Домой / Игры / Термин стереть флеш память что значит. Технологии флэш-памяти

Термин стереть флеш память что значит. Технологии флэш-памяти

Флеш память Сюда перенаправляется запрос Флэш-карты . На тему «Флэш-карты» .

Характеристики

Скорость некоторых устройств с флеш-памятью может доходить до 100 Мб/с . В основном флеш-карты имеют большой разброс скоростей и обычно маркируются в скоростях стандартного CD-привода (150 КБ/с). Так указанная скорость в 100x означает 100 × 150 КБ/с = 15 000 КБ/с= 14.65 МБ/с.

В основном объём чипа флеш-памяти измеряется от килобайт до нескольких гигабайт .

Для увеличения объёма в устройствах часто применяется массив из нескольких чипов. К 2007 году USB устройства и карты памяти имели объём от 512 МБ до 64 ГБ . Самый большой объём USB устройств составлял 4 ТБ .

Файловые системы

Основное слабое место флеш-памяти - количество циклов перезаписи. Ситуация ухудшается также в связи с тем, что ОС часто записывает данные в одно и то же место. Например, часто обновляется таблица файловой системы, так что первые сектора памяти израсходуют свой запас значительно раньше. Распределение нагрузки позволяет существенно продлить срок работы памяти.

Для решения этой проблемы были созданы специальные файловые системы: JFFS2 и YAFFS для GNU/Linux и Microsoft Windows.

SecureDigital и FAT.

Применение

Флеш-память наиболее известна применением в USB флеш-носителях (англ. USB flash drive ). В основном применяется NAND тип памяти, которая подключается через USB по интерфейсу USB mass storage device (USB MSC). Данный интерфейс поддерживается всеми ОС современных версий.

Благодаря большой скорости, объёму и компактным размерам USB флеш-носители полностью вытеснили с рынка дискеты. Например, компания 2003 года перестала выпускать компьютеры с дисководом гибких дисков .

В данный момент выпускается широкий ассортимент USB флеш-носителей, разных форм и цветов. На рынке присутствуют флешки с автоматическим шифрованием записываемых на них данных. Японская компания Solid Alliance даже выпускает флешки в виде еды .

Есть специальные дистрибутивы GNU/Linux и версии программ , которые могут работать прямо с USB носителей, например, чтобы пользоваться своими приложениями в интернет-кафе .

Технология Windows Vista способна использовать USB-флеш носитель или специальную флеш-память, встроенную в компьютер, для увеличения быстродействия . На флеш-памяти также основываются карты памяти, такие как SecureDigital (SD) и Memory Stick , которые активно применяются в портативной технике (фотоаппараты, мобильные телефоны). Вкупе с USB носителями флеш-память занимает большую часть рынка переносных носителей данных.

NOR тип памяти чаще применяется в BIOS и ROM-памяти устройств, таких как DSL модемы, маршрутизаторы и т. д. Флеш-память позволяет легко обновлять прошивку устройств, при этом скорость записи и объём для таких устройств не так важны.

Сейчас активно рассматривается возможность замены жёстких дисков на флеш‑память. В результате увеличится скорость включения компьютера, а отсутствие движущихся деталей увеличит срок службы. Например, в XO-1 , «ноутбуке за 100 $», который активно разрабатывается для стран третьего мира, вместо жёсткого диска будет использоваться флеш-память объёмом 1 ГБ . Распространение ограничивает высокая цена за ГБ и меньший срок годности, чем у жёстких дисков из-за ограниченного количества циклов записи.

Типы карт памяти

Существуют несколько типов карт памяти, используемых в портативных устройствах:

MMC (MultiMedia Card) : карточка в формате MMC имеет небольшой размер - 24×32×1,4 мм. Разработана совместно компаниями SanDisk и Siemens. MMC содержит контроллер памяти и обладает высокой совместимостью с устройствами самого различного типа. В большинстве случаев карты MMC поддерживаются устройствами со слотом SD.

RS-MMC (Reduced Size MultiMedia Card) : карта памяти, которая вдвое короче стандартной карты MMC. Её размеры составляют 24×18×1,4 мм, а вес - около 6 г, все остальные характеристики не отличаются от MMC. Для обеспечения совместимости со стандартом MMC при использовании карт RS-MMC нужен адаптер. DV-RS-MMC (Dual Voltage Reduced Size MultiMedia Card) : карты памяти DV-RS-MMC с двойным питанием (1,8 и 3,3 В) отличаются пониженным энергопотреблением, что позволит работать мобильному телефону немного дольше. Размеры карты совпадают с размерами RS-MMC, 24×18×1,4 мм. MMCmicro : миниатюрная карта памяти для мобильных устройств с размерами 14×12×1,1 мм. Для обеспечения совместимости со стандартным слотом MMC необходимо использовать переходник.

SD Card (Secure Digital Card) : поддерживается фирмами Panasonic и : Старые карты SD так называемые Trans-Flash и новые SDHC (High Capacity) и устройства их чтения различаются ограничением на максимальную ёмкость носителя, 2 ГБ для Trans-Flash и 32 ГБ для High Capacity (Высокой Ёмкости). Устройства чтения SDHC обратно совместимы с SDTF, то есть SDTF карта будет без проблем прочитана в устройстве чтения SDHC, но в устройстве SDTF увидится только 2 ГБ от ёмкости SDHC большей ёмкости, либо не будет читаться вовсе. Предполагается, что формат TransFlash будет полностью вытеснен форматом SDHC. Оба суб-формата могут быть представлены в любом из трёх форматов физ. размеров (Стандартный, mini и micro). miniSD (Mini Secure Digital Card) : От стандартных карт Secure Digital отличаются меньшими размерами 21,5×20×1,4 мм. Для обеспечения работы карты в устройствах, оснащённых обычным SD-слотом, используется адаптер. microSD (Micro Secure Digital Card) : являются на настоящий момент (2008) самыми компактными съёмными устройствами флеш-памяти (11×15×1 мм). Используются, в первую очередь, в мобильных телефонах, коммуникаторах, и т. п., так как, благодаря своей компактности, позволяют существенно расширить память устройства, не увеличивая при этом его размеры. Переключатель защиты от записи вынесен на адаптер microSD-SD.

MS Duo (Memory Stick Duo) : данный стандарт памяти разрабатывался и поддерживается компанией

Новый Год – приятный, светлый праздник, в который мы все подводим итоги год ушедшего, смотрим с надеждой в будущее и дарим подарки. В этой связи мне хотелось бы поблагодарить всех хабра-жителей за поддержку, помощь и интерес, проявленный к моим статьям ( , , , ). Если бы Вы когда-то не поддержали первую, не было и последующих (уже 5 статей)! Спасибо! И, конечно же, я хочу сделать подарок в виде научно-популярно-познавательной статьи о том, как можно весело, интересно и с пользой (как личной, так и общественной) применять довольно суровое на первый взгляд аналитическое оборудование. Сегодня под Новый Год на праздничном операционном столе лежат: USB-Flash накопитель от A-Data и модуль SO-DIMM SDRAM от Samsung.

Теоретическая часть

Постараюсь быть предельно краток, чтобы все мы успели приготовить салат оливье с запасом к праздничному столу, поэтому часть материала будет в виде ссылок: захотите – почитаете на досуге…
Какая память бывает?
На настоящий момент есть множество вариантов хранения информации, какие-то из них требуют постоянной подпитки электричеством (RAM), какие-то навсегда «вшиты» в управляющие микросхемы окружающей нас техники (ROM), а какие-то сочетают в себе качества и тех, и других (Hybrid). К последним, в частности, и принадлежит flash. Вроде бы и энергонезависимая память, но законы физики отменить сложно, и периодически на флешках перезаписывать информацию всё-таки приходится.

Единственное, что, пожалуй, может объединять все эти типы памяти – более-менее одинаковый принцип работы. Есть некоторая двумерная или трёхмерная матрица, которая заполняется 0 и 1 примерно таким образом и из которой мы впоследствии можем эти значения либо считать, либо заменить, т.е. всё это прямой аналог предшественника – памяти на ферритовых кольцах .

Что такое flash-память и какой она бывает (NOR и NAND)?
Начнём с flash-памяти. Когда-то давно на небезызвестном ixbt была опубликована довольно о том, что представляет собой Flash, и какие 2 основных сорта данного вида памяти бывают. В частности, есть NOR (логическое не-или) и NAND (логическое не-и) Flash-память ( тоже всё очень подробно описано), которые несколько отличаются по своей организации (например, NOR – двумерная, NAND может быть и трехмерной), но имеют один общий элемент – транзистор с плавающим затвором.


Схематическое представление транзистора с плавающим затвором.

Итак, как же это чудо инженерной мысли работает? Вместе с некоторыми физическими формулами это описано . Если вкратце, то между управляющим затвором и каналом, по которому ток течёт от истока к стоку, мы помещаем тот самый плавающий затвор, окружённый тонким слоем диэлектрика. В результате, при протекании тока через такой «модифицированный» полевой транзистор часть электронов с высокой энергией туннелируют сквозь диэлектрик и оказываются внутри плавающего затвора. Понятно, что пока электроны туннелировали, бродили внутри этого затвора, они потеряли часть энергии и назад практически вернуться не могут.

NB: «практически» - ключевое слово, ведь без перезаписи, без обновления ячеек хотя бы раз в несколько лет Flash «обнуляется» так же, как оперативная память, после выключения компьютера.

Опять мы имеем двумерный массив, который необходимо заполнить 0 и 1. Так как на накопление заряда на плавающем затворе уходит довольно продолжительное время, то в случае RAM применяется иное решение. Ячейка памяти состоит из конденсатора и обычного полевого транзистора. При этом сам конденсатор имеет, с одной стороны, примитивное физическое устройство, но, с другой стороны, нетривиально реализован в железе:


Устройство ячейки RAM.

Опять-таки на ixbt есть неплохая , посвящённая DRAM и SDRAM памяти. Она, конечно, не так свежа, но принципиальные моменты описаны очень хорошо.

Единственный вопрос, который меня мучает: а может ли DRAM иметь, как flash, multi-level cell? Вроде да , но всё-таки…

Часть практическая

Flash
Те, кто пользуется флешками довольно давно, наверное, уже видели «голый» накопитель, без корпуса. Но я всё-таки кратко упомяну основные части USB-Flash-накопителя:


Основные элементы USB-Flash накопителя: 1. USB-коннектор, 2. контроллер, 3. PCB-многослойная печатная плата, 4. модуль NAND памяти, 5. кварцевый генератор опорной частоты, 6. LED-индикатор (сейчас, правда, на многих флешках его нет), 7. переключатель защиты от записи (аналогично, на многих флешках отсутствует), 8. место для дополнительной микросхемы памяти.

Пойдём от простого к сложному. Кварцевый генератор (подробнее о принципе работы ). К моему глубокому сожалению, за время полировки сама кварцевая пластинка исчезла, поэтому нам остаётся любоваться только корпусом.


Корпус кварцевого генератора

Случайно, между делом, нашёл-таки, как выглядит армирующее волокно внутри текстолита и шарики, из которых в массе своей и состоит текстолит. Кстати, а волокна всё-таки уложены со скруткой, это хорошо видно на верхнем изображении:


Армирующее волокно внутри текстолита (красными стрелками указаны волокна, перпендикулярные срезу), из которого и состоит основная масса текстолита

А вот и первая важная деталь флешки – контроллер:


Контроллер. Верхнее изображение получено объединением нескольких СЭМ-микрофотографий

Признаюсь честно, не совсем понял задумку инженеров, которые в самой заливке чипа поместили ещё какие-то дополнительные проводники. Может быть, это с точки зрения технологического процесса проще и дешевле сделать.

После обработки этой картинки я кричал: «Яяяяязь!» и бегал по комнате. Итак, Вашему вниманию представляет техпроцесс 500 нм во всей свой красе с отлично прорисованными границами стока, истока, управляющего затвора и даже контакты сохранились в относительной целостности:


«Язь!» микроэлектроники – техпроцесс 500 нм контроллера с прекрасно прорисованными отдельными стоками (Drain), истоками (Source) и управляющими затворами (Gate)

Теперь приступим к десерту – чипам памяти. Начнём с контактов, которые эту память в прямом смысле этого слова питают. Помимо основного (на рисунке самого «толстого» контакта) есть ещё и множество мелких. Кстати, «толстый» < 2 диаметров человеческого волоса, так что всё в мире относительно:


СЭМ-изображения контактов, питающих чип памяти

Если говорить о самой памяти, то тут нас тоже ждёт успех. Удалось отснять отдельные блоки, границы которых выделены стрелочками. Глядя на изображение с максимальным увеличением, постарайтесь напрячь взгляд, этот контраст реально трудно различим, но он есть на изображении (для наглядности я отметил отдельную ячейку линиями):


Ячейки памяти 1. Границы блоков выделены стрелочками. Линиями обозначены отдельные ячейки

Мне самому сначала это показалось как артефакт изображения, но обработав все фото дома, я понял, что это либо вытянутые по вертикальной оси управляющие затворы при SLC-ячейке, либо это несколько ячеек, собранных в MLC. Хоть я и упомянул MLC выше, но всё-таки это вопрос. Для справки, «толщина» ячейки (т.е. расстояние между двумя светлыми точками на нижнем изображении) около 60 нм.

Чтобы не лукавить – вот аналогичные фото с другой половинки флешки. Полностью аналогичная картина:


Ячейки памяти 2. Границы блоков выделены стрелочками. Линиями обозначены отдельные ячейки

Конечно, сам чип – это не просто набор таких ячеек памяти, внутри него есть ещё какие-то структуры, принадлежность которых мне определить не удалось:


Другие структуры внутри чипов NAND памяти

DRAM
Всю плату SO-DIMM от Samsung я, конечно же, не стал распиливать, лишь с помощью строительного фена «отсоединил» один из модулей памяти. Стоит отметить, что тут пригодился один из советов, предложенных ещё после первой публикации – распилить под углом. Поэтому, для детального погружения в увиденное необходимо учитывать этот факт, тем более что распил под 45 градусов позволил ещё получить как бы «томографические» срезы конденсатора.

Однако по традиции начнём с контактов. Приятно было увидеть, как выглядит «скол» BGA и что собой представляет сама пайка:


«Скол» BGA-пайки

А вот и второй раз пора кричать: «Язь!», так как удалось увидеть отдельные твердотельные конденсаторы – концентрические круги на изображении, отмеченные стрелочками. Именно они хранят наши данные во время работы компьютера в виде заряда на своих обкладках. Судя по фотографиям размеры такого конденсатора составляют около 300 нм в ширину и около 100 нм в толщину.

Из-за того, что чип разрезан под углом, одни конденсаторы рассечены аккуратно по середине, у других же срезаны только «бока»:


DRAM память во всей красе

Если кто-то сомневается в том, что эти структуры и есть конденсаторы, то можно посмотреть более «профессиональное» фото (правда без масштабной метки).

Единственный момент, который меня смутил, что конденсаторы расположены в 2 ряда (левое нижнее фото), т.е. получается, что на 1 ячейку приходится 2 бита информации. Как уже было сказано выше, информация по мультибитовой записи имеется, но насколько эта технология применима и используется в современной промышленности – остаётся для меня под вопросом.

Конечно, кроме самих ячеек памяти внутри модуля есть ещё и какие-то вспомогательные структуры, о предназначении которых я могу только догадываться:


Другие структуры внутри чипа DRAM-памяти

Послесловие

Помимо тех ссылок, что раскиданы по тексту, на мой взгляд, довольно интересен данный обзор (пусть и от 1997 года), сам сайт (и фотогалерея, и chip-art, и патенты, и много-много всего) и данная контора , которая фактически занимается реверс-инжинирингом.

К сожалению, большого количества видео на тему производства Flash и RAM найти не удалось, поэтому довольствоваться придётся лишь сборкой USB-Flash-накопителей:

P.S.: Ещё раз всех с наступающим Новым Годом чёрного водяного дракона!!!
Странно получается: статью про Flash хотел написать одной из первых, но судьба распорядилась иначе. Скрестив пальцы, будем надеяться, что последующие, как минимум 2, статьи (про биообъекты и дисплеи) увидят свет в начале 2012 года. А пока затравка - углеродный скотч:


Углеродный скотч, на котором были закреплены исследуемые образцы. Думаю, что и обычный скотч выглядит похожим образом

Принципиальная схема построения устройства осталась неизменной с 1995 года, когда флэшки впервые начали производиться в промышленных масштабах. Если не углубляться в детали, USB флэш-карта состоит из трех ключевых элементов: * разъем USB -- хорошо знакомый каждому разъем, представляющий собой интерфейс между флэшкой и компьютерной системой, будь то система персонального компьютера, мультимедийного центра или даже автомагнитолы; * контроллер памяти -- очень важный элемент цепи. Осуществляет связь памяти устройства с разъемом USB и руководит передачей данных в обе стороны; * микросхема памяти -- самая дорогая и важная часть USB флэш-карты. Определяет объем хранимой на карте информации, быстроту чтения/записи данных. Что может меняться в этой схеме? Принципиально ничего, но современная индустрия предоставляет несколько вариантов такой схемы; комбинация разъемов eSATA и USB, два разъема USB.

1 -- USB-разъём; 2 -- микроконтроллер; 3 -- контрольные точки; 4 -- микросхема флэш-памяти; 5 -- кварцевый резонатор; 6 -- светодиод; 7 -- переключатель «защита от записи»; 8 -- место для дополнительной микросхемы памяти.

Принцип действия

Флэш-память хранит информацию в массиве транзисторов с плавающим затвором, называемых ячейками (англ. cell). В традиционных устройствах с одноуровневыми ячейками (англ. single-level cell, SLC), каждая из них может хранить только один бит. Некоторые новые устройства с многоуровневыми ячейками (англ. multi-level cell, MLC; triple-level cell, TLC ) могут хранить больше одного бита, используя разный уровень электрического заряда на плавающем затворе транзистора.

Типы флeш памяти

NOR

В основе этого типа флэш-памяти лежит ИЛИ-НЕ элемент (англ. NOR), потому что в транзисторе с плавающим затвором низкое напряжение на затворе обозначает единицу.

Транзистор имеет два затвора: управляющий и плавающий. Последний полностью изолирован и способен удерживать электроны до 10 лет. В ячейке имеются также сток и исток. При программировании напряжением на управляющем затворе создаётся электрическое поле и возникает туннельный эффект. Часть электронов туннелирует сквозь слой изолятора и попадает на плавающий затвор. Заряд на плавающем затворе изменяет «ширину» канала сток-исток и его проводимость, что используется при чтении.

Программирование и чтение ячеек сильно различаются в энергопотреблении: устройства флэш-памяти потребляют достаточно большой ток при записи, тогда как при чтении затраты энергии малы.

Для стирания информации на управляющий затвор подаётся высокое отрицательное напряжение, и электроны с плавающего затвора переходят (туннелируют) на исток.

В NOR-архитектуре к каждому транзистору необходимо подвести индивидуальный контакт, что увеличивает размеры схемы. Эта проблема решается с помощью NAND-архитектуры.

NAND

В основе NAND-типа лежит И-НЕ элемент (англ. NAND). Принцип работы такой же, от NOR-типа отличается только размещением ячеек и их контактами. В результате уже не требуется подводить индивидуальный контакт к каждой ячейке, так что размер и стоимость NAND-чипа может быть существенно меньше. Также запись и стирание происходит быстрее. Однако эта архитектура не позволяет обращаться к произвольной ячейке.

NAND и NOR-архитектуры сейчас существуют параллельно и не конкурируют друг с другом, поскольку находят применение в разных областях хранения данных.

Флеш-память (англ. Flash-Memory) - разновидность твердотельной полупроводниковой энергонезависимой перезаписываемой памяти.

Она может быть прочитана сколько угодно раз, но писать в такую память можно лишь ограниченное число раз (максимально - около миллиона циклов). Распространена флэш-память, выдерживающая около 100 тысяч циклов перезаписи - намного больше, чем способна выдержать дискета или CD-RW.

Не содержит подвижных частей, так что, в отличие от жёстких дисков, более надёжна и компактна.

Благодаря своей компактности, дешевизне и низком энергопотреблении флеш-память широко используется в портативных устройствах, работающих на батарейках и аккумуляторах - цифровых фотокамерах и видеокамерах, цифровых диктофонах, MP3-плеерах, КПК, мобильных телефонах, а также смартфонах и коммуникаторах. Кроме того, она используется для хранения встроенного программного обеспечения в различных устройствах (маршрутизаторах, мини-АТС, принтерах, сканерах), различных контроллерах.

Так же в последнее время широкое распространение получили USB флеш брелоки («флешка», USB-драйв, USB-диск), практически вытеснившие дискеты и CD.

На конец 2008 г. основным недостатком, не позволяющим устройствам на базе флеш-памяти вытеснить с рынка жёсткие диски, является высокое соотношение цена/объём, превышающее этот параметр у жестких дисков в 2-3 раза. В связи с этим и объёмы флеш-накопителей не так велики. Хотя работы в этих направлениях ведутся. Удешевляется технологический процесс, усиливается конкуренция. Многие фирмы уже заявили о выпуске SSD накопителей объёмом 256 ГБ и более.

Ещё один недостаток устройств на базе флеш-памяти по сравнению с жёсткими дисками - как ни странно, меньшая скорость. Несмотря на то, что производители SSD накопителей заверяют, что скорость этих устройств выше скорости винчестеров, в реальности она оказывается ощутимо ниже. Конечно, SSD накопитель не тратит подобно винчестеру время на разгон, позиционирование головок и т. п. Но время чтения, а тем более записи, ячеек флеш-памяти, используемой в современных SSD накопителях, больше. Что и приводит к значительному снижению общей производительности. Справедливости ради следует отметить, что последние модели SSD накопителей и по этому параметру уже вплотную приблизились к винчестерам. Однако, эти модели пока слишком дороги.

В Феврале 2009г, начались поставки USB-flash drive ёмкостью 512Gb. Данная модель уже появилась в продаже в Москве. Ориентировочная стоимость такой модели для конечного потребителя планируется в пределах $250, что делает такую флэшку явным конкурентом внешних HDD. Флэшка имеет небольшие компактные размеры, интерфейс USB 2.0, скорость на чтение 11MB/сек. и 10MB/сек. для записи.Содержание [убрать]

Принцип действия

Программирование флеш-памяти

Стирание флеш-памяти

Флеш-память хранит информацию в массиве транзисторов с плавающим затвором, называемых ячейками (англ. cell). В традиционных устройствах с одноуровневыми ячейками (англ. single-level cell, SLC), каждая из них может хранить только один бит. Некоторые новые устройства с многоуровневыми ячейками (англ. multi-level cell, MLC) могут хранить больше одного бита, используя разный уровень электрического заряда на плавающем затворе транзистора.

В основе этого типа флеш-памяти лежит ИЛИНЕ элемент (англ. NOR), потому что в транзисторе с плавающим затвором низкое напряжение на затворе обозначает единицу.

Транзистор имеет два затвора: управляющий и плавающий. Последний полностью изолирован и способен удерживать электроны до 10 лет. В ячейке имеются также сток и исток. При программировании напряжением на управляющем затворе создаётся электрическое поле и возникает туннельный эффект. Некоторые электроны туннелируют через слой изолятора и попадают на плавающий затвор, где и будут пребывать. Заряд на плавающем затворе изменяет «ширину» канала сток-исток и его проводимость, что используется при чтении.

Программирование и чтение ячеек сильно различаются в энергопотреблении: устройства флеш-памяти потребляют достаточно большой ток при записи, тогда как при чтении затраты энергии малы.

Для стирания информации на управляющий затвор подаётся высокое отрицательное напряжение, и электроны с плавающего затвора переходят (туннелируют) на исток.

В NOR архитектуре к каждому транзистору необходимо подвести индивидуальный контакт, что увеличивает размеры схемы. Эта проблема решается с помощью NAND архитектуры.

В основе NAND типа лежит И-НЕ элемент (англ. NAND). Принцип работы такой же, от NOR типа отличается только размещением ячеек и их контактами. В результате уже не требуется подводить индивидуальный контакт к каждой ячейке, так что размер и стоимость NAND чипа может быть существенно меньше. Так же запись и стирание происходит быстрее. Однако эта архитектура не позволяет обращаться к произвольной ячейке.

NAND и NOR архитектуры сейчас существуют параллельно и не конкурируют друг с другом, поскольку находят применение в разных областях хранения данных.

История

Флеш-память была изобретена Фудзи Масуока (Fujio Masuoka), когда он работал в Toshiba в 1984 году. Имя «флеш» было придумано также в Toshiba коллегой Фудзи, Сёдзи Ариизуми (Shoji Ariizumi), потому что процесс стирания содержимого памяти ему напомнил фотовспышку (англ. flash). Масуока представил свою разработку на IEEE 1984 International Electron Devices Meeting (IEDM), проходившей в Сан-Франциско, Калифорния. Intel увидела большой потенциал в изобретении и в 1988 году выпустила первый коммерческий флеш-чип NOR-типа.

NAND-тип флеш-памяти был анонсирован Toshiba в 1989 году на International Solid-State Circuits Conference. У него была больше скорость записи и меньше площадь чипа.

На конец 2008 года, лидерами по производству флеш-памяти являются Samsung (31% рынка) и Toshiba (19% рынка, включая совместные заводы с Sandisk). (Данные согласно iSupply на Q4"2008). Стандартизацией чипов флеш-памяти типа NAND занимается Open NAND Flash Interface Working Group (ONFI). Текущим стандартом считается спецификация ONFI версии 1.0, выпущенная 28 декабря 2006 года. Группа ONFI поддерживается конкурентами Samsung и Toshiba в производстве NAND чипов: Intel, Hynix и Micron Technology.

Характеристики

Скорость некоторых устройств с флеш-памятью может доходить до 100 Мб/с. В основном флеш-карты имеют большой разброс скоростей и обычно маркируются в скоростях стандартного CD-привода (150 Кб/с). Так указанная скорость в 100x означает 100 Ч 150 Кб/с = 15 000 Кб/с= 14.65 Мб/с.

В основном объём чипа флеш-памяти измеряется от килобайт до нескольких гигабайт.

В 2005 году Toshiba и SanDisk представили NAND чипы объёмом 1 Гб, выполненные по технологии многоуровневых ячеек, где один транзистор может хранить несколько бит, используя разный уровень электрического заряда на плавающем затворе.

Компания Samsung в сентябре 2006 года представила 8 Гб чип, выполненный по 40-нм технологическому процессу. В конце 2007 года Samsung сообщила о создании первого в мире MLC (multi-level cell) чипа флеш-памяти типа NAND, выполненного по 30-нм технологическому процессу. Ёмкость чипа также составляет 8 Гб. Ожидается, что в массовое производство чипы памяти поступят в 2009 году.

Для увеличения объёма в устройствах часто применяется массив из нескольких чипов. В основном на середину 2007 года USB устройства и карты памяти имеют объём от 512 Мб до 64 Гб. Самый большой объём USB устройств составляет 1 Тб.

Файловые системы

Основное слабое место флеш-памяти - количество циклов перезаписи. Ситуация ухудшается также в связи с тем, что ОС часто записывает данные в одно и то же место. Например, часто обновляется таблица файловой системы, так что первые сектора памяти израсходуют свой запас значительно раньше. Распределение нагрузки позволяет существенно продлить срок работы памяти.

Для решения этой проблемы были созданы специальные файловые системы: JFFS2 и YAFFS для GNU/Linux и exFAT для Microsoft Windows.

USB флеш-носители и карты памяти, такие как SecureDigital и CompactFlash имеют встроенный контроллер, который производит обнаружение и исправление ошибок и старается равномерно использовать ресурс перезаписи флеш-памяти. На таких устройствах не имеет смысла использовать специальную файловую систему и для лучшей совместимости применяется обычная FAT.

Применение

Флеш-карты разных типов (спичка отображена для оценки размеров)

Флеш-память наиболее известна применением в USB флеш-носителях (англ. USB flash drive). В основном применяется NAND тип памяти, которая подключается через USB по интерфейсу USB mass storage device (USB MSC). Данный интерфейс поддерживается всеми ОС современных версий.

Благодаря большой скорости, объёму и компактным размерам USB флеш-носители полностью вытеснили с рынка дискеты. Например, компания Dell с 2003 года перестала выпускать компьютеры с дисководом гибких дисков.

В данный момент выпускается широкий ассортимент USB флеш-носителей, разных форм и цветов. На рынке присутствуют флешки с автоматическим шифрованием записываемых на них данных. Японская компания Solid Alliance даже выпускает флешки в виде еды.

Есть специальные дистрибутивы GNU/Linux и версии программ, которые могут работать прямо с USB носителей, например, чтобы пользоваться своими приложениями в интернет-кафе.

Технология ReadyBoost в Windows Vista способна использовать USB-флеш носитель или специальную флеш-память, встроенную в компьютер, для увеличения быстродействия. На флеш-памяти так же основываются карты памяти, такие как SecureDigital (SD) и Memory Stick, которые активно применяются в портативной технике (фотоаппараты, мобильные телефоны). Вкупе с USB носителями флеш-память занимает большую часть рынка переносных носителей данных.

NOR тип памяти чаще применяется в BIOS и ROM-памяти устройств, таких как DSL модемы, маршрутизаторы и т. д. Флеш-память позволяет легко обновлять прошивку устройств, при этом скорость записи и объём для таких устройств не так важны.

Сейчас активно рассматривается возможность замены жёстких дисков на флешпамять. В результате увеличится скорость включения компьютера, а отсутствие движущихся деталей увеличит срок службы. Например, в XO-1, «ноутбуке за 100$», который активно разрабатывается для стран третьего мира, вместо жёсткого диска будет использоваться флеш-память объёмом 1 Гб. Распространение ограничивает высокая цена за Гб и меньший срок годности, чем у жёстких дисков из-за ограниченного количества циклов записи.

Типы карт памяти

Существуют несколько типов карт памяти, используемых в сотовых телефонах.

MMC (MultiMedia Card): карточка в формате MMC имеет небольшой размер - 24х32х1,4 мм. Разработана совместно компаниями SanDisk и Siemens. MMC содержит контроллер памяти и обладает высокой совместимостью с устройствами самого различного типа. В большинстве случаев карты MMC поддерживаются устройствами со слотом SD.
RS-MMC (Reduced Size MultiMedia Card): карта памяти, которая вдвое короче стандартной карты MMC. Её размеры составляют 24x18x1,4 мм, а вес - около 6 г, все остальные характеристики не отличаются от MMC. Для обеспечения совместимости со стандартом MMC при использовании карт RS-MMC нужен адаптер.
DV-RS-MMC (Dual Voltage Reduced Size MultiMedia Card): карты памяти DV-RS-MMC с двойным питанием (1,8 и 3,3 В) отличаются пониженным энергопотреблением, что позволит работать мобильному телефону немного дольше. Размеры карты совпадают с размерами RS-MMC, 24x18x1.4 мм.
MMCmicro: миниатюрная карта памяти для мобильных устройств с размерами 14x12x1,1 мм. Для обеспечения совместимости со стандартным слотом MMC необходимо использовать переходник.

SD Card (Secure Digital Card): поддерживается фирмами SanDisk, Panasonic и Toshiba. Стандарт SD является дальнейшим развитием стандарта MMC. По размерам и характеристикам карты SD очень похожи на MMC, только чуть толще (32х24х2.1 мм). Основное отличие от MMC - технология защиты авторских прав: карта имеет криптозащиту от несанкционированного копирования, повышенную защиту информации от случайного стирания или разрушения и механический переключатель защиты от записи. Несмотря на родство стандартов, карты SD нельзя использовать в устройствах со слотом MMC.
SD (Trans-Flash) и SDHC (High Capacity): Старые карты SD т. н. Trans-Flash и новые SDHC (High Capacity) и устройства их чтения различаются ограничением на максимальную ёмкость носителя, 2Гб для Trans-Flash и 32Гб для High Capacity (Высокой Емкости). Устройства чтения SDHC обратно совместимы с SDTF, то есть SDTF карта будет без проблем прочитана в устройстве чтения SDHC, но в устройстве SDTF увидится только 2Гб от ёмкости SDHC большей ёмкости, либо не будет читаться вовсе. Предполагается, что формат TransFlash будет полностью вытеснен форматом SDHC. Оба суб-формата могут быть представлены в любом из трёх форматов физ. размеров (Стандартный, mini и micro).
miniSD (Mini Secure Digital Card): От стандартных карт Secure Digital отличаются меньшими размерами 21.5х20х1.4 мм. Для обеспечения работы карты в устройствах, оснащённых обычным SD-слотом, используется адаптер.
microSD (Micro Secure Digital Card): являются на настоящий момент (2008) самыми компактными съёмными устройствами флеш-памяти (11х15х1 мм). Используются, в первую очередь, в мобильных телефонах, коммуникаторах, и т. п., так как, благодаря своей компактности, позволяют существенно расширить память устройства, не увеличивая при этом его размеры. Переключатель защиты от записи вынесен на адаптер microSD-SD.

MS Duo (Memory Stick Duo): данный стандарт памяти разрабатывался и поддерживается компанией Sony. Корпус достаточно прочный. На данный момент - это самая дорогая память из всех представленных. Memory Stick Duo был разработан на базе широко распространённого стандарта Memory Stick от той же Sony, отличается малыми размерами (20х31х1.6 мм.).

Ни для кого не секрет, что в современном мире, одним из наиболее актуальных товаров является информация. А её, как и любой другой товар, необходимо хранить и передавать. Для этой цели были созданы портативные запоминающие устройства. В недалеком прошлом такую роль выполняли дискеты и компакт-диски, способные запоминать очень малое количество информации при больших габаритах. С развитием вычислительной техники, носители информации постепенно уменьшались в размерах, но объем хранимых в них данных многократно увеличивался. Это привело к появлению нового портативного запоминающего устройства – флеш-карты USB.

Флэш-память - особый вид энергонезависимой, перезаписываемой полупроводниковой памяти.

Рассмотрим подробнее: энергонезависимая - не требующая дополнительной энергии для хранения данных (энергия требуется только для записи), перезаписываемая - допускающая изменение (перезапись) хранимых в ней данных и полупроводниковая (твердотельная) то есть не содержащая механически движущихся частей (как обычные жёсткие диски или CD), построенная на основе интегральных микросхем (IC-Chip).

Буквально у нас на глазах флэш-память превратилась из экзотического и дорогостоящего средства хранения данных в один из самых массовых носителей. Твёрдотельная память этого типа широко используется в портативных плеерах и карманных компьютерах, в фотоаппаратах и миниатюрных накопителях "флэш-драйвах". Первые серийные образцы работали с низкой скоростью, однако сегодня скорость считывания и записи данных на флэш-память позволяет смотреть хранящийся в миниатюрной микросхеме полноформатный фильм или запускать "тяжёлую" операционную систему класса Windows XP.

Благодаря низкому энергопотреблению, компактности, долговечности и относительно высокому быстродействию, флэш-память идеально подходит для использования в качестве накопителя в таких портативных устройствах, как: цифровые фото- и видео камеры, сотовые телефоны, портативные компьютеры, MP3-плееры, цифровые диктофоны, и т.п.

История

Первоначально твердотельный жесткий диск разрабатывался для высокоскоростных серверов и использовался в военных целях, но как это обычно бывает, со временем их стали применять и для гражданских компьютеров и серверов.

Возникло два класса устройств: в одном случае жертвовали цепями стирания, получая память высокой плотности, а в другом случае делали полнофункциональное устройство с гораздо меньшей емкостью.

Соответственно усилия инженеров были направлены на решение проблемы плотности компоновки цепей стирания. Они увенчались успехом изобретением инженера компании Toshiba Фудзио Масуокой в 1984 году. Фудзио представил свою разработку на Международном семинаре по электронным устройствам (International Electron Devices Meeting), в Сан-Франциско, в Калифорнии. Компанию Intel заинтересовало данное изобретение и через четыре года в 1988 году она выпустила первый коммерческий флеш-процессор NOR-типа. NAND-архитектура флеш-памяти была анонсирована спустя год компанией Toshiba в 1989 году на Международной конференции построения твердотельных схем (International Solid-State Circuits Conference). У NAND-чипа была больше скорость записи и меньше площадь схемы.

Иногда утверждают, что название Flash применительно к типу памяти переводится как "вспышка". На самом деле это не совсем так. Одна из версий его появления говорит о том, что впервые в 1989-90 году компания Toshiba употребила слово Flash в контексте "быстрый, мгновенный" при описании своих новых микросхем. Вообще, изобретателем считается Intel, представившая в 1988 году флэш-память с архитектурой NOR.

Преимущества флеш-карт USB над остальными накопителями очевидны:

    малые габариты,

    очень легкий вес,

    бесшумность работы,

    возможность перезаписи,

    хорошая устойчивость к механическим воздействиям, в отличие от компакт-дисков и дискет(в 5-10 раз превышающие предельно допустимые для обычных жёстких дисков),

    выдерживает серьезные перепады температуры,

    отсутствие подвижных частей, что сводит потребление электроэнергии к минимуму,

    отсутствие проблем с подключением – USB выходы есть практически в любом компьютере,

    большой объем памяти,

    запись информации в ячейки памяти,

    срок хранения информации до 100 лет.

    Flash-память потребляет значительно (примерно в 10-20 и более раз) меньше энергии во время работы.

Также следует отметить, что для работы с USB флешкой не требуются какие-либо сторонние программы, адаптеры и прочее. Распознавание устройства происходит автоматически.

Если записывать на флэшку в день 10 раз, то ее хватит примерно на 30 лет.

Принцип действия

Принцип работы полупроводниковой технологии флеш-памяти основан на изменении и регистрации электрического заряда в изолированной области (кармане) полупроводниковой структуры.

Изменение заряда («запись» и «стирание») производится приложением между затвором и истоком большого потенциала, чтобы напряженность электрического поля в тонком диэлектрике между каналом транзистора и карманом оказалась достаточна для возникновения туннельного эффекта. Для усиления эффекта тунеллирования электронов в карман при записи применяется небольшое ускорение электронов путем пропускания тока через канал полевого транзистора.

Схематическое представление транзистора с плавающим затвором.

Между управляющим затвором и каналом, по которому ток течёт от истока к стоку, мы помещаем тот самый плавающий затвор, окружённый тонким слоем диэлектрика. В результате, при протекании тока через такой «модифицированный» полевой транзистор часть электронов с высокой энергией туннелируют сквозь диэлектрик и оказываются внутри плавающего затвора. Понятно, что пока электроны туннелировали, бродили внутри этого затвора, они потеряли часть энергии и назад практически вернуться не могут. SLC и MLC приборы

Различают приборы в которых элементарная ячейка хранит один бит информации и несколько. В однобитовых ячейках различают только два уровня заряда на плавающем затворе. Такие ячейки называют одноуровневыми (англ. single-level cell, SLC ). В многобитовых ячейках различают больше уровней заряда, их называют многоуровневыми (англ. multi-level cell, MLC ). MLC-приборы дешевле и более емкие чем SLC-приборы, однако время доступа и количество перезаписей хуже.

Аудиопамять

Естественным развитием идеи MLC ячеек была мысль записать в ячейку аналоговый сигнал. Наибольшее применение такие аналоговые флеш-микросхемы получили в воспроизведении звука. Такие микросхемы получили широкое распространение во всевозможных игрушках, звуковых открытках и т. д.

Nor флеш-память (nor flash memory)

Конструкция NOR использует классическую двумерную матрицу проводников («строки» и «столбцы») в которой на пересечении установлено по одной ячейке. При этом проводник строк подключался к стоку транзистора, а столбцов к второму затвору. Исток подключался к общей для всех подложке. В такой конструкции было легко считать состояние конкретного транзистора подав положительное напряжение на один столбец и одну строку.

В основе данного типа флеш-памяти лежит алгоритм ИЛИ-НЕ (на англ. NOR), так как в транзисторе с плавающим затвором слишком малое напряжение на затворе обозначает единицу. Данный тип транзистора состоит из двух затворов: плавающего и управляющего. Первый затвор полностью изолирован и имеет возможность удерживать электроны до десяти лет. Ячейка также состоит из стока и истока. При подаче напряжения на управляющий затвор образуется электрическое поле и возникает так называемый туннельный эффект. Большая часть электронов переносится (туннелирует) через слой изолятора и проникает на плавающий затвор. Заряд на плавающем затворе транзистора изменяет «ширину» сток-исток и проводимость канала, что используется при чтении. Запись и чтение ячеек очень сильно различаются в энергопотреблении: так, флеш-накопители потребляют больше тока при записи, чем при чтении (потребляется очень мало энергии). Для удаления (стирания) данных на управляющий затвор подаётся достаточно высокое отрицательное напряжение, что приводит к обратному эффекту (электроны с плавающего затвора с помощью туннельного эффекта переходят на исток). В NOR-архитектуре существует необходимость подводить к каждому транзистору контакт, что сильно увеличивает размеры процессора. Эта проблема решается с помощью новой NAND-архитектуры.