Домой / Игры / Ардуино и жки от часов. Подключение часов реального времени ds1302 к Arduino

Ардуино и жки от часов. Подключение часов реального времени ds1302 к Arduino

Добрый день, сегодня я поделюсь инструкцией по изготовлению часов с комнатным термометром(Часы на ардуино своими руками ). Часы работают на Arduino UNO, для отображения времени и температуры служит графический экран WG12864B. В качестве датчика температуры - ds18b20. В отличие от большинства других часов я не буду использовать RTS (Real Time Clock), а попробую обойтись без этого дополнительного модуля.

Схемы на ардуино отличаются своей простотой, и может начать изучать ардуино-каждый. О том как подключать библиотеки и прошивать ардуино можно почитать в нашей статье .

Приступим.

Для создания данных часов нам понадобится:

Arduino UNO (Или любая другая Arduino совместимая плата)
- Графический экран WG12864B
- Датчик температуры ds18b20
- Резистор 4.7 Ком 0.25 Вт
- Резистор 100 ом 0.25 Вт
- Батарейный отсек для 4 батареек типа АА «пальчиковых»
- Подходящая коробка
- Мелкий напильник
- Лак для ногтей (черный или под цвет корпуса)
- Немного тонкого пластика или картона
- Изолента
- Соединительные провода
- Монтажная плата
- Кнопки
- Паяльник
- Припой, канифоль
- Двусторонний скотч

Подготовка графического экрана.
С подключение экрана, на первый взгляд, возникает много проблем и сложностей. Но если вначале разобраться с их видами, станет намного легче и понятнее. Существует много разновидностей и типов экранов на контролере ks0107/ks0108. Все экраны принято делить на 4 типа:
Вариант A: HDM64GS12L-4, Crystalfontz CFAG12864B, Sparkfun LCD-00710CM, NKC Electronics LCD-0022, WinStar WG12864B-TML-T
Вариант B: HDM64GS12L-5, Lumex LCM-S12864GSF, Futurlec BLUE128X64LCD, AZ Displays AGM1264F, Displaytech 64128A BC, Adafruit GLCD, DataVision DG12864-88, Topway LM12864LDW, Digitron SG12864J4, QY-12864F, TM12864L-2, 12864J-1
Вариант C: Shenzhen Jinghua Displays Co Ltd. JM12864
Вариант D: Wintek- Cascades WD-G1906G, Wintek - GEN/WD-G1906G/KS0108B, Wintek/WD-G1906G/S6B0108A, TECDIS/Y19061/HD61202, Varitronix/MGLS19264/HD61202

Список не полный, их очень много. Самый распространённый и, на мой взгляд, удобный WG12864B3 V2.0. Дисплей можно подключить к Arduino по последовательному или параллельному порту. При использовании с Arduino UNO лучше выбрать подключение по последовательному порту – тогда нам потребуется всего 3 выхода микроконтроллера, вместо минимум 13 линий при подключении по параллельному порту. Подключается все довольно просто. Есть еще один нюанс, в продаже можно встретить два варианта дисплеев, со встроенным потенциометром (для регулировки контраста) и без него. Я выбрал, и советую тоже сделать вам, со встроенным.


Это уменьшает количество деталей и время пайки. Также стоит поставить токоограничительный резистор номиналом 100 Ом для подсветки. Подключая напрямую 5 вольт, существует риск сжечь подсветку.
WG12864B – Arduino UNO
1 (GND) - GND
2 (VCC) - +5V
4 (RS) – 10
5 (R/W) – 11
6 (E) – 13
15 (PSB) – GND
19 (BLA) – через резистор - +5V
20 (BLK) – GND

Удобнее всего это все собрать сзади экрана и вывести от него 5 проводов подключения к Arduino UNO. В итоге должно получится примерно так:


Для тех кто все-таки выберет параллельное подключение приведу таблицу подключения.

И схема для экранов варианта B:



На одну линию связи может быть включено несколько датчиков. Для наших часов достаточно одного. Подключаем провод от контакта «DQ» ds18b20 к «pin 5» Arduino UNO.

Подготовка платы с кнопками.
Для установки времени и даты на часах будем использовать три кнопки. Для удобства спаиваем три кнопки на монтажной плате и выводим провода.


Подключаем следующим образом: общий для всех трех кнопок провод подключаем к «GND» Arduino. Первую кнопку, она служит для входа в режим установки времени и переключения по времени и дате, подключаем к «Pin 2». Вторая, кнопка увеличения значения, - к «Pin 3», а третья, кнопка уменьшения значения, - к «Pin 4».

Сборка всего воедино.
Чтобы избежать короткого замыкания, следует заизолировать экран. По кругу обматываем изолентой, а на заднюю часть крепим на двусторонний скотч, вырезанную по размеру, планку из изолирующего материала. Подойдет плотный картон или тонкий пластик. Я воспользовался пластиком от планшета для бумаги. Получилось следующее:


Спереди экрана по краю клеим двусторонний скотч на вспененной основе, желательно черный.


Подключаем экран к Arduino:


Плюс от батарейного отсека подключаем к «VIN» Arduino, минус к «GND». Размещаем его сзади Arduino. Перед установкой в корпус, не забудьте подключить датчик температуры и плату с кнопками.


Подготовка и заливка скетча.
Для датчика температуры нужна библиотека OneWire.

Вывод на экран осуществляется через библиотеку U8glib:

Для редактирования и заливки скетча надо установите эти две библиотеки. Сделать это можно двумя способами. Просто распаковать эти архивы и поместить распакованные файлы в папку «libraries», находящуюся в папке с установленной Arduino IDE. Или второй вариант установить библиотеки прямо в среде программирования. Не распаковывая скачанные архивы, в среде Arduino IDE выберите меню Скетч – Подключить библиотеку. В самом верху выпадающего списка выберите пункт «Добавить.Zip библиотеку». В появившемся диалоговом окне выберете библиотеку, которую вы хотите добавить. Снова откройте меню Скетч – Подключить библиотеку. В самом низу выпадающего списка вы должны увидеть новую библиотеку. Теперь библиотеку можно использовать в программах. Не забудьте после всего этого перезагрузить Arduino IDE.

Датчик температуры работает по протоколу One Wire и имеет уникальный адрес для каждого устройства - 64-разрядный код. Каждый раз искать этот код нецелесообразно. Поэтому необходимо вначале подключить датчик к Arduino, залить в нее скетч находящийся в меню Файл – Примеры – Dallas Temperature – OneWireSearch. Далее запускаем Инструменты - Монитор порта. Arduino должна найти наш датчик, написать его адрес и текущие показания температуры. Копируем или просто записываем адрес нашего датчика. Открываем скетч Arduino_WG12864B_Term, ищем строку:

Byte addr={0x28, 0xFF, 0xDD, 0x14, 0xB4, 0x16, 0x5, 0x97};//адрес моего датчика

Записываем адрес вашего датчика между фигурными скобками, заменяя адрес моего датчика.

Стока:

//u8g.setPrintPos(44, 64); u8g.print(sek); // Выводим секунды для контроля правильности хода

Служит для вывода секунд рядом с надписью «Data». Это необходимо для точной установки хода времени.
Если часы спешат или отстаю следует поменять значение в строке:

If (micros() - prevmicros >494000) { // поменять на другое для корректировки было 500000

Я опытным путем определил число, при котором часы идут достаточно точно. Если ваши часы спешат следует увеличить это число, если отстаю – уменьшить. Для определения точности хода и нужен вывод секунд. После точной калибровки числа, секунды можно закомментировать и таким образом убрать с экрана.

Доброго времени суток. В сегодняшней статье мы изготовим необычные бинарные часы на базе Arduino своими руками . Разобравшись с процессом создания подобной поделки , в дальнейшем вы сможете повторить бинарные часы любой конструкции.

Шаг 1: Что же такое бинарные часы?

Для начала вспомним, что же такое бинарное (двоичное) число – это число представленное в двоичной системе исчисления, числовыми значениями, что используют всего два символа: 0 (ноль) и 1 (единица).

Бинарные часы – это часы, что отображают время в двоичном формате. В проекте используются 6 колонок светодиодов для отображения нулей и единиц. Каждая колонка отображает одну цифру/разряд, такой формат известен, как двоично-десятичное число (ДДЧ). Каждая линия отображает степень двойки, от 2^0 (или 1), до 2^3 (или 8). Поэтому всё, что нужно сделать при чтении информации с часов – просуммировать значения колонок с включенными светодиодами. Например, в первой колонке включены 4-й и 1-й светодиоды. Прибавляем 8 к 1 и получаем 9 (количество секунд равное 9). Следующая колонка десятые секунды, в ней светится только 3-й светодиод, поэтому общее значение будет равно 49 секундам, точно также с минутами и часами. Пожалуйста, отметьте следующее, что часы отображают время в 24-х часовом формате.

Шаг 2: Составные части

  • Arduino Pro Mini 328 5 V использовал такую плату, но фактически можете использовать любую другую. Если вы ни разу не использовали Pro Mini, то наверняка вам будет нужен CP 2102 (программатор) для подключения платы к компьютеру;

  • DS 1302 — модуль часов реального времени ;

  • 20-ть 10 мм диффузных «тёплых» светодиодов (советую брать с запасом);

  • 20-ть резисторов с номиналом сопротивления 10Ω;

  • 2 тактовые кнопки;

  • 2 резистора с номиналом сопротивления 10kΩ (используются, как нагрузочные резисторы).

Шаг 3: Изготавливаем прототип

Начнём изготавливать прототип будущей поделки . В принципе, это не обязательное условие, но нужно же посмотреть на то, как светодиодная матрица, Arduino и часовой модуль будут работать вместе. При прототипирование использовал Arduino Mega и простые красные светодиоды. Всё работает хорошо, как и ожидалось.

Шаг 4: Корпус

Корпус самоделки (состоит из двух половинок) будет изготовлен из дерева. Оно будет контрастно смотреться на фоне бинарных часов и придаст поделке ретро стиль.

Шаг 5: Схема

Светодиоды сгруппированы в матрицу, чтобы уменьшить количество задействованных выводов arduino. В нашем случае под матрицу отведено 9 выводов. После изготовления светодиодной матрицы, припаяем выводы к arduino, затем модуль часов, кнопки для настройки времени и под конец блок питания.

Шаг 6: Код

За основу кода взят пример с Arduino Playgroud post для модуля часов DS1302. После чего были внесены изменения для отображения времени на светодиодной матрице.

Понадобилось как-то сделать большие настенные часы с автоматической яркостью.

Такие часы отлично подойдут для больших помещений, например холл офиса или большая квартира.

Сделать такие большие настенные часы не представляет серьёзных сложностей при помощи данной инструкции.


Для оценки размера часов можно принять тот факт, что один сегмент часов будет размером с бумагу формата А4, что позволит легко использовать рамки для фотографий соответствующего размера.

Шаг 1. Составные части больших настенных часов.

Провода, припой, паяльник, лента светодиодная Arduino Nano DC-DC преобразователь LM2596
4 метра светодиодной ленты WS2811 датчик света часы реального времени DS3231
микропереключатели

Что я использовал для этого проекта:

Шаг 8. Программируем часы.

Немного повозившись, мне удалось получить часы, полностью удовлетворяющие моим потребностям. Я уверен что вам удастся сделать лучше моего.

Код хорошо прокоментирован и вам не составит труда в нём разобраться, сообщения отладки так-же прокоментированы очень хорошо.

Если вам нужно поменять используемый цвет настенных часов вам необходимо поменять переменную на строчке 22 (int ledColor = 0x0000FF; // Color used (in hex) ). Вы можете найти список цветов и их коды в hex на странице: https://github.com/FastLED/FastLED/wiki/Pixel-refe…

Если у вас возникли проблемы при загрузке, используйте зеркало:http://bit.ly/1Qjtgg0

Мой итоговый скетч можно скачать .

Шаг 9. Делаем цифры используя полистирол.

Основание резака Рабочий орган резака Общий вид резака
Результат работы резака

Разрежьте каждый сегмент в шаблоне, напечатаетанного в начале.
Полистирол можно разрезать острым ножом, что довольно трудно, либо нехитрым приспособлением из нихромовой проволоки или гитарной струны и нескольких отрезков ОСБ-плиты.

Вы можете видеть, как это сделал я в изображениях выше.

Для того, чтобы запитать резак я использовал 12v блок питания.

В результате отрезаний должны получиться четыре сегмента для больших часов, один из которых показан на фото.

Шаг 10. Приклеиваем цифры и закрываем всё рассеивателем. Итоговые большие настенные часы.

Свечение днем Свечение ночью

После вырезания всех четырех цифр и точек настенных часов приклеиваем их всех на картон вместе со светодиодными лентами (для упрощения процесса я использовал двустороннюю клейкую ленту)

Для того, чтобы рассеять жесткий светодиодный свет я использовал два листа бумаги поверх полистироловых цифр. Для удобства и эстетичности я использовал бумагу размера А2, сложенную вдвое.

После завершения всех этих шагов я поместил получившуюся сборку больших настенных часов в соответствующую им большую фоторамку.

Эти часы получились очень эффектными и притягивающими взгляд. Я думаю что такие большие настенные часы отлично украсят множество помещений.

Вконтакте

Одним из первых проектов, которые новички собирают на основе платы Arduino, являются простые часы, ведущие отсчет времени. В основном такие часы основаны на подключаемом к Arduino модуле RTC (Real Time Clock или Часы реального времени). Сегодня на рынке электронных компонентов доступны разные модели RTC, различающиеся точностью и ценой. Среди распространенных моделей можно назвать DS1302, DS1307, DS3231.



Но часы на Arduino можно сделать и без использования RTC, особенно если не получается достать такие модули. Конечно, точность в данном случае будет невелика, поэтому проект скорее должен рассматриваться как учебный.


Принцип работы таких часов довольно прост. Каждый раз, когда вы включаете эти часы на Arduino, вы должны будете установить для них текущее значение времени, также как и любые аналоговые часы. Такие часы, безусловно, лучше не использовать в своей повседневной жизни при долгой их активности без перезагрузки и дальнейшей настройки, поскольку рассинхронизация с текущим временем в процессе длительной эксплуатации может быть существенной.


Данные часы можно собрать на обычной макетной плате, поскольку здесь не потребуется много компонентов. Основным нашим звеном здесь будет плата Arduino Uno. Для отображения времени можно взять ЖК-дисплей 16x2. Для изменения настроек времени следует подключить две кнопки (для часов и минут). Кнопки подключаются к Aduino через резисторы 10 КОм. Чтобы изменять яркость дисплея потребуется потенциометр на 10 КОм. Схема подключения всех этих компонентов к плате Arduino Uno представлена ниже.



Теперь следует запрограммировать Arduino. Простой код (скетч), позволяющий выводить время на экран LCD-дисплея приведен ниже.


#include LiquidCrystal lcd(12,11,5,4,3,2); int h=12; int m; int s; int flag; int TIME; const int hs=8; const int ms=9; int state1; int state2; void setup() { lcd.begin(16,2); } void loop() { lcd.setCursor(0,0); s=s+1; lcd.print("TIME:"); lcd.print(h); lcd.print(":"); lcd.print(m); lcd.print(":"); lcd.print(s); if(flag<12)lcd.print("AM"); if(flag==12)lcd.print("PM"); if(flag>12)lcd.print("PM"); if(flag==24)flag=0; delay(1000); lcd.clear(); if(s==60){ s=0; m=m+1; } if(m==60) { m=0; h=h+1; flag=flag+1; } if(h==13) { h=1; } lcd.setCursor(0,1); lcd.print("HAVE A NICE DAY"); //-------Time // setting-------// state1=digitalRead(hs); if(state1==1) { h=h+1; flag=flag+1; if(flag<12)lcd.print("AM"); if(flag==12)lcd.print("PM"); if(flag>12)lcd.print("PM"); if(flag==24)flag=0; if(h==13)h=1; } state2=digitalRead(ms); if(state2==1){ s=0; m=m+1; } }

   Благодарим Вас за интерес к информационному проекту сайт.
   Если Вы хотите, чтобы интересные и полезные материалы выходили чаще, и было меньше рекламы,
   Вы можее поддержать наш проект, пожертвовав любую сумму на его развитие.

В данной статье мы рассмотрим, как сделать точные часы на базе Arduino или AVR-микроконтроллера микросхемы часов реального времени DS1307. Время будет выводиться на LCD дисплей.

Что необходимо

  • компьютер с установленной Arduino IDE;
  • микросхема DS1307 или модуль RTC на ее основе ;
  • комплектующие из списка элементов.

Вы можете заменить плату Arduino на контроллер Atmel, но убедитесь, что у него достаточно входных и выходных выводов и есть аппаратная реализация интерфейса I2C. Я использую ATMega168A-PU. Если вы будете использовать отдельный микроконтроллер, то вам понадобится программатор, например, AVR MKII ISP.

Предполагается, что читатель знаком с макетированием, программированием в Arduino IDE и имеет некоторые знания языка программирования C. Обе программы, приведенные ниже, не нуждаются в дополнительном разъяснении.

Введение

Как микроконтроллеры отслеживают время и дату? Обычный микроконтроллер обладает функцией таймера, который стартует от нуля при подаче напряжения питания, а затем начинает считать. В мире Arduino мы можем использовать функцию millis() , чтобы узнать, сколько прошло миллисекунд с того времени, когда было подано напряжение питания. Когда вы снимете и снова подадите питания, она начнет отсчет с самого начала. Это не очень удобно, когда дело доходит до работы с часами и датами.

Вот здесь и будет удобно использование микросхемы RTC (Real Time Clock, часов реального времени). Эта микросхема с батарейкой 3В или каким-либо другим источником питания следит за временем и датой. Часы/календарь обеспечивают информацию о секундах, минутах, часах, дне недели, дате, месяце и годе. Микросхема корректно работает с месяцами продолжительностью 30/31 день и с високосными годами. Связь осуществляется через шину I2C (шина I2C в данной статье не обсуждается).

Если напряжение на главной шине питания Vcc падает ниже напряжения на батарее Vbat, RTC автоматически переключается в режим низкого энергопотребления от резервной батареи. Резервная батарея - это обычно миниатюрная батарея (в виде «монетки», «таблетки») напряжением 3 вольта, подключенная между выводом 3 и корпусом. Таким образом, микросхема по-прежнему будет следить за временем и датой, и когда на основную схему будет подано питание, микроконтроллер получит текущие время и дату.

В этом проекте мы будем использовать DS1307. У этой микросхемы вывод 7 является выводом SQW/OUT (выходом прямоугольных импульсов). Вы можете использовать этот вывод для мигания светодиодом и оповещения микроконтроллера о необходимости фиксации времени. Мы будем делать и то, и другое. Ниже приведено объяснение работы с выводом SQW/OUT.

Для управления работой вывода SQW/OUT используется регистр управления DS1307.

Бит 7: управление выходом (OUT) Этот бит управляет выходным уровнем вывода SQW/OUT, когда выход прямоугольных импульсов выключен. Если SQWE = 0, логический уровень на выводе SQW/OUT равен 1, если OUT = 1, и 0, если OUT = 0. Первоначально обычно этот бит равен 0. Бит 4: включение прямоугольных импульсов (SQWE) Этот бит, когда установлен в логическую 1, включает выходной генератор. Частота прямоугольных импульсов зависит от значений битов RS0 и RS1. Когда частота прямоугольных импульсов настроена на значение 1 Гц, часовые регистры обновляются во время спада прямоугольного импульса. Первоначально обычно этот бит равен 0. Биты 1 и 0: выбор частоты (RS) Эти биты управляют частотой выходных прямоугольных импульсов, когда выход прямоугольных импульсов включен. Следующая таблица перечисляет частоты прямоугольных импульсов, которые могут быть выбраны с помощью данных битов. Первоначально обычно эти биты равны 1.

Данная таблица поможет вам с частотой:

Выбор частоты прямоугольных импульсов DS1307
Частота импульсов Бит 7 Бит 6 Бит 5 Бит 4 Бит 3 Бит 2 Бит 1 Бит 0
1 Гц 0 0 0 1 0 0 0 0
4,096 кГц 0 0 0 1 0 0 0 1
8,192 кГц 0 0 0 1 0 0 1 0
32,768 кГц 0 0 0 1 0 0 1 1

Если вы подключили светодиод и резистор к выводу 7 и хотите, чтобы светодиод мигал с частотой 1 Гц, то должны записать в регистр управления значение 0b00010000. Если вам нужны импульсы 4,096 кГц, то вы должны записать 0b000100001. В этом случае, чтобы увидеть импульсы вам понадобится осциллограф, так как светодиод будет мигать так быстро, что будет казаться, что он светится постоянно. Мы будем использовать импульсы с частотой 1 Гц.

Аппаратная часть

Ниже показана структурная схема того, что нам необходимо.

Мы нужны:

  • разъем ISP (In System Programming, внутрисхемное программирование) для прошивки микроконтроллера;
  • кнопки для установки времени и даты;
  • микроконтроллер для связи с RTC через шину I2C;
  • дисплей для отображения даты и времени.

Принципиальная схема:


Перечень элементов

Ниже приведен скриншот из Eagle:


Программное обеспечение

В этом руководстве мы будем использовать два различных скетча: один, который записывает время и дату в RTC, и один, который считывает время и дату из RTC. Мы сделали так потому, что так вы сможете получить более полное представление о том, что происходит. Мы будем использовать одну и ту же схему для обеих программ.

Сперва мы запишем время и дату в RTC, что аналогично установке времени на часах.

Мы используем две кнопки. Одну для увеличения часов, минут, даты, месяца, года и дня недели, а вторую для выбора между ними. Приложение не считывает состояния каких-либо критически важных датчиков, поэтому мы будем использовать прерывания для проверки, нажата ли кнопка, и обработки дребезга контактов.

Следующий код устанавливает значения и записывает их в RTC:

#include // Определение выводов LCD #define RS 9 #define E 10 #define D4 8 #define D5 7 #define D6 6 #define D7 5 LiquidCrystal lcd(RS, E, D4, D5, D6, D7); // Прерывание 0 – это вывод 4 микроконтроллера (цифровой вывод 2 Arduino) int btnSet = 0; // Прерывание 1 – это вывод 5 микроконтроллера (цифровой вывод 3 Arduino) int btnSel = 1; // Флаги прерываний volatile int togBtnSet = false; volatile int togBtnSel = false; volatile int counterVal = 0; // Переменные для отслеживания, где в "меню" мы находимся volatile int menuCounter = 0; // Массив значений volatile int menuValues; // 0=часы, 1=минуты, 2=день месяца, 3=месяц, 4=год, 5=день недели // Заголовки меню char* menuTitles = { "Set hour. ", "Set minute. ", "Set date. ", "Set month. ", "Set year. ", "Set day (1=mon)." }; // Массив дней недели char* days = { "NA", "Mon", "Tue", "Wed", "Thu", "Fre", "Sat", "Sun" }; void setup() { // Объявление прерываний, выполнение функций increaseValue/nextItem // по переднему фронту на btnXXX attachInterrupt(btnSet, increaseValue, RISING); attachInterrupt(btnSel, nextItem, RISING); Wire.begin(); lcd.begin(16,2); showWelcome(); } // Функция прерывания void increaseValue() { // Переменные static unsigned long lastInterruptTime = 0; // Создание метки времени unsigned long interruptTime = millis(); // Если timestamp - lastInterruptTime больше, чем 200 if (interruptTime - lastInterruptTime > 200) { togBtnSet = true; // Увеличить counterVal на 1 counterVal++; } // Установка lastInterruptTime равным метке времени // так мы знаем, что прошли дальше lastInterruptTime = interruptTime; } // Функция прерывания для следующего пункта меню void nextItem() { static unsigned long lastInterruptTime = 0; unsigned long interruptTime = millis(); if (interruptTime - lastInterruptTime > 200) { togBtnSel = true; // Увеличить счетчик меню, так мы переходим к следующему пункту меню menuCounter++; if (menuCounter > 6) menuCounter = 0; // Поместить counterVal в элемент массива счетчиков меню menuValues = counterVal; // Сбросить counterVal, сейчас мы начинаем с 0 для следующего пункта меню counterVal = 0; } lastInterruptTime = interruptTime; } // Функция преобразования десятичных чисел в двоично-десятичный код byte decToBCD(byte val) { return ((val/10*16) + (val%10)); } // Функция проверки, была ли нажата кнопки листания меню, // и обновления заголовка на дисплее. void checkCurrentMenuItem() { if (togBtnSel) { togBtnSel = false; lcd.setCursor(0,0); lcd.print(menuTitles); } } // Функция проверки, была ли нажата кнопка увеличения значения, // и обновления переменной в соответствующем элементе массива, // плюс вывод нового значения на дисплей. void checkAndUpdateValue() { // Проверить, если прерывание сработало = кнопка нажата if (togBtnSet) { // Обновить значение элемента массива с counterVal menuValues = counterVal; // Сбросить флаг прерывания togBtnSet = false; lcd.setCursor(7,1); // Напечатать новое значение lcd.print(menuValues); lcd.print(" "); } } // Короткое приветственное сообщение, теперь мы знаем, что всё нормально void showWelcome() { lcd.setCursor(2,0); lcd.print("Hello world."); lcd.setCursor(3,1); lcd.print("I"m alive."); delay(500); lcd.clear(); } // Запись данных в RTC void writeRTC() { Wire.beginTransmission(0x68); Wire.write(0); // начальный адрес Wire.write(0x00); // секунды Wire.write(decToBCD(menuValues)); // преобразовать минуты в BCD-код и записать Wire.write(decToBCD(menuValues)); // преобразовать часы в BCD-код и записать Wire.write(decToBCD(menuValues)); // преобразовать день недели в BCD-код и записать Wire.write(decToBCD(menuValues)); // преобразовать день месяца в BCD-код и записать Wire.write(decToBCD(menuValues)); // преобразовать месяц в BCD-код и записать Wire.write(decToBCD(menuValues)); // преобразовать год в BCD-код и записать Wire.write(0b00010000); // включить прямоугольные импульсы 1 Гц на выводе 7 Wire.endTransmission(); // закрыть передачу } // Показать время // Чтобы посмотреть, что RTC работает, вам необходимо посмотреть другую программу void showTime() { lcd.setCursor(0,0); lcd.print(" "); lcd.print(menuValues); lcd.print(":"); // часы lcd.print(menuValues); lcd.print(":"); lcd.print("00 "); // минуты lcd.setCursor(3,1); lcd.print(days); lcd.print(" "); // день недели lcd.print(menuValues); lcd.print("."); // дата lcd.print(menuValues); lcd.print("."); // месяц lcd.print(menuValues); lcd.print(" "); // год // вызов функции writeRTC writeRTC(); } void loop() { if (menuCounter < 6) { checkCurrentMenuItem(); checkAndUpdateValue(); } else { showTime(); } }

Эта программа начинается с короткого приветственного сообщения. Это сообщение говорит нам, что подано питание, LCD работает, и что программа запустилась. Так как скетч служит лишь для того, чтобы показать, как записать данные из Arduino в RTC DS1307, то в нем отсутствует вспомогательный функционал (проверка, попадают ли значения в допустимые диапазоны; зацикливание при нажимании на кнопку увеличения значения, то есть сброс на 0, когда значение, например, минут превысит 60, и т.д.)

// Включение заголовочных файлов #include #include // Определение выводов LCD #define RS 9 #define E 10 #define D4 8 #define D5 7 #define D6 6 #define D7 5 LiquidCrystal lcd(RS, E, D4, D5, D6, D7); // Вывод, который будет принимать импульсы от RTC volatile int clockPin = 0; // Переменные времени и даты byte second; byte minute; byte hour; byte day; byte date; byte month; byte year; // Массив дней недели char* days = { "NA", "Mon", "Tue", "Wed", "Thu", "Fre", "Sat", "Sun" }; // Функция, которая выполняется только при запуске void setup() { pinMode(clockPin, INPUT); pinMode(clockPin, LOW); Wire.begin(); lcd.begin(16,2); showWelcome(); } // Короткое приветственное сообщение, теперь мы знаем, что всё нормально void showWelcome() { lcd.setCursor(2,0); lcd.print("Hello world."); lcd.setCursor(3,1); lcd.print("I"m alive."); delay(500); lcd.clear(); } byte bcdToDec(byte val) { return ((val/16*10) + (val%16)); } // Это выполняется постоянно void loop() { // Если уровень на выводе clockPin высокий if (digitalRead(clockPin)) { // Начать передачу I2C, адрес 0x68 Wire.beginTransmission(0x68); // Начать с адреса 0 Wire.write(0); // Закрыть передачу Wire.endTransmission(); // Начать чтение 7 двоичных данных от 0x68 Wire.requestFrom(0x68, 7); second = bcdToDec(Wire.read()); minute = bcdToDec(Wire.read()); hour = bcdToDec(Wire.read()); day = bcdToDec(Wire.read()); date = bcdToDec(Wire.read()); month = bcdToDec(Wire.read()); year = bcdToDec(Wire.read()); // Форматирование и отображение времени lcd.setCursor(4,0); if (hour < 10) lcd.print("0"); lcd.print(hour); lcd.print(":"); if (minute < 10) lcd.print("0"); lcd.print(minute); lcd.print(":"); if (second < 10) lcd.print("0"); lcd.print(second); lcd.setCursor(2,1); // Форматирование и отображение даты lcd.print(days); lcd.print(" "); if (date < 10) lcd.print("0"); lcd.print(date); lcd.print("."); if (month < 10) lcd.print("0"); lcd.print(month); lcd.print("."); lcd.print(year); } }

Заключение

В данной статье мы рассмотрели микросхему DS1307 от Maxim Integrated и написали две демонстрационные программы: одну для установки времени и даты и вторую для чтения времени и даты. Для проверки нажатия кнопок мы использовали прерывания, в которых также избавлялись от влияния дребезга контактов.

Фото и видео

Установка времени

Считывание времени