Домой / Игры / Бп питание. Блок питания - важный компонент компьютера. Что такое КПД источника тока

Бп питание. Блок питания - важный компонент компьютера. Что такое КПД источника тока

Наиболее распространенный вариант БП подразумевает преобразование 220 Вольт переменного напряжения (U) в пониженное постоянное. Кроме этого, блоки питания могут осуществлять гальваническую развязку между входными и выходными цепями. При этом коэффициент трансформации (отношение входного и выходного напряжений) может быть равным единице.

Примером такого использование может служить энергоснабжение помещений с высокой степенью опасности поражения электрическим током, например, ванных комнат.

Кроме того, достаточно часто бытовые блоки питания могут оснащаться встроенными дополнительными устройствами: стабилизаторами, регуляторами. индикаторами и пр.

ВИДЫ И ТИПЫ БЛОКОВ ПИТАНИЯ

В первую очередь классификация источников питания осуществляется по принципу действия. Основных вариантов здесь два:

  • трансформаторный (линейный);
  • импульсный (инверторный).

Трансформаторный блок состоит из понижающего трансформатора и выпрямителя, преобразующего переменный ток в постоянный. Далее устанавливается фильтр (конденсатор), сглаживающий пульсации и прочие элементы (стабилизатор выходных параметров, защита от коротких замыканий, фильтр высокочастотных (ВЧ) помех).

Преимущества трансформаторного блока питания:

  • высокая надежность;
  • ремонтопригодность;
  • простота конструкции;
  • минимальный уровень помех или их отсутствие;
  • низкая цена.

Недостатки - большой вес, крупные габариты и небольшой КПД.

Импульсный блок питания - инверторная система, в которой происходит преобразование переменного напряжения в постоянное, после чего генерируются высокочастотные импульсы, которые проходят ряд дальнейших преобразований (). В устройстве с гальванической развязкой импульсы передаются к трансформатору, а при отсутствии таковой - напрямую к НЧ фильтру на выходе устройства.

Благодаря формированию ВЧ сигналов, в импульсных блоках питания применяются малогабаритные трансформаторы, что позволяет уменьшить размеры и вес устройства. Для стабилизации напряжения используется отрицательная обратная связь, благодаря которой на выходе поддерживается постоянный уровень напряжения, не зависящий от величины нагрузки.

Достоинства импульсного блока питания:

  • компактность;
  • небольшой вес;
  • доступная цена и высокий КПД (до 98%).

Кроме того, следует отметить наличие дополнительных защит, обеспечивающих безопасность применения устройства. В таких БП часто предусмотрена защита от короткого замыкания (КЗ) и выхода из строя при отсутствии нагрузки.

Минусы - работа большей составляющей схемы без гальванической развязки, что усложняет ремонт. Кроме того, устройство является источником помех высокой частоты и имеет ограничение на нижний предел нагрузки. Если мощность последней меньше допустимо параметра, агрегат не запустится.

ПАРАМЕТРЫ И ХАРАКТЕРИСТИКИ БЛОКА ПИТАНИЯ

При выборе блока питания стоит принимать во внимание ряд характеристик, среди которых:

  • мощность;
  • выходное напряжение и ток;
  • а также наличие дополнительных опций и возможностей.

Мощность.

Параметр, который измеряется в Вт или В*А. При выборе устройства стоит брать во внимание наличие пусковых токов у многих электроприемников (насосов, поливных систем, холодильников и прочих). В момент пуска потребляемая мощность вырастает в 5-7 раз.

Что касается остальных случаев, блок питания выбирается с учетом суммарной мощности питающихся приборов с рекомендуемым запасом в 20-30%.

Входное напряжение.

В России этот параметр составляет 220 Вольт. Если использовать БП в Японии или США, потребуется устройство с входным напряжением на 110 Вольт. Кроме того, для инверторных блоков питания эта величина может составлять - 12/24 Вольта.

Выходное напряжение.

При выборе прибора стоит ориентироваться на номинальное напряжение применяемого потребителя (указывается на корпусе прибора). Это может быть 12 Вольт, 15,6 Вольта и так далее. При выборе стоит покупать изделие, максимально приближенное к требуемому параметру. Например, для питания устройства на 12,1 V подойдет блок на 12 V.

Тип выходного напряжения.

Большая часть приборов питается от стабилизированного постоянного напряжения, но есть и те, которым подойдет постоянное нестабилизированное или переменное. С учетом этого критерия выбирается и конструкция. Если потребителю достаточно нестабилизированного постоянного U на входе, БП со стабилизированным напряжением на выходе также подойдет.

Выходной ток.

Параметр этот может и не указываться, но при знании мощности его можно рассчитать. Мощность (P) равна напряжению (U), умноженному на ток (I). Следовательно, для расчета тока необходимо мощность поделить на напряжение. Имеющийся параметр пригодится для выбора подходящего блока питания под конкретную нагрузку.

По-хорошему рабочий ток должен превышать на 10-20% максимально потребляемый ток устройства.

Коэффициент полезного действия.

Большая мощность блока питания - еще не гарантия хорошей работы. Не менее важным параметром является КПД, отражающий эффективность преобразования энергии, и ее передачи к прибору. Чем выше КПД, тем эффективнее используется блок, и тем меньше энергии идет на нагрев.

Защита от перегрузок.

Многие источники оборудованы защитой от перегрузок, обеспечивающей отключение БП в случае превышения уровня тока, потребляемого из сети.

Защита от глубокого разряда.

Ее задача заключается в разрыве цепи питания при полном разряде АКБ (характерно для бесперебойных БП). После восстановления питания работоспособность устройства восстанавливается.

Кроме перечисленных выше опций, в блоке питания может быть предусмотрена защита от КЗ, от перегрева, перегрузки по току, повышенному и пониженному напряжению.

© 2012-2019 г. Все права защищены.

Все представленные на этом сайте материалы имеют исключительно информационный характер и не могут быть использованы в качестве руководящих и нормативных документов

Здравствуйте Друзья! В статье о , мы немного коснулись темы как выбрать блок питания компьютера . В этой попробуем разобраться во внутреннем устройстве, принципе работы и разнообразии разъемов блока питания. Так же расскажем о таком важном параметре как коэффициент полезного действия КПД. Приведем расчет необходимой мощности блока питания и вы без труда сделаете свой выбор для любого компьютера.

3.3 V Sense (Коричневый) — контакт предназначенный для обратной связи. С помощью него блок питания регулирует напряжение +3.3 V.

5 V (Белый) — в современных блоках питания не используется и исключен из 24-х контактного разъема. Использовался для обратной совместимости шины ISA.

Power ON (Зеленый) — контакт позволяющий современным операционным системам управлять блоком питания. При выключении компьютера через меню «Пуск» система с Power ON отключит блок питания. Системы без контакта Power ON способны лишь вывести сообщение, что компьютер можно выключить.

Power good (Серый) — имеет напряжение +5 V и может колебаться в допустимых пределах от +2,4 V до +6 V. При нажатии на кнопку POWER (включение компьютера) блок питания включается и производит самотестирование и стабилизацию напряжений на выходе +3.3 V, +5 V и +12 V. Этот процесс занимает 0,1-0,5 с. После чего блок питания посылает материнской плате сигнал Power good. Этот сигнал принимает чип управления питанием и запускает последний. При скачках или пропадании напряжения на входе блока питания материнская плата не получает сигнал Power good и останавливает процессор. При возобновлении питания на входе так же восстанавливается сигнал Power good и происходит запуск системы. Таким образом, благодаря сигналу Power good, компьютер гарантировано получит только качественное питание, что в свою очередь позволяет повысить надежность и работоспособность всей системы.

Питание процессора . Питание осуществляется через устройство называемое Voltage Regulator Module (VRM). Модуль преобразует напряжение с +12 V до необходимого процессору и имеет коэффициент полезного действия (КПД) около 80%. Изначально, когда процессоры потребляли минимум энергии и питались от +5 V, достаточно было питания через материнскую плату. Было всего 12 контактов (2 по 6). С ростом производительности выросла и потребляемая мощность. Современные процессоры потребляют до 130 Вт и это без разгона. Задача стояла следующая, обеспечить питание процессора не расплавив при этом контакты на материнской плате. Для этого перешли с +5 V на +12 V, т.к. это дало возможность снизить ток более чем на 50% сохраняя мощность. Через один контакт +12 V на материнской плате можно было передавать до 6 А (2-ая линия +12 V питает слоты PCI-E). Решение было позаимствовано как обычно из серверного сегмента. Для процессора сделали отдельный разъем напрямую от блока питания.

Разъем состоял из 4-х контактов 2-ва +12 V и 2 — земля. По спецификации имелась возможность подачи до 8 А на контакт.

Для топовых процессоров использовалось несколько VRM модулей. Что бы лучше распределить нагрузку между ними было принято решение использовать два 4-х контактных разъема объединенных физически в один 8-ми контактный

Как видно из рисунка выше разъем содержит 4 линии +12 V, что обеспечивает стабильным питанием самые мощные процессоры. Разъем может быть разделен на 2 по 4 контакта.

Так же стоит отметить что особо мощные блоки питания (мне попадались от 1000 Вт и выше) имеют два 8-ми контактных разъема. Вероятно для питания систем включающих два процессора

Питание графического адаптера . 24-х контактный разъем питания материнской платы обеспечивает 75 Вт для слота PCI-E. Этого хватаем лишь для начального уровня. Для более продвинутых решений используется дополнительный 6-ти контактный разъем

Этот разъем подводит дополнительно 75 Вт и в результате 150 Вт для графического адаптера.

В 2008 году ввели 8-ми контактный разъем питания видеокарт

Сие обеспечивает дополнительно 150 Вт, что в сумме дает 225 Вт. Оба разъема обратно совместимы. Это значит, что 6-ти контактный разъем питания можно подключить к 8-ми контактному на графическом адаптере сдвинув его в сторону. И наоборот 8-ми контактный разъем блока питания компьютера можно подключить к 6-ти контактному на графическом адаптере. Конструкция разъема исключает некорректное подключение.

Кроме линий +12 V и земли на обоих разъемах присутствуют контакты Sense. Графический адаптер использует их для определения какой (6-ти или 8-ми контактный) разъем подключен к видеоадаптеру и подключен ли вообще разъем. Если разъем не подключен система на запустится. Если вместо 8-ми контактного разъема подключен 6-ти контактный в зависимости от прошивки графической карты система может не запуститься вообще либо запуститься с ограниченной функциональностью

8-ми контактный разъем питания графического адаптера и 8-ми контактное питание процессора имеют разные ключи (защита от дурака) благодаря чему вы не имеете возможности подключить разъемы не корректно. Так же эти разъемы по разному разделены: для питания графического адаптера 6+2, для питания процессора 4+4 или слитно 8 контактов.

В некоторых блоках питания разъемы PCI-E, для лучшей идентификации, маркируются наклейкой с надписью «PCI-Express»

Важно! Все разъемы блока питания подключаются без особого усилия!

У графических адаптеров среднего и высшего ценового сегмента присутствуют сразу два разъема. В зависимости от мощности: 2х6, 1х6 и 1х8, 2х8.

Бывают случаи когда блок питания не имеет достаточно разъемов питания PCI-E. В таких ситуациях используют Y-образные переходники

Переходник использует два «молекcа» для подключения периферии, т.к. необходимо две линии +12 V для одного 6-ти контактного разъема.

При подключении графического адаптера через переходник убедитесь что линия +12 V выдержит. То есть, найдите в обзорах или на официальном сайте информацию по энергопотреблению видеокарты. После посмотрите характеристику блока питания (на наклейке БП или на сайте производителе) по линии +12 V

Сложите максимальную мощность и TDP , полученную сумму я умножаю на 1.5 и сравниваю с цифрой в характеристике блока питания. Если полученное значение мощности больше приведенного в характеристике, то возможны проблемы, если меньше — можно пробовать. Если же у вас современный блок питания и цифра получается впритык или даже чуть меньше чем в характеристике, то можно пробовать видеокарту в своих приложениях. Маловероятно, что вы загрузите ее на 100%. Если же у вас старый блок питания , лучше не рисковать.

Питание периферийных устройств . Практически все периферийные устройства питаются от следующий разъемов:

  • питание периферийных устройств
  • питание флоппи-дисковода
  • питание Serial ATA

Питание периферийный устройств . Обычно называется Molex так как производится фирмой с одноименным названием

Имеет 4 контакта: +5 V, +12 V и 2 земля. Рассчитан на ток 11 А на контакт. Используется для подключения старых , оптических приводов, вентиляторов и других устройств использующих питание +5 V или +12 V

Конструкция вилки предусматривает ключи (срезанные углы) препятствующие некорректному подключению периферийный устройств. Некоторые производители (Sirtec в частности) изготавливают данный разъем со специальными полукруглыми приспособлениями для более легкого отсоединения от устройств.

Питание флоппи-дисковода . Питание менее мощных периферийных устройств. Имеет так же 4 контакта. Расстояние между контактами, по сравнению с предыдущим разъемом уменьшено в 2 раза и составляет 2.5 мм

Каждый контакт рассчитан на ток 2 А, что определят максимальную мощность разъема в 34 Вт

В отличии от вилки для питания периферийных устройств в этом контакты +5 V и +12 V перевернуты. Флоппи-дисковод можно подключать «на ходу». Для этого сначала необходимо подключить кабель данных, а затем кабель питания. Отключение происходит в обратной последовательности. Убедитесь, что не используете FDD-дисковод, отключите питание затем шнур данных. Вилка флоппи-дисковода содержит ключ для корректного подключения, но при соединении необходимо быть внимательным (особенно на «ходу»), можно легко сместить контакты при подключении.

Питание Serial ATA . Все современные накопители как так и подключаются этим разъемом

Это 15 контактная вилка для подключения периферии где на каждую линию питания приходится по 3 контакта

Обеспечивает такую же мощность как и стандартный разъем для периферии. Так же на одной стороне присутствует ключ препятствующий некорректному подключению. Для устаревших блоков питания применяются переходники следующего типа, позволяющие подключить одно или два устройства SATA

В переходниках отсутствует линия питания +3.3 V, т. к. современные HDD и SSD ее не используют.

Коэффициент полезного действия — КПД блоков питания

Любое устройство питающееся от сети переменного тока имеет свой коэффициент полезного действия (КПД). Блоки питания компьютера не исключение. КПД — это то количество энергии которое выполняет полезную функцию (питание компьютера). Все остальное преобразуется в тепло. На данный момент существуют уровни эффективности представленные в таблице ниже

Преимущества высокого КПД блока питания:

  • меньшее потребление энергии в сравнении с блоком питания без соответствующей сертификации. Например блок питания 500 Вт с сертификацией 80 Plus Gold (КПД 90%) и без сертификации (КПД порядка 75%). При нагрузке в 50% (250 Вт) сертифицированный блок питания будет расходовать от сети 277 Вт, не сертифицированный — 333 Вт.
  • меньший нагрев так как значительно меньше тепла необходимо рассеять
  • более продолжительный срок работы блока питания за счет более низких температур
  • меньше шум, так как для отвода небольшого количества тепла требуется вентилятор работающий на более низких оборотах
  • более качественное питание для комплектующих, следовательно более надежная и стабильная работа всего компьютера
  • минимальное искажение характеристик сети питания. Каждое устройство питающееся от сети переменного тока вносит свои помехи. В сертифицированных блоках питания применяется специальное устройство APFC (Active Power Factor Correction) повышающее КПД и практически исключающее помехи от блока питания компьютера .

Недостаток один — цена, с лихвой компенсируется преимуществами.

Внутреннее устройство и принцип работы источников питания для компьютера

Коротко опишем принцип работы компьютерного блока питания

На вход подается питание 220 V / 50 Гц (в идеальном случае). В противном случае работает фильтр (1) который убирает пульсации и помехи сети. После питание подается на инвертор сетевого напряжения (2), который увеличивает частоту с 50 Гц до 100 Кгц и выше. Благодаря чему имеется возможность использовать дешевые трансформаторы (3) малых габаритов. Этот трансформатор благодаря высокой частоте может передать огромную мощность при преобразовании высоковольтного напряжения в низковольтное. Рядом с основным трансформатором располагается так же трансформатор дежурного напряжения. Последнее присутствует всегда при подаче питания к блоку. Далее в работу вступают диодные сборки (5), которые вместе с конденсаторами и дросселями сглаживают высокочастотные пульсации и выдают постоянные напряжения подающиеся непосредственно компонентам компьютера.

Основной дроссель групповой стабилизации (6). Применяется в блоках питания среднего ценового диапазона и отвечает за стабилизацию всех выходных напряжений. Если нагрузка на одном из каналов резко увеличивается — напряжение проседает. При такой схеме блок питания повышает напряжения сразу на всех линиях. Качественные, дорогие блоки питания, имеют полностью независимые линии питания, благодаря чему этого эффекта не возникает.

Схема управления частотой вращения вентилятора (7). Позволяет регулировать обороты «карлсона». Так же присутствует плата контроля напряжения и потребляемого тока. Она отвечает за защиту блока от коротких замыканий и перегрузки.

Блоки питания высокого уровня преимущественно изготавливают с модульным подключением кабелей. В этом случае присутствует плата с силовыми разъемами (8) куда непосредственно подключаются провода.

Модульное подключение позволяет использовать только необходимые кабеля. В следствии чего возможно добиться более качественного распределения кабелей в корпусе, что в свою очередь положительно скажется на

  • Модуль памяти — 5 Вт
  • HDD и оптический привод — 15 — 20 Вт
  • SSD — менее 10 Вт
  • вентилятор — от 0,5 до 5 Вт
  • графический адаптер — необходимо смотреть в спецификациях
  • Для систем со встроенным, в процессор, видео хватит блока питания 400-500 Вт. Точнее хватит и 250 Вт, но лучше взять с запасом.

    Как и где смотреть приблизительное энергопотребление процессора. Заходим на официальный сайт фирмы производителя, находим свой продукт и смотрим характеристики. Нас интересует поле Max. TDP. Эту цифру принимаю за энергопотребление процессора при расчете.

    С графическими адаптерами проще. Так же заходим на официальный сайт производителя графических чипов, ищем свой продукт. Открываем вкладку спецификация и если это видеокарта фирмы nvidia, то в разделе «Мощность и температура» находим показатели потребления карты и рекомендации по мощности блока питания. У конкурента потребление карты не нашел, необходимо прочитать обзор, но так же есть рекомендации по необходимой мощности блока питания.

    При сборе систем с несколькими следует точно знать сколько максимально потребляет данная модель. Данную цифру умножить на количество графических адаптеров в системе, добавить потребление процессора и других устройств. Полученную сумму умножить на 2 и получится мощность рекомендуемого блока питания с приличным запасом. Почему рекомендуют выбирать мощность блока питания с запасом? Потому что, если в одной комнате будет стоять несколько компьютеров с одинаковыми комплектующими, но с различными по мощности блоками питания и параметры питания будут оставлять желать лучшего. При таком раскладе стабильнее будут системы с более мощными блоками питания .

    Вывод

    В данной статье мы разобрались в характеристиках блока питания компьютера. Подробно разобрали разъемы с помощью которых питаются все комплектующие системы. Разъемы имеют определенные ключи «защита от дурака» и не прикладывая слишком много «ньютонов» при сборке, вы корректно соберете систему. Так же мы поверхностно прошлись по внутреннему строению и принципу работы блока питания компьютера . Узнали, что благодаря повышению частоты с 50 Гц до 100 Кгц и выше удается разместить все компоненты блока в скромных габаритах, без потери мощности. Было рассказано о сертификации блока питания и коэффициенте полезного действия КПД. Рассмотрели положительные и отрицательные стороны высокой эффективности. Это не только меньшие счета за электричество, которые за 3-4 года сведет разницу в стоимости к нулю, но и более стабильная и надежная работа вашего компьютера.

    P.S. Выбирайте блок питания для вашего компьютера с запасом по мощности в 1.5 — 2 раза и как можно более высокого стандарта сертификации. Это гарантирует вашему персональному компьютеру качественное и стабильное питание.

    С удовольствием отвечу на вопросы в комментариях. Благодарю, что поделились статьей в социальных сетях. Всего Вам Доброго!

    Характеристики блоков питания

    Существует несколько параметров, которые определяют входную и выходную мощность, а также рабочие характеристики БП. Эти параметры являются общими для большинства блоков питания.

    Загрузка блока питания

    Вне зависимости от этих характеристик, если вы хотите правильно и точно протестировать блок питания , убедитесь, что хотя бы по одной линии электропитания имеется нагрузка, а ещё лучше, чтобы она была по всем трём линиям. Это - одна из причин, по которым мы рекомендуем проверять блок питания, когда он установлен в компьютер, а не извлечён. В качестве импровизированного тестового стенда вы можете использовать запасную материнскую плату и один или несколько жёстких дисков, чтобы обеспечить нагрузку по линиям питания.

    Мощность блока питания

    Системный интегратор должен предоставлять технические спецификации всех компонентов, которые используются в системе. Данная информация обычно отражена в справочном руководстве, но спецификации блока питания , как правило, можно узнать и по стикеру на нём. Производители БП также обычно предоставляют такую информацию, что более предпочтительно, если вы можете определить производителя и проверить данные напрямую или через интернет.

    К входным характеристикам относится напряжение сети переменного тока, тогда как характеристики на выходе подразумевают перечень силы тока в амперах по каждой линии. Умножив силу тока на напряжение, можно рассчитать мощность блока питания для каждой линии:

    Ватты (Вт) = Вольты (В) х Амперы (А)

    Например, если для одной из линий +12 В указана сила тока 8 А, мощность равна 96 Вт, согласно данной формуле. Сложив напряжение/силу тока на каждом из основных выходов, можно рассчитать общую мощность блока питания . Отметим, что в данных вычислениях участвуют только положительные напряжения. Отрицательные напряжения, линии Standby, Power_Good и другие вспомогательные сигналы при вычислении мощности БП не учитываются.

    В следующей таблице приведены расчёты для нескольких блоков питания различной мощности, соответствующим стандартам ATX12V/EPS12V, производства компании Corsair (www.corsair.com).

    Типичные характеристики БП ATX12V/EPS12V, значения на выходах
    Модель VX450W VX550W HX650W HX750W HX850W TX950W AX1200
    +12 В (A) 33 41 52 62 70 78 100
    -12 В (A) 0.8 0.8 0.8 0.8 0.8 0.8 0.8
    +5 VSB (A) 2.5 3 3 3 3 3 2.5
    +5 В (A) 20 28 30 25 25 25 30
    +3.3 В (A) 20 30 24 25 25 25 30
    Max +5 В/+3.3 В (Вт) 130 140 170 150 150 150 180
    Заявленная мощность (Вт) 450 550 650 750 850 950 1200
    Расчётная мощность (Вт) 548 657 819 919 1015 1111 1407

    Фактически, все блоки питания достигают максимальных значений по линиям +3,3 В и +5 В. Расчётная максимальная мощность подразумевает общее максимальное потребление по всем линиям и в реальных условиях не достигается. Поэтому заявленная производителем мощность БП, как правило, меньше, чем расчётная.

    Хотя купленные в магазине ПК часто оснащены маломощными блоками питания на 350 Вт или меньше, высокая мощность БП часто рекомендуется для полноценных настольных систем. К сожалению, даже относительно высоким оценкам мощности, заявленным для дешёвых блоков питания, не всегда можно доверять. Например, мы видели блок питания с заявленной мощностью 650 Вт, фактическая мощность которого составляла честные 200 Вт. Ещё одна проблема заключается в том, что всего несколько компаний выпускают блоки питания для ПК. Большинство БП, которые вы можете встретить на прилавках магазинов, сделаны одним из нескольких производителей, но могут продаваться под разными торговыми марками, названиями, моделями и т.д. Поскольку далеко не каждый покупатель имеет оборудование, с помощью которого можно протестировать реальную мощность на выходах, стоит доверять лишь известным, проверенным маркам, которые предлагают качественные БП.

    Большинство блоков питания считаются универсальными, то есть могут использоваться в любой точке мира. Иными словами, они могут работать в сетях переменного тока 127 В /50 Гц (США), 240 В/50 Гц (Европа и некоторые другие страны), 220 В/50 Гц (Россия). Переключение в соответствующий режим входящего тока, как правило, осуществляется в автоматическом режиме, хотя до сих пор иногда встречаются БП, оснащённые тумблером 127/240 В на задней панели.

    В сети переменного тока напряжение может колебаться, что учитывается при разработке дизайна блока питания, имеющего специальные цепи стабилизации на входе перед импульсным преобразователем напряжения. Как правило, учитывается эффект "проседания" напряжения, то есть его снижения на пути к розетке в квартире. По этой причине блок питания , рассчитанный на европейский стандарт 240 В, может работать в российских сетях 220 В.

    Внимание! Если ваш блок питания не переключается автоматически, убедитесь, что тумблер переключения входящего напряжения установлен правильно. Если вы подключите блок питания в розетку 120 В с тумблером, установленным на 240 В, никаких неприятных последствий не произойдёт, но БП не будет работать до тех пор, пока вы не переключите тумблер. С другой стороны, если тумблер зафиксирован на 120 В, а блок питания подключается к розетке 220/240 В, он может выйти из строя.

    Прочие характеристики и сертификаты

    Помимо мощности, существуют и иные характеристики и функции, которыми наделяют свои изделии производители блоков питания.

    Мы имели дело с огромным количеством различных компьютеров и наш опыт заключается в том, что если в помещении есть несколько компьютеров и в сети происходит внезапное падение напряжение, то более качественный и мощный блок питания позволит сохранить компьютер в рабочем состоянии, в то время как ПК со слабыми блоками питания отключаются.

    Более качественный блок питания также помогает защищать вашу систему. В частности, используя блоки питания таких производителей, как PC Power и Cooling, вы можете не переживать за безопасность компонентов ПК в следующих случаях:

    • 100% отключение энергии любой продолжительности.
    • Кратковременное падение напряжения.
    • Пиковое увеличение напряжения до 2500 В на входе (например, в результате удара молнии или кратковременного скачка напряжения в сети).

    Качественные блоки питания имеют крайне низкую величину тока, подведённого к заземлению (менее 500 мА). Это важно с точки зрения безопасности ПК, если он не подключён к заземлению.

    Как можно видеть, дополнительные характеристики блоков питания достаточно жёсткие и подобные возможности можно встретить, только когда речь идёт о достаточно дорогих изделиях.

    Вы можете также встретить и много других критериев оценки БП. Блок питания - это тот компонент ПК, на который многие покупатели обращают внимание в последнюю очередь, поэтому многие системные интеграторы также не уделяют должного внимания выбору БП. В конце концов, продавцу ПК выгоднее установить в компьютер более производительный процессор или жёсткий диск большего объёма, чем оснастить его более качественным блоком питания.

    Именно по этой причине при выборе компьютера либо апгрейде имеющегося необходимо очень внимательно отнестись к качеству блока питания , который вы планируете использовать. В то же время, различные характеристики и значения, которые приводятся в спецификации блоков питания, многих покупателей могут ввести в ступор. Поэтому здесь мы приводим перечень наиболее распространённых параметров блоков питания:

    • Наработка на отказ (Mean Time Between Failures - MTBF) или наработка до отказа (Mean Time To Failure - MTTF). Расчётный интервал времени, выраженный в часах, в течении которого предполагается, что блок питания будет работать до выхода из строя. Блоки питания обычно имеют рейтинги MTBF (например, 100 000 часов или более), которые, очевидно, не являются результатом реальных эмпирических тестов. Фактически, производители используют опубликованные стандарты для вычисления MTBF, основанные на рейтингах отказов отдельных компонентов блока питания. Цифры MTBF для блоков питания часто включают уровень нагрузки, который предполагается (в % от общей мощности), а также температуру окружающей среды, при которой данные значения актуальны.
    • Входной (или рабочий) диапазон. Означает диапазон напряжений, с которыми может работать БП. Например, для американской сети переменного тока 120 В входной диапазон, как правило, составляет 90-135 В, а для европейских сетей 240 В типичен диапазон 180-270 В.
    • Пиковый ток при включении. Максимальная величина тока на момент времени непосредственно после включения БП, выраженная в амперах при заданном напряжении. Чем ниже эта величина, тем меньший температурный шок система испытывает.
    • Время отключения. Количество времени (в миллисекундах), в течение которого БП может поддерживать уровни напряжения в соответствии со значениями по спецификации в случае внезапного отключения входящего тока. Это позволяет компьютеру продолжать работу после кратковременного падения напряжения в сети без перезагрузки или отключения. Величины в 15-30 мс являются стандартными для современных БП, но чем больше данная величина, тем лучше. Согласно спецификации "Power Supply Design Guide for Desktop Platform Form Factors", минимальное время отключения составляет 16 мс. Время отключения также сильно зависит от текущей нагрузки на блок питания. Время отключения, как правило, отражает минимальное время, измеренное под максимальной загрузкой. Если нагрузка снижается, то время отключения пропорционально возрастает. Например, если блок питания на 1000 Вт имеет время задержки 20 мс согласно своей спецификации (измеренное под нагрузкой 1000 Вт), то при нагрузке 500 Вт (половина заявленной мощности) время загрузки увеличивается вдвое, а при нагрузке 250 Вт - в четыре раза. На самом деле, это одна из причин приобрести более мощный блок питания, чем требуется с учётом требований компонентов системы.
    • Время перехода. Количество времени (в миллисекундах), которое требуется блоку питания, чтобы восстановить напряжения на выходах (в соответствии со спецификацией) после перехода в другой режим работы. Иными словами, речь идёт о времени, за которое напряжения на выходах блока питания стабилизируются при включении или отключении одного из компонентов ПК. Блок питания проверяет нагрузку по выходам через регулярные интервалы времени. Когда устройство отключается (например, оптический привод останавливает вращение диска), блок питания в течение короткого промежутка времени может продолжать подводить высокий уровень тока по разъёму питания. Это излишнее напряжение называется "выбросом", а время перехода означает промежуток времени, который требуется для возвращения к стандартным значениям напряжения на выходах согласно спецификации. Изменение режима работы какого-либо из компонентов ПК рассматриваются как скачок напряжения и могут вызывать сбои и зависания компьютера, так как влияют на подаваемые к другим выходам напряжения. Будучи одной из основных проблем импульсных блоков питания, когда они только появились, "выбросы" были заметно снижены в последние годы. Значения времени перехода часто выражаются как временные промежутки, но иногда они выражаются в предельной величине изменения напряжений на выходах (например, в спецификации говорится, что "уровень напряжения на выходе при изменении режима нагрузки может меняться в пределах 20%).
    • Защита от превышения напряжения. Данный параметр определяет показатели для каждого выхода, при которых блок питания отключает тот или иной выход. Могут выражаться либо в %% от значения по спецификации (например, 120% для +3,3 В и +5 В), либо в реальных значениях напряжения (например, +4,6 В для выхода +3,3 В и +7 В для выхода +5 В).
    • Максимальный ток нагрузки. Максимальное значение тока (в амперах), который может безопасно проходить через тот или иной выход. Значения выражаются в индивидуальной силе тока для каждого напряжения. Опираясь на эти данные, вы можете не только рассчитать общую мощность блока питания, но и проверить, сколько устройств можно "повесить" на тот или иной выход.
    • Минимальный ток нагрузки. Определяет наименьшее значение тока (в амперах), которое должно подаваться на конкретный выход для обеспечения его работы. Если ток, потребляемый на выходе, снижается ниже минимального, то блок питания может выйти из строя или автоматически отключится.
    • Стабилизация нагрузки (или стабилизация напряжения нагрузки). Когда ток по тому или иному выходу увеличивается либо снижается, значения напряжения также немного изменяются - как правило, снижаются, если ток увеличивается. Стабилизация нагрузки означает изменение напряжения на выходе, когда происходит переход от минимальной нагрузки к максимальной (или наоборот). Значения выражаются в +/- %%, обычно в диапазоне от +/-1% до +/-5% для выходов +3,3 В, +5 В и +12 В.
    • Стабилизация сетевого напряжения. Изменение выходного напряжения при колебаниях входящего переменного тока от самого низкого до самого высокого значения (либо наоборот). Блок питания должен использовать любой переменной ток в пределах рабочего диапазона, сохраняя на выходе стабильное напряжение (допустимы колебания в пределах 1% или ниже).
    • Эффективность. Соотношение мощности БП на выходах к потребляемой мощности. Стандартными на сегодняшний день считаются значения 65-85%. Оставшиеся 15-35% превращаются в тепловую энергию в ходе процесса преобразования тока из переменного в постоянный. Хотя более высокая эффективность означает, что блок питания будет меньше греться (и это хорошо) и более низкие расходы на оплату электроэнергии. Ради более высокой эффективности блока питания не должны приноситься в жертву точность, стабильность и надёжность, также как жёсткая стабилизация сетевого напряжения и другие характеристики.
    • Шумы, перепады, периодические и случайные отклонения сети переменного тока. Средняя величина колебаний напряжения на выходах БП в зависимости от всех эффектов сети переменного тока, связанных с перепадами напряжения, как правило, изменяющаяся в милливольтах или процентах от номинального значения. Чем ниже данный показатель, тем лучше. Для качественных блоков питания перепады напряжения обычно составляют 1% от номинального напряжения на выходе (или меньше). Следовательно, для выхода +5 В они могут достигать 0,05 В или 50 мВ (милливольт). Перепады напряжения могут быть вызваны внутренними особенностями конструкции блока питания, колебаниями напряжения в сети переменного тока либо случайными наводками.

    Не секрет, что от правильного выбора блока питания (далее БП), его конструкции и качества сборки зависит работа устройства, на которое он нагружен. Здесь я постараюсь рассказать об основных моментах выбора, расчета, конструирования и применения блоков питания.

    1. Выбор блока питания

    Первым делом следует четко уяснить, что именно будет подключено к БП. Главным образом нас интересует ток нагрузки. Это будет основным пунктом ТЗ. По этому параметру будет подобрана схема и элементная база. Приведу примеры нагрузок и их средние потребляемые токи

    1. Световые эффекты на светодиодах (20-1000мА)

    2. Световые эффекты на миниатюрных лампах накаливания (200мА-2А)

    3. Световые эффекты на мощных лампах (до 1000А)

    4. Миниатюрные полупроводниковые радиоприемники (100-500мА)

    5. Портативная аудиотехника (100мА-1А)

    6. Автомобильные магнитолы (до 20А)

    7. Автомобильные УМЗЧ (по линии 12В до 200А)

    8. Стационарные полупроводниковые УМЗЧ (при выходной мощности не выше 1кВт до 40А)

    9. Ламповые УМЗЧ (10мА-1А – анод, 200мА-8А – накал)

    10. Ламповые КВ трансиверы [выходной каскад в классе С характеризуется наибольшим КПД] (при мощности передатчика до 1кВт, до 5А – анод, до 10А – накал)

    11. Полупроводниковые КВ трансиверы, Си-Би (при мощности передатчика до 100Вт, 1 – 5А)

    12. Ламповые УКВ радиостанции (при мощности передатчика до 50Вт, до 1А – анод, до 3А - накал)

    13. Полупроводниковые УКВ радиостанции (до 5А)

    14. Полупроводниковые телевизоры (до 5А)

    15. Вычислительная техника, оргтехника, сетевые устройства [концентраторы LAN, точки доступа, модемы, роутеры] (500мА - 30А)

    16. Зарядные устройства для АКБ (до 10А)

    17. Управляющие блоки бытовой техники (до 1А)

    2. Правила безопасности

    Не будем забывать, что БП это самый высоковольтный узел в любом устройстве (за исключением разве что телевизора). При чем опасность представляет не только промышленная электросеть (220В). Напряжение в анодных цепях ламповой аппаратуры может достигать десятков и даже сотен (в рентгеновских установках) киловольт (тысяч вольт). Поэтому все высоковольтные участки (включая общий провод) должны быть изолированы от корпуса. Это хорошо знает тот, кто поставив ногу на системный блок трогал батарею. Электрический ток может быть опасен не только для человека и животных, но и для самого устройства. Имеются ввиду пробои и короткие замыкания. Эти явления не только выводят из строя радиокомпоненты, но и весьма пожароопасны. Мне попадались некоторые изолирующие элементы конструкций, которые в следствии подачи высокого напряжения были пробиты и выгорели до угля при чем выгорели не полностью, а каналом. Уголь проводит ток и создает таким образом короткое замыкание (далее КЗ) на корпус. При чем внешне это не видно. Поэтому между двумя проводами, припаянными к плате, должно быть расстояние из расчета примерно 2мм на вольт. Если речь идет о смертельно опасных напряжениях, то в корпусе должны быть предусмотрены микропереключатели, которые автоматически обесточивают прибор при удалении стенки с опасного участка конструкции. Элементы конструкции, которые в процессе работы сильно нагреваются (радиаторы, мощные полупроводниковые и электровакуумные приборы, резисторы мощностью свыше 2Вт) должны быть вынесены с платы (наилучший вариант) или хотя бы приподняты над ней. Так же не допускается касание корпусов разогревающихся радиоэлементов, за исключением тех случаев, когда второй элемент является датчиком температуры первого. Такие элементы не разрешается заливать эпоксидной смолой и другими компаундами. Более того, должен быть обеспечен приток воздуха к участкам с большой рассеиваемой мощностью, а при необходимости и принудительное охлаждение (вплоть до испарительного). Так. Страху нагнал, теперь о работе.

    3. Законы Ома и Кирхгофа были и будут основой разработки любого электронного устройства.

    3.1. Закон Ома для участка цепи

    Сила тока на участке цепи прямо пропорциональна напряжению, приложенному к участку и обратно пропорциональна сопротивлению участка. На этом принципе основана работа всех ограничительных, гасящих и балластных резисторов.

    Эта формула хороша тем, что под "U" можно подразумевать как напряжение на нагрузке, так и напряжение на участке цепи, последовательно соединенном с нагрузкой. Например у нас есть лампочка на 12В/20Вт и источник 17В, к которому нам нужно подключить эту лампочку. Нам нужен резистор, который понизит 17В до 12.


    Рис.1

    Итак, мы знаем что при последовательном соединении элементов напряжения на них могут отличаться, но ток всегда одинаковый на любом участке цепи. Вычислим ток, потребляемый лампочкой:

    Значит, через резистор протекает такой же ток. В качестве напряжения берем падение напряжения на гасящем резисторе, ведь это действительно то самое напряжение, которое действует на этом резисторе ()

    Из приведенного примера совершенно очевидно, что . Причем это относится не только к резисторам, но и, например, к динамикам, если мы вычисляем какое напряжение нужно подвести к динамику с заданной мощностью и сопротивлением, чтобы он развил эту мощность.

    Прежде, чем мы перейдем к нему, нужно четко уяснить физический смысл внутреннего и выходного сопротивлений. Предположим, у нас есть некоторый источник ЭДС. Так вот, внутреннее (выходное) сопротивление это мнимый резистор, включенный последовательно с ним.


    Рис.2

    Естественно, фактически в источниках тока таких резисторов нет, но у генераторов есть сопротивление обмоток, у розеток – сопротивление проводки, у АКБ – сопротивление электролита и электродов и т.д. Это сопротивление при подключении нагрузки ведет себя именно как последовательно включенный резистор.

    Где: ε – ЭДС
    I – сила тока
    R – сопротивление нагрузки
    r – внутреннее сопротивление источника

    Из формулы видно, что с возрастанием внутреннего сопротивления уменьшается мощность вследствие просадки во внутреннем сопротивлении. Это видно и из закона Ома для участка цепи.

    3.3 Правило Кирхгофа нас будет интересовать только одно: сумма токов, входящих в цепь равна току (сумме токов), выходящему из нее. Т.е. какой бы не была нагрузка и из скольки бы ветвей она не состояла, сила тока в одном из питающих проводов будет равна силе тока во втором проводе. Собственно, этот вывод вполне очевиден, если мы говорим о замкнутой цепи.

    С законами протекания тока вроде все ясно. Посмотрим как это выглядит в реальном «железе».

    4. Начинка

    ВсеБП во многом схожи по схеме и элементной базе. Это вызвано тем, что по большому счету они выполняют одни и те же функции: изменение напряжения (всегда), выпрямление (чаще всего), стабилизация (часто), защита (часто). Теперь рассмотрим способы реализации этих функций.

    4.1. Изменение напряжения чаще всего реализуется при помощи различных трансформаторов. Этот вариант наиболее надежен и безопасен. Существуют так же безтрансформаторные БП. В них для понижения напряжения используется емкостное сопротивление конденсатора, включенного последовательно между источником тока и нагрузкой. Выходное напряжение таких БП полностью зависит от тока нагрузки и ее наличия. Даже при кратковременном отключении нагрузки такие БП выходят из строя. Кроме того, они могут только понижать напряжение. Поэтому я не рекомендую такие БП для питания РЭА. Итак, остановимся на трансформаторах. В линейных БП используются трансформаторы на 50Гц (частота промышленной сети). Трансформатор состоит из сердечника, первичной обмотки и нескольких вторичных обмоток. Переменный ток, поступая на первичную обмотку создает в сердечнике магнитный поток. Этот поток, как магнит, наводит ЭДС во вторичных обмотках. Напряжение на вторичных обмотках определяется количеством витков. Отношение количества витков (напряжения) вторичной обмотки к количеству витков (напряжению) первичной обмотки называется коэффициентом трансформации (η). Если η>1 трансформатор называют повышающим, в противном случае – понижающим. Есть трансформаторы у которых η=1. Такие трансформаторы не меняют напряжение и служат только для гальванической развязки цепей (цепи считаются гальванически развязанными, если у них нет непосредственного общего электрического контакта. Хотя токи, протекающие через них, могут действовать друг на друга. Например « Blue Tooth » или лампочка и поднесенная к ней солнечная батарея или ротор и статор электродвигателя или неоновая лампа, поднесенная к антенне передатчика ). Поэтому использовать их в БП нет смысла. Импульсные трансформаторы работают по такому же принципу с той лишь разницей, что на них не подается напряжение непосредственно из розетки. Сначала оно преобразуется в импульсы более высокой частоты (обычно 15-20кГц) и уже эти импульсы подаются на первичную обмотку трансформатора. Частота следования этих импульсов называется частотой преобразования импульсного БП. С возрастанием частоты увеличивается индуктивное сопротивление катушки, поэтому обмотки импульсных трансформаторов содержат меньшее количество витков по сравнению с линейными. Это делает их более компактными и легкими. Однако импульсные БП характеризуются бОльшим уровнем помех, худшим тепловым режимом и схемотехнически более сложны, следовательно менее надежны.

    4.2. Выпрямление подразумевает преобразование переменного (импульсного) тока в постоянный. Этот процесс заключается в разложении положительных и отрицательных полуволн на соответствующие полюса. Есть достаточно много схем, позволяющих это сделать. Рассмотрим те, которые наиболее часто используются.

    4.2.1. Четвертьмост


    Рис.3

    Самая простая схема однополупериодного выпрямителя. Работает следующим образом. Положительная полуволна проходит через диод и заряжает С1. Отрицательная полуволна блокируется диодом и цепь оказывается как бы оборванной. В этом случае нагрузка питается за счет разрядки конденсатора. Очевидно, что для работы на 50Гц емкость С1 должна быть сравнительно велика, чтобы обеспечивать низкий уровень пульсаций. Поэтому схема применяется в основном в импульсных БП ввиду более высокой рабочей частоты.

    4.2.2 Полумост (удвоитель Латура-Делона-Гренашера)


    Рис.4

    Принцип работы похож на четвертьмост, только здесь они соединены как бы последовательно. Положительная полуволна проходит через VD1 и заряжает С1. На отрицательной полуволне VD1 закрывается и С1 начинает разряжаться, а отрицательная полуволна проходит через VD2. Таким образом между катодом VD1 и анодом VD2 появляется напряжение, в 2 раза превосходящее напряжение вторичной обмотки трансформатора (рис.4а). Этот принцип можно использовать для построения расщепленного БП. Так называются БП, выдающие 2 одинаковых по модулю, но противоположных по знаку напряжения (рис.4б). Однако не следует забывать, что это 2 соединенных последовательно четвертьмоста и емкости конденсаторов должны быть достаточно велики (из расчета, как минимум, 1000мкФ на 1А потребляемого тока).

    4.2.3. Полный мост

    Самая распространенная схема выпрямителя имеет наилучшие нагрузочные характеристики при минимальном уровне пульсаций и может применяться как в однополярных (рис.5а), так и в расщепленных БП (рис.5б).


    Рис.5

    На рис.5в,г показана работа мостового выпрямителя.

    Как уже говорилось, различные схемы выпрямителей характеризуют разные значения коэффициента пульсаций. Точный расчет выпрямителя содержит громоздкие вычисления и на практике редко бывает необходим, поэтому ограничимся ориентировочным расчетом, который можно выполнить по таблице

    где: U 2 – напряжение вторичной обмотки
    I 2 – предельно допустимый ток вторичной обмотки
    U обр – Предельно допустимое обратное напряжение диодов (кенотронов, тиристоров, газотронов, игнитронов)
    I пр.макс – Предельно допустимый прямой ток диодов (кенотронов, тиристоров, газотронов, игнитронов)
    q 0 – коэффициент пульсаций на выходе
    U 0 – Выводное напряжение выпрямителя
    I 0 – максимальный ток нагрузки

    Емкость сглаживающего конденсатора можно вычислить по формуле


    где: q – коэффициент пульсаций
    m – фазность
    f – частота пульсаций
    R н – сопротивление нагрузки ()
    R ф – сопротивление резистора фильтра (это формула для резистивно-емкостных фильтров, но в качестве резистора можно взять выходное сопротивление выпрямителя [внутреннее сопротивление трансформатора+импеданс вентилей])

    4.3. Фильтрация

    Пульсации вносят помехи в работу аппарата, который питается от БП. Кроме того, они делают невозможной работу стабилизаторов ввиду того, что в интервалах между полуволнами (абсолютная синусоида) напряжение падает практически до нуля. Рассмотрим некоторые виды сглаживающих фильтров.

    4.3.1. Пассивные фильтры могут быть резистивно-емкостными индуктивно-емкостными и комбинированными.


    Рис.6

    Резистивно-емкостные фильтры (рис.6) характеризуются сравнительно большим падением напряжения. Это связано с применением в них резистора. Поэтому для работы с токами более 500мА такие фильтры не подходят ввиду больших потерь и рассеиваемой мощности. Резистор рассчитывается следующим образом

    где: U вып – выходное напряжение выпрямителя
    U п – напряжение питания нагрузки
    I н – ток нагрузки


    Рис.7

    Индуктивно-емкостные фильтры характеризуются сравнительно высокой сглаживающей способностью, но уступают другим по массогабаритным параметрам. Основная идея индуктивно – емкостного фильтра в соотношении реактивных сопротивлений его компонентов , т.е. фильтр должен обладать хорошей добротностью. Сам фильтр рассчитывается по следующей формуле

    Где: q – коэффициент сглаживания
    m – фазность
    f – частота
    - индуктивность дросселя
    – емкость конденсатора.

    В любительских условиях вместо дросселя можно использовать первичную обмотку трансформатора (ни того, от которого все питается), а вторичную замкнуть.

    4.3.2. Активные фильтры применяются в тех случаях, когда пассивные фильтры не годятся по массогабаритным или температурным параметрам. Дело в том, что, как уже говорилось, чем больше ток нагрузки, тем больше емкость сглаживающих конденсаторов. На практике это вытекает в необходимость применения громоздких электролитических конденсаторов. В активном фильтре используется транзистор в схеме эмиттерного повторителя (каскад с общим коллектором), поэтому сигнал на эмиттере практически повторяет сигнал на базе (рис.8)


    Рис.8

    Цепь R1C1 рассчитывается как резистивно – емкостной фильтр, только в качестве потребляемого тока берется ток в цепи базы

    Однако, как видно из формулы, режим фильтра (в том числе и коэффициент сглаживания) будет зависеть от потребляемого тока, поэтому его лучше зафиксировать (рис.9)


    Рис.9

    Схема работает при условии, что , при чем выходное напряжение будет составлять примерно 0,98U б в следствии просадки напряжения в повторителе. За сопротивление нагрузки принимаем R2.

    4.3.3 Помехозащитные фильтры

    Надо сказать, что радиопомехи могут проникать не только из сети в прибор, но и из прибора в сеть. Поэтому оба направления следует защищать от помех. Особенно это касается импульсных БП. Как правило, это сводится к подключению конденсаторов небольшой емкости (0,01 – 1,0мкФ) параллельно цепи, как это показано на рис.10.



    Рис.10

    Как и в случае со сглаживающими фильтрами, помехозащитные фильтры работают при условии, что емкостное сопротивление конденсаторов на частоте возникновения помехи много меньше сопротивления нагрузки.

    Возможно, что помеха возникает ни от спонтанного перепада тока в сети или прибора, а от постоянной «вибрации». Это относится, например, к импульсным БП или передатчикам в телеграфном режиме. В этом случае может потребоваться еще и индукционная развязка (рис.11).


    Рис.11

    Однако конденсаторы должны быть подобраны так, чтобы не возникал резонанс в обмотках дросселей и трансформаторов.

    4.4. Стабилизация

    Существует целый ряд устройств, блоков и узлов, которые могут работать только от стабилизированных источников тока. Например генераторы, в которых от напряжения зависит скорость зарядки/разрядки конденсаторов в цепях ОС и, следовательно, частота и форма генерируемого сигнала. Поэтому в БП чаще всего стабилизируют именно выходное напряжение, в то время как ток стабилизируют чаще всего в зарядных устройствах и ИБП, да и то не всегда. Существует достаточно много способов стабилизации напряжения, но на практике чаще всего встречаются параметрические стабилизаторы в том или ином виде. Рассмотрим их работу.

    4.4.1. Простейший стабилизатор состоит из стабилитрона и ограничительного резистора (рис.12).


    Рис.12

    Принцип работы такого стабилизатора основан на изменении падения напряжения в ограничительном резисторе в зависимости от тока. При чем вся схема работает при условии, что
    Действительно, если ток, протекающий через нагрузку будет превосходить ток стабилизации, то стабилитрон не сможет обеспечить должный перепад по правилу параллельного соединения

    Как видно из формулы, наибольшее влияние на общее сопротивление цепи оказывает наименьшее сопротивление. Дело в том, что с увеличением обратного напряжения растет его обратный ток, поэтому он и удерживает напряжение в определенных рамках (закон Ома для участка цепи).

    4.4.2. Эмиттерный повторитель

    Тогда что делать, если потребляемый ток должен превосходить ток стабилизации стабилитрона?


    Рис.13

    На помощь приходит наш старый добрый эмиттерный повторитель прирожденный усилитель по току. В конце концов что такое падение напряжения на 2% по сравнению с приращением тока на 1000%!? Внедряем (рис.13)! Ток вырос примерно в h 21 раз по сравнению со стабилизатором на стабилитроне. На эмиттере буде примерно 0,98U Б

    4.4.3. Наращивание напряжения стабилизации

    Проблема решена, а как быть если требуется стабилизировать напряжение, скажем, 60В? В этом случае можно соединять стабилитроны последовательно. Таким образом 60В это 6 стабилитронов по 10В или 5 по 12В (рис.14).


    Рис.14

    Как и для любой последовательной цепи, здесь работает правило

    где: - общее напряжение стабилизации цепочки
    n – количество стабилитронов в цепи
    - напряжение стабилизации каждого стабилитрона.

    При чем напряжение стабилизации у стабилитронов может отличаться, но ток стабилизации должен быть одинаковым.

    4.4.4. Наращивание тока нагрузки

    Таким образом решается вопрос с высоким напряжением. Если требуется повысить нагрузочную способность (предельно допустимый ток нагрузки) используются каскады эмиттерных повторителей, образующие составной транзистор (рис.15).


    Рис.15

    Параметрический стабилизатор и эмиттерный повторитель рассчитываются так же, как и в предыдущих схемах. R2 включен в схему для стока потенциалов с базы VT2 когда VT1 закрыт, однако должно выполняться условие , где Z VT 1 – импеданс VT1 в открытом состоянии.

    4.4.5. Регулировка выходного напряжения

    В ряде случаев бывает необходимо подстраивать или регулировать выходное напряжение стабилизатора (рис.16).


    Рис.16

    В этой схеме нагрузкой считается R2, и ток через стабилитрон должен превосходить ток через R2. Следует помнить, что если напряжение снижено до «0», то на переходе коллектор-база действует полное входное напряжение. Если заявленный режим транзистора не достигает этого напряжения, то транзистор неизбежно выйдет из строя. Так же следует отметить, что на выходе стабилизаторов с эмиттерными повторителями очень опасны конденсаторы большой емкости. Дело в том, что в этом случае транзистор оказывается зажатым между двумя большими емкостями. Если разрядить выходной конденсатор, то сглаживающий конденсатор разрядится через транзистор и транзистор выйдет из строя от перегрузки по току. Если разрядить сглаживающий конденсатор, то на эмиттере напряжение станет выше, чем на коллекторе, что так же неизбежно приведет к пробою транзистора.

    4.4.6 Стабилизация тока применяется довольно редко. Например зарядных устройствах для АКБ. Самым простым и надежным способом стабилизировать ток является использование каскада с общей базой и светодиодом в качестве стабилизирующего элемента.


    Рис.17

    Принцип работы такой схемы весьма прост: при снижении тока через нагрузку уменьшается падение напряжения в каскаде. Таким образом на нагрузке повышается напряжение, а следовательно (по закону Ома) и ток. А вырасти выше нужного предела току не позволяет зафиксированный светодиодом режим базы транзистора, т.е. коэффициент усиления не позволяет выдать такой ток на выходе, ибо транзистор работает в режиме насыщения.

    где: R1 – сопротивление резистора R1
    U пр.св – прямое напряжение на светодиоде
    U БЭ.нас – напряжение между эмиттером и базой в режиме насыщения
    I H – необходимый ток нагрузки.

    где: R2 – сопротивление резистора R2
    Е – входное напряжение стабилизатора
    U пр.св – максимальное прямое напряжение светодиода
    I пр. max – максимальный прямой ток светодиода.

    Импульсные БП будут рассмотрены во второй части статьи.

    Блок питания - "сердце" электроснабжения компонентов компьютера. Он преобразует входящее переменное напряжение в постоянный ток напряжением +3,3 В, +5 В, +12 В.

    1. Блок питания компьютера, его разъёмы и напряжения
    2. Расчёт мощности
    3. Основные характеристики блоков питания

    Блок питания компьютера, его разъёмы и напряжения

    Компоненты компьютера используют следующие напряжения:

    3,3В - Материнская плата, модули памяти, платы PCI, AGP, PCI-E, контроллеры

    5В - Дисковые накопители, приводы, PCI, AGP, ISA

    12В - Приводы, карты AGP, PCI-E

    Как видно одни и те же компоненты могут использовать разные напряжения.

    Функция PS_ON позволяет выключить и включить блок питания программно. Эта функция выключает блок питания когда операционная система завершит свою работу.

    Сигнал Power_Good. При включении компьютера блок питания проводит самотестирование. И если выходные напряжения питания в норме он посылает сигнал на материнскую плату в чип управления питанием процессора. Если он не получит такой сигнал, система не запустится.

    Бывает так что на блоке питания не хватает необходимых разъёмов. Выйти из положения можно, применяя различные переходники и разветвители:


    Расчёт мощности

    Мощности на выходе по каждой линии обычно написаны на наклейке блока питания и расчитываются по формуле:

    Ватты (Вт) = Вольты (В) х Амперы (А)

    Тем самым сложив все мощности по каждой линии получим общую мощность блока питания.


    Однако, часто выходная мощность не соответствует заявленной. Лучше брать немного более мощный блок, чтобы компенсировать возможную нехватку мощности.

    Предпочтение думаю лучше отдавать проверенным брендам, однако не факт что блок будет качественным. Проверить можно только одним способом - вскрыть его. Должны быть массивные радиаторы, входные конденсаторы большой ёмкости, качественный трансформатор, должны быть распаяны все детали


    Основные характеристики блоков питания

    Блоки питания не могут работать без нагрузки. При его проверки, к нему необходимо подключить что-нибудь. Иначе он может сгореть или, при наличии защиты, он отключится.

    Запустить его можно закорачиванием двух проводков на основном разъёме ATX, зелёного и любого чёрного.


    Характеристики:

  • Наработка на отказ. Примерно должна быть более 100000 часов
  • Входной диапазон напряжений (американский (120В) или европейский (220В)). Возможно присутствие переключателя режимов работы или автоматическое определение.
  • Время отключения блока питания при кратковременном отключении электричества. 15-30мс является стандартом, но чем больше тем лучше. Тем самым при пропадании электричества, у Вас система останется в рабочем состоянии, а не уйдёт в перезагрузку
  • Стабилизация напряжения на выходах при включении устройства (привода, жёсткого диска). Так как на неиспользуемое устройство подаётся пониженное напряжение
  • Отключение линии при превышении на ней напряжения к устройству
  • Максимальная нагрузка на линию. По этому показателю можно определить сколько устройств можно подключить к одной линии.
  • Стабилизация напряжения на выводах линий при изменении входящего напряжения.