинами из пенопласта или пенополистирола.

Термоэлектрический модуль встраивается в крышку контейнера. В этом случае поступление холода будет происходит сверху вниз, что приведёт к равномерному охлаждению ёмкости. Изнутри контейнера, в его крышку с помощью термопасты и крепёжных болтов прикрепляют радиатор.

Для того чтобы увеличить мощность будущего холодильного устройства, можно увеличить количество термоэлементов, до двух-трёх и более. В этом случае модули приклеиваются друг к другу, с соблюдением полярности. Иными словами, горячая сторона нижележащего элемента контактирует с холодной стороной вышележащего.

Снаружи на крышку крепится ещё один радиатор вместе с компьютерным кулером. В месте крепежа радиаторов должна быть хорошая термоизоляция между холодной - внутренней и горячей - внешней сторонами. Необходимо очень аккуратно стягивать верхний и нижний радиаторы крепёжными болтами, чтобы не треснули керамические пластины, располагающихся между ними термоэлементов.

Электричество подключается с помощью блока питания, который можно взять от старого компьютера .

Портативный термоэлектрогенератор

Такая мини-электростанция может очень выручить туриста или охотника, когда в лесу сядут батареи всех электронных гаджетов. Очень романтично в этой ситуации взять несколько сухих щепок и шишек, развести небольшой костерок и с его помощью зарядить разряженные аккумуляторы, а заодно и поесть приготовить. Именно это позволяет сделать портативный термогенератор, построенный на термоэлементе.

Для постройки этого чудо-девайса необходимо наличие портативной походной печки, работающей на любом виде топлива. В крайнем случае сгодится даже небольшая свечка или таблетка сухого спирта.

В печке разводят огонь, а снаружи с помощью термопасты к ней крепится термоэлектрический модуль. Посредством проводов он подключается к преобразователю напряжения.

Величина получаемого тока напрямую будет зависеть от разницы температур между холодной и горячей сторонами термоэлемента. Для эффективной работы необходима разница между холодной и горячей поверхностью как минимум в 100 градусов.

В этом случае необходимо понимать, что максимальная температура ограничена температурой плавления припоя, с помощью которого изготовлен сам модуль. Поэтому для подобных устройств используют специальные термомодули, которые изготавливают с помощью специального тугоплавкого припоя. В обычных модулях температура плавления припоя составляет 150 градусов. В модулях тугоплавких, припой начинает плавиться при температуре 300 градусов.

Ну чтож, все графики начерчены, все таблицы заполнены, теперь можно и помечтать. В целом если прикидывать энергопотребление в походе по максимуму, то получается следующее:
GPS-навигатор - 0,3 Вт х 10 ч = 3 Вт*ч в день;
фотоаппарат (зеркалка Canon) - аккумулятор 8 Вт*ч на 4 дня = 2 Вт*ч в день;
видеокамера (видеорегистратор для запечатления интересных моментов поездки, около 1 часа видео в день) - 1,6 Вт*ч в день;
сотовый телефон - около 0,2 Вт*ч в день;
светодиодный фонарик для подсвечивания стоянки вечером - 2 Вт*ч в день.
Итого получаем: 3 + 2 + 1,6 + 0,2 + 2 = 8,8 Вт*ч в сутки. С учётом потерь при зарядке аккумуляторов этих устройств и непредвиденные траты можно с лёгкостью округлить эту цифру до 10 Вт*ч в сутки, что приблизительно равно трём NiMH аккумуляторам формфактора АА (по 3,2 Вт*ч). Будем считать, что именно это количество электроэнергии позволяет комфортно путешествовать по ранее запланированному маршруту не ограничивая свои творческие позывы. Этот расчёт более-менее верен для одиночной вылазки или группы из двух человек. Если народу больше, то тут на каждого добавляется дополнительный потребитель, будь то сотовый или ещё один фотоаппарат. Я думаю что на каждого "лишнего" участника можно смело прибавлять по 1 Вт*ч, то есть для группы из 6-ти человек комфортный уровень энергопотребления составит 14 Вт*ч или около 4,5 аккумулятора АА. Предположим что поход длиться 10 дней, то для группы из 2-х человек понадобится 100 Вт*ч энергии, это 31 NiMH аккумулятор общей массой 31 х 31,5 = 976,5 г. То есть почти 1 кг аккумуляторов. Если брать щелочные батарейки, то самые лучшие отдают 2,2 Вт*ч и их потребуется 45 штук. Массу их не знаю, но даже если они по 25 г, то в сумме уже больше килограмма набирается. Для группы из 6-ти человек общее количество электроэнергии составляет 140 Вт*ч, это почти 44 аккумулятора массой 1386 г или 64 батарейки ещё большей массой. Если брать с собой LiPo аккумуляторы, какие используют моделисты, то для двух человек это будет аккумулятор массой 100 Вт*ч ÷ 160 Вт*ч/кг = 0,625 кг или 625 г. Для группы из 6-ти человек масса LiPo аккумулятора составит 875 г.
Теперь прикинем как обстоят дела с термогенератором. Допустим у нас модуль (или модули) ТЕС1-12709, греем его не выше 150 °С, охлаждаем в ручье с температурой 15 °С, то есть на холодной стороне будет 20 °С, перепад температур 150 - 20 = 130 °С. Для такого значения разности температур у меня нет показателя эффективности, придётся считать. Берём два максимальных значения на графике зависимости эффективности от тока для ТЕС1-12709, например 13,6 мВт/°С для усреднённой разности температур 71 °С и 15,7 мВт/°С для 87 °С и рассчитываем на какую величину увеличилась эффективность при повышении разности температур на 87 - 71 = 16 °С. Получается на 2,1 мВт/°С. А дальше по пропорции: если увеличение разности в 16 °С привело к увеличению эффективности на 2,1 мВт/°С, то увеличение разности на 130 - 87 = 43 °С приведёт к увеличению эффективности на (43 х 2,1) ÷ 16 = 5,6 мВт/°С. Значит эффективность при разности температур в 130 °С будет равна 15,7 + 5,6 = 21,3 мВт/°С. В итоге получаем 21,3 х 130 = 2769 мВт или 2,8 Вт. Это довольно близкое к реальности значение если судить по тому, что в некоторых видеоэкспериментах два модуля выдавали 4...6 Вт. Чтобы с помощью одного модуля получить 10 Вт*ч энергии, надо чтобы генератор работал 10 ÷ 2,8 = 3,57 ч, а для 14 Вт*ч - 5 часов. То есть если использовать термогенератор состоящий из 2-х элементов Пельтье, то выработка электроэнергии даже для большой группы не занимает очень много времени.
Единственная серьёзная проблема, возникающая при производстве электричества в походе этим методом - это рассеяние тепла на холодной стороне. Самый лучший и оптимальный - водяное охлаждение, так как вода имеет большую теплоёмкость. В этом плане водным туристам повезло больше, чем велосипедистам: у них способ передвижения связан именно с водой и если продумать конструкцию генератора (очень странно, почему она до сих пор не продумана и не реализована в промышленных объёмах), то выработка электроэнергии у них может происходить во время движения. Генератор частично погружён в воду, частично плавает на поверхности. В печь по мере расходования подгружается топливо, снаружи это всё охлаждается водой. Топливо собирается и готовиться на привале.
Если заморачиваться с собиранием дров и сосновых шишек не хочется, то можно подумать над конструкцией газовой печи. Тут стоит немного посчитать. Итак, имеем:
баллон сжиженного газа для газовых горелок с топливом массой 450 г.;
состав: изобутан - 72%, пропан - 22%, бутан - 6%, в пересчёте на массу это 324 г, 99 г и 27 г соответственно;
теплоты сгорания для этих газов равны соответственно 49,22 МДж/кг, 48,34 Мдж/кг и 49,34 МДж/кг.
После умножения и сложения имеем 22,07 МДж в одном баллоне сжиженного газа. Принимаем КПД нашего генератора равное 1%, следовательно получаем в качестве электроэнергии 220 кДж, что составляет 61,3 Вт*ч. С чем можно сравнить? Ну например с 19-тью NiMH аккумуляторами АА. Не густо и довольно накладно, газ не дешёв.
Раз использовать газ дорого, то можно придумать что-то с использованием жидкого топлива, например бензина. Я немного порылся в интернете на предмет дешёвого катализатора для каталитических горелок, но кроме оксида хрома (VI), полученного из бихромата аммония ничего не нашёл. Да и с ним не всё так гладко, но при желании, путём некоторого количества экспериментов можно и тут добиться стабильных положительных результатов. В каталитических грелках китайского производства скорее всего используются элементы платиновой группы в микроколичествах. Вот бы катализатор как в этой грелке, но большего размера для элементов Пельтье. Получился бы компактный и лёгкий генератор. Теплота сгорания бензина 44,5 МДж/кг, плотность 0,74 кг/л, с одного литра бензина имеем 33 МДж энергии, при 1%-ном КПД это 330 кДж или 91,6 Вт*ч электроэнергии (28 аккумуляторов АА). Более бюджетный вариант, но всё таки собирать и заготавливать имеющееся в природе бесплатное топливо естественно выгоднее, и у него нет одной очень неприятной особенности, присущей тем запасам, которые покупаются в магазине - оно не заканчивается в самый неподходящий момент.