Домой / Группы / Чем отличается автотрансформатор от трансформатора. В чем разница между силовым трансформатором и распределительным трансформатором. Ключевые отличия между трансформаторами

Чем отличается автотрансформатор от трансформатора. В чем разница между силовым трансформатором и распределительным трансформатором. Ключевые отличия между трансформаторами

Принцип работы трансформатора основан на законе электромагнитной индукции. В первичной обмотке под действием напряжения в сердечнике наводится магнитный поток, пропорциональный этому напряжению, который, в свою очередь, наводит ЭДС самоиндукции во вторичных обмотках. ЭДС, наводимая во вторичных обмотках, прямо пропорциональна количеству витков этих обмоток. Силовой трансформатор служит для преобразования переменного тока одного напряжения в переменный ток другого напряжения с преобразованием мощности и при неизменной частоте.

Изобретателем трансформатора был русский ученый П. Н. Яблочков. В 1876 г. Яблочков использовал индукционную катушку с двумя обмотками в качестве трансформатора для питания электрических свечей (ламп накаливания). Трансформатор Яблочкова имел незамкнутый сердечник. Трансформаторы с замкнутым сердечником (применяемые в настоящее время) появились примерно в 1884 г. С изобретением трансформатора возник технический интерес к переменному току, который до этого широко не применялся. Русский электротехник М. О. Доливо-Добровольский (1862—1919 г.) в 1889 г. предложил трехфазную систему переменного тока, построил первый трехфазный асинхронный двигатель и первый трехфазный трансформатор. На электротехнической выставке во Франкфурте-на-Майне в 1891 г. Доливо-Добровольский демонстрировал опытную высоковольтную электропередачу трехфазного тока протяженностью 175 км; трехфазный генератор имел мощность 230 кВт при напряжении 95 В. В дальнейшем, в качестве силовых, начали применять масляные трансформаторы, т. к. было установлено, что масло является не только хорошей изоляцией, но и хорошей охлаждающей средой.

Трансформаторы применяются при передаче электрической энергии на большие расстояния, распределении ее между приемниками энергии, а также в выпрямительных, усилительных и других устройствах, где требуется развязка электрических цепей.

"Золотой век" намоточных трансформаторов, применяемых в радиолюбительских конструкциях, да и в промышленной аппаратуре, кажется, уже прошел. Сегодня наиболее популярны понижающие двух- и многообмоточные трансформаторы, применяемые в источниках питания, и импульсные трансформаторы (для импульсных источников питания). Для преобразования, передачи электрической энергии в низковольтных устройствах популярны оптоэлектронные трансформаторы на основе оптопар. Они обеспечивают гальваническую развязку электрических цепей и значительно эффективнее намоточных трансформаторов с магнитной индукцией. Тем не менее некоторые области применения трансформаторов в классическом виде остаются. Это область мощных трансформаторов для силовых цепей. Намоточные трансформаторы в широком ассортименте продаются в магазинах, выпускаются промышленностью, а это значит, что разбираться в их особенностях необходимо и сегодня. Этому посвящен настоящий раздел, в котором читатель узнает как общие сведения о трансформаторах, так и том, как правильно классифицировать и читать их обозначения (принимать решения о применении того или иного прибора в конкретном устройстве или заменять его наиболее подходящим по электрическим характеристикам).

Индукционные трансформаторы

Индукционный трансформатор (далее трансформатор) — статическое электромагнитное устройство, имеющее две или более индуктивно связанные обмотки и предназначенное для преобразования посредством электромагнитной индукции одной или нескольких систем переменного тока в одну или несколько других систем переменного тока.

Силовые трансформаторы

Силовой трансформатор — трансформатор, предназначенный для преобразования электрической энергии в электрических сетях и установках, предназначенных для приема и использования электрической энергии. К силовым трансформаторам относятся трансформаторы трехфазные и многофазные мощностью до 6,3 кВт и более, однофазные мощностью 5 кВт и более. Силовые трансформаторы можно увидеть невооруженным глазом недалеко от вашего дома в ближайшей "трансформаторной" будке или электрической подстанции. Также силовые трансформаторы установлены вдоль железнодорожного полотна, по которому курсируют поезда на электротяге.

Повышающий трансформатор

Повышающий трансформатор — трансформатор, у которого первичной обмоткой является обмотка, имеющая более низкое напряжение.

Понижающий трансформатор

Понижающий трансформатор — трансформатор, у которого первичной обмоткой является обмотка с более высоким напряжением.

Сигнальный (согласующий) трансформатор

Сигнальный трансформатор (согласующий) — трансформатор малой мощности, предназначенный для передачи и преобразования электрических сигналов.

Автотрансформатор— трансформатор, две или более обмотки которого гальванически связаны так, что имеют общую точку.

Импульсный сигнальный трансформатор

Импульсный сигнальный трансформатор — это сигнальный трансформатор, предназначенный для передачи, формирования, преобразования и запоминания импульсных сигналов.

Коэффициент трансформации трансформатора малой мощности — отношение числа витков вторичной обмотки к числу витков первичной обмотки.

Магнитная индукция — это векторная величина, характеризующая магнитное поле и определяющая силу, действующую на движущуюся заряженную частицу со стороны магнитного поля.

Индуктивная связ ь— связь электрических цепей посредством магнитного поля.

Трансформаторы классифицируют по признаку функционального назначения:

  • трансформаторы питания;
  • трансформаторы согласования.

Трансформаторы питания в свою очередь классифицируют:

по напряжению:

  • низковольтные;
  • высоковольтные;
  • высокопотенциальные;

в зависимости от числа фаз преобразуемого напряжения:

  • однофазные;
  • трехфазные;

в зависимости от числа обмоток:

  • двухобмоточные;
  • многообмоточные;

в зависимости от конфигурации магнитопровода:

  • стержневые;
  • броневые;
  • тороидальные;

в зависимости от мощности трансформатора:

  • малой мощности;
  • средней мощности;
  • большой мощности;

в зависимости от способа изготовления магнитопровода:

  • пластинчатые;
  • ленточные;

зависимости от коэффициента трансформации:

  • повышающие;
  • понижающие;

в зависимости от вида связи между обмотками:

  • с электромагнитной связью (с изолированными обмотками);
  • с электромагнитной и электрической связью (со связанными обмотками);

в зависимости от конструкции обмотки:

  • катушечные;
  • галетные;
  • тороидальные;

в зависимости от конструкции всего трансформатора:

  • открытые;
  • капсулированные;
  • закрытые;

в зависимости от назначения:

  • выпрямительные;
  • накальные;
  • анодно-накальные;

в зависимости от рабочей частоты:

  • пониженной частоты (менее 50 Гц);
  • промышленной частоты (50 Гц);
  • повышенной промышленной частоты (400, 1000, 2000 Гц). Об этом подробнее в главе 5;
  • повышенной частоты (до 10 000 Гц);
  • высокой частоты.

Конструктивные особенности трансформаторов

Основными частями трансформатора являются магнитопровод и катушка с обмотками.

Материалом для магнитопровода трансформаторов служит листовая электротехническая сталь различных марок и толщины, горячей прокатки и холоднокатаная. От содержания кремния, количество которого отражено в марке стали, а также от толщины листа зависят потери мощности в магнитопроводе от вихревых токов. Толщину листа применяемой стали выбирают в зависимости от частоты сети, питающей трансформатор: с увеличением частоты толщину листа надо уменьшать. Ленточные (витые) магнитопроводы изготавливают из лент рулонной стали; предварительно лента покрывается изолирующим и склеивающим составом.

Литература: Андрей Кашкаров - Электронные самоделки

Для работы электрооборудования различного назначения требуется разное напряжение. Так, например, бытовое оборудование рассчитано на 220 или 110 В. Промышленное - обычно на 380 В. А так как при передаче электрического тока на большие расстояния требуется высокое напряжение (для снижения общих потерь электроэнергии при транспортировке), то для питания местных сетей его последовательно по ступеням снижают. Все эти преобразования напряжений осуществляют с помощью трансформаторов или же их разновидности - автотрансформаторов.

Трансформаторы, в зависимости от потребностей, бывают повышающие (повышают напряжение) и понижающие (понижают напряжение). И в том, и другом случае сущность работы данного прибора одна - добиться требуемого напряжения электрического тока.

Определение

Трансформатор - статический электромагнитный агрегат, преобразующий переменный ток одного напряжения в ток другого напряжения (понижает или повышает), а также для преобразования частоты и числа фаз.

Трансформатор обычно состоит из нескольких обмоток (двух и более), намотанных на общий стальной сердечник. Одна обмотка подключается к источнику переменного тока, а другая (другие) обмотка соединяется с потребителем электрического тока. Действие прибора основано на использовании электромагнитной индукции (закон Фарадея). Иными словами, изменение проходящего через обмотку магнитного потока создает в этой обмотке электродвижущую силу. В трансформаторах, работающих на сверхвысоких частотах, иногда может отсутствовать магнитопровод, такие устройства называются воздушными. В случаях, когда требуется менять напряжение в небольших пределах, используют автотрансформатор.

Конструкция трансформатора

Автотрансформатор - это такой тип трансформатора, где первичная и вторичная обмотки объединены в одну (вторая является неотъемлемой частью первой). За счет этого они имеют между собой не только электромагнитную, но и электрическую связь. Кроме того, обмотка автотрансформатора оборудована, как минимум, тремя выводами, благодаря чему имеется возможность подключения к разным выводам, и получения на выходе различных напряжений.

Отличие

Итак, главным отличием трансформатора от автотрансформатора является количество обмоток. У трансформаторов их две и более, у автотрансформаторов одна.

Автотрансформаторы нашли широкое применение в сетях с напряжением 150 кВ и выше, за счет меньшей, чем у трансформаторов, стоимости, меньшим потерям в обмотках активной мощности (в сравнении с трансформаторами такой же мощности). Кроме того, автотрансформаторы по своим габаритам гораздо меньше трансформаторов.

Главным преимуществом автотрансформаторов перед другими видами трансформаторов, является их более высокий КПД, так как преобразованию в них подвергается только часть мощности. Кроме того, из-за меньшего расхода стали для сердечника, меди на обмотки, меньшим габаритам и весу стоимость данного вида трансформаторов существенно ниже, чем у других вариантов.

Недостатком автотрансформаторов (в сравнении с трансформаторами) является отсутствие между первичной и вторичной обмотками электрической изоляции. Это не важно для промышленных сетей, где в любом случае нулевой провод обязательно заземляется, но неприемлемо для применения в быту, т.к. при авариях в автотрансформаторах высшее напряжение с первичной обмотки вполне может оказаться приложенным к низшему (пробой изоляции токопроводящих частей). В результате, все части установки будут соединены с высоковольтной частью, что недопустимо по правилам безопасности при обслуживании подобного оборудования. Для бытовых нужд обычно используется более надежный и безопасный трансформатор.

Выводы сайт

  1. Количество обмоток у трансформатора две и более, у автотрансформатора - одна.
  2. Автотрансформатор менее надежен и более опасен в эксплуатации, чем трансформатор.
  3. Стоимость автотрансформатора значительно ниже, чем у трансформатора.
  4. У автотрансформатора более высокий, чем у трансформатора, КПД.
  5. Трансформатор, в отличие от автотрансформатора, имеет значительно большие размеры.

Трансформаторы - устройства, используемые для преобразования одного из параметров электроэнергии - напряжения или силы тока.

Они относятся к пассивным электрическим устройствам, то есть не генерируют, а потребляют энергию, поэтому мощность тока в трансформаторах не может увеличиваться.

Таким образом, все трансформаторы в зависимости от преобразуемого параметра электрической энергии делятся на 2 вида :

  • трансформаторы электрического тока;
  • трансформаторы электрического напряжения.

Работа любого электрического трансформатора основана на принципе электромагнитной взаимоиндукции - способности проводника с током наводить эдс в соседнем проводнике. Проводниками в трансформаторе являются первичная (входная) и вторичная (выходная) обмотки, намотанные на магнитопровод для усиления магнитной связи между ними. Магнитопровод представляет собой замкнутый или разомкнутый сердечник из железа или композитного сплава с высокой магнитной проницаемостью.

Основными показателями трансформатора являются коэффициенты трансформации по напряжению и току:

КU=U2/U1 и KI=I2/I1

где U1,2 - напряжения в первичной и вторичной обмотке, I1,2 - силы тока в первичной и вторичной обмотке. Они показывают, во сколько раз изменяется входной ток или напряжение на выходе трансформатора. В зависимости от величины коэффициента трансформации различают повышающие (К˃1) и понижающие (К<1) трансформаторы. Если магнитная связь между обмотками не изменяется, то коэффициент трансформации будет равен соотношению количества витков во вторичной и первичной обмотке

K=w2/w1.

Особенности трансформаторов тока (ТТ)

Трансформаторы тока предназначены для преобразования силы тока без изменения его мощности. В основном они применяются для понижения тока до значений, пригодных для их измерения и используются в распределительных щитах для подключения измерительных приборов, счётчиков энергии, защитных реле. По назначению они делятся на:

  • измерительные;
  • защитные;
  • лабораторные.

В измерительных ТТ первичная обмотка может отсутствовать или представлять собой толстую шину. На шину наматывается несколько витков вторичной обмотки, в которой наводится эдс, пропорциональная силе тока в шине. Шина включается в разрыв цепи, в которой производится измерение. К вторичной обмотке ТТ подключается нагрузка и измерительный прибор.
Важно! Так как КU для ТТ имеет большие значения, то включать их в режиме холостого хода (без нагрузки) запрещается, что может повлечь высоковольтный пробой изоляции проводов и выход из строя трансформатора.

Особенности трансформаторов напряжения (ТН)

ТН предназначены для получения нужной величины напряжения от промышленной сети или другого источника переменного тока. По своему назначению они делятся на:

  • силовые;
  • измерительные;
  • согласующие;
  • лабораторные;
  • высоковольтные трансформаторы.

В быту наиболее широкое применение нашли силовые трансформаторы, используемые повсеместно для подключения бытовых приборов к электросети 220В 50Гц. Конструктивно они представляют собой классический пример устройства трансформатора, состоящего из двух, а также нескольких катушек, намотанных на железный сердечник. По форме сердечника различают:

  • стержневые;
  • кольцевые;
  • тороидальные;
  • Ш-образные трансформаторы.

В отличие от трансформаторов тока благоприятным режимом работы для ТН является режим, близкий к холостому ходу, когда нагрузка на вторичную обмотку минимальна. Оптимальный режим работы достигается, когда сопротивление нагрузки равно или до полутора раз больше сопротивления выходной обмотки трансформатора.

Для питания различного электрооборудования применяют повышающие и понижающие трансформаторы. Одни приборы требуют напряжение 220 вольт, другие 380 вольт, 110, 127 и т. д. Для понижения напряжения высоковольтных ЛЭП также применяют мощные трансформаторы.

В общем виде, трансформатор представляет собой прибор статического типа, содержащий две или более обмоток, намотанные на шихтованный магнитопровод - сердечник. В процессе работы трансформатора, обмотки пересекаются общим переменным магнитным потоком, и по закону электромагнитной индукции Фарадея, в них наводится ЭДС. Обмотка, включаемая в цепь источника называется первичной, а обмотка, включаемая в цепь потребителя — вторичной. Вторичная обмотка может быть одна или их может быть несколько, в зависимости от назначения конкретного трансформатора.

Наряду с описанной конструкцией, встречаются и так называемые автотрансформаторы, у которых часть первичной обмотки используется в качестве вторичной (понижающий автотрансформатор), или часть вторичной в качестве первичной (повышающий автотрансформатор), то есть гальваническая развязка между первичной и вторичной обмотками отсутствует. Автотрансформаторы относятся к трансформаторам специального назначения, и применяются там, где применение обычных трансформаторов нерентабельно или неудобно.

Обмотка автотрансформатора имеет несколько (три или более) выводов, это дает возможность выбрать способ подключения, и получить требуемый коэффициент трансформации. По этой причине автотрансформаторы применяют там, где нужно менять напряжение в небольших пределах. Наиболее широко автотрансформаторы применяются в системах электроснабжения, требующих плавной регулировки напряжения сети.

При использовании автотрансформаторов в высоковольтных сетях (150кВ и более) особенно отмечается их экономичность по сравнению с обычными трансформаторами: меньшие активные потери, меньшие габариты, более высокий КПД, в силу преобразования лишь части мощности. Значительная экономия материалов, меди и трансформаторной стали, сказывается на снижении веса трансформатора и его стоимости.


Применяют автотрансформаторы и для щадящего пуска мощных электродвигателей, когда в момент старта подают напряжение ниже номинального, а затем, когда двигатель набрал приемлемые обороты — на обмотки подают полное напряжение. Это продлевает жизнь двигателю и немало .

Особенность процесса преобразования в автотрансформаторе также заслуживает внимания. Первичный и вторичный токи, как известно, имеют противоположное направление, и проходя по общей части обмотки они суммируются, создавая меньший результирующий ток. Таким образом, общий участок обмотки может быть выполнен проводом меньшего сечения, это и приводит к экономии меди, особенно при малом коэффициенте трансформации (близком к единице). В остальном, расчеты относительно коэффициента трансформации аналогичны обычному трансформатору, где за основу берется соотношение числа витков.

Единственный недостаток автотрансформатора - отсутствие изоляции между обмотками, поэтому его в обычном виде не применяют в быту. Для промышленных же сетей, это вовсе не недостаток, поскольку там нулевой провод всегда заземляется.

Особенной разновидностью автотрансформатора представляется лабораторный автотрансформатор (ЛАТР), обладающий возможностью плавной и точной регулировки выходного напряжения. Это становится возможным, благодаря применению в качестве сердечника тороидального магнитопровода, на который навита обмотка с неизолированной дорожкой, по которой при настройке скользит угольная щетка, таким образом регулируется количество витков, составляющих вторичную обмотку.

В однофазных ЛАТРах напряжение изменяется от 0 до 250 вольт, в трехфазных — от 0 до 450 вольт. ЛАТРы применяются в лабораториях при осуществлении наладочных работ.