Домой / Faq / Почему нечеткая логика непопулярна. Что такое нечеткая логика (fuzzy logic): принцип работы, примеры, применение

Почему нечеткая логика непопулярна. Что такое нечеткая логика (fuzzy logic): принцип работы, примеры, применение

6 сентября 2017 в возрасте 96 лет умер Лотфи Заде, создатель нечеткой логики.
6 сентября 2017 в компании, которая основана на технологиях нечеткой логики и нейронных сетей, и в которой я пока работаю, начались такие преобразования, которые только в рамках этой самой нечеткой логики и можно как-нибудь описать. И с завтрашнего дня будет расторгнут мой контракт, хотя если с 15 сентября я и становлюсь безработным, то это можно будет оценить только в терминах нечетной логики - на 0,28, на 0,78 или 1,58 - жизнь покажет.
А два года назад, к 50-летию нечеткой логики, Александр Малютин написал заметку на научпоп-сайт «Перельман перезвонит» (nowwow.info). Сайт этот ныне уже умер, и поэтому следует спасти статью. Ведь про нечетную логику написал журналист, который в свое время возглавлял «Известия». Кстати, блогеры-домохозяйки могут не выходить - нечетная логика объясняется на примере стиральной машины. Лучше поучитесь у профи, как надо писать.

К 50-ЛЕТИЮ ОДНОГО ИЗ САМЫХ УДАЧНЫХ МАТЕМАТИЧЕСКИХ ТЕРМИНОВ

Нечеткой логике полвека - в июне 1965 года в журнале Information and Control вышла основополагающая статья «Нечеткие множества» (Fuzzy Sets), которую написал американский математик азербайджанского происхождения Лотфи Заде. Долгих ему лет. Жаль, до юбилея не дожил британский математик танзанийского происхождения Ибрагим Мамдани, который в 1975 году представил первую реальную систему управления с нечеткой логикой - контроллер, следящий за работой парового двигателя. После чего технология стала активно развиваться, найдя применение во многих областях.

Заде 50 лет назад предложил математическое описание живой человеческой логики. В обычной математической логике есть только «истина» (обозначаемая еще числом 1) или «ложь» (0). В нечеткой логике степень истинности высказывания может быть любой - точнее, любым числом от 0 до 1. Красива ли вон та девушка? Ни да, ни нет, а «0,78; что красива».

Непривычно звучит. Как это вообще понять? Для простоты можно считать, что кто-то провел опрос, в котором 78% респондентов назвали девушку красивой, а остальные нет. А может ли быть от таких конструкций практическая польза? Вполне. Допустим, нужно принять решение, отправлять ли девушку на конкурс мисс чего-нибудь (серьезные расходы!), а для этого нужно оценить ее шансы на призовое место. Тогда-то и пригодятся оценки не только красоты, но и других важных для победы и тоже нечетких параметров: остроумия, эрудированности, доброты и т. п. Нужно только понять, откуда брать степени истинности и как оперировать с нечеткими данными. Заде понял. Необходимый для практики математический аппарат он разработал к 1973 году. Мамдани на его основе и сделал свой контроллер.

Заслуга Лотфи Заде не только в том, что он разработал новую теорию. Он ее крайне удачно назвал, выбрав общеупотребительное слово. Если бы вместо «нечеткой» взяли заумный термин, например, «континуальнозначная логика» (что, кстати, так и есть), у него не было бы шансов на широкую известность. Неспециалисты просто не употребляли бы это словосочетание, поскольку кто ж его знает, что оно означает.

Другое дело, когда у научного понятия есть бытовой омоним. Тогда обывателю кажется, что он понимает, о чем речь, особенно если посмотрел про это кино. Таких «понятных» терминов в математике и физике тоже немало. Черная дыра. Магический квадрат. Горизонт событий. Очарованный кварк. Теорема о двух милиционерах. Ну и конечно - матрица! Кто же не знает, что матрица - это когда Киану Ривз бегает по потолку. И не надо нам рассказывать про какие-то таблицы с числами.

Для развития науки вульгарные представления широких масс полезны. Обычных слов следовало бы даже добавить. Фильмов про горизонт событий снять побольше. Натяжек и ляпов не бояться. Главное, чтобы зритель ощущал прикосновение к переднему краю науки и величие человеческого, а, значит, и своего личного разума. Особенно если от такого зрителя зависит принятие решений о финансировании исследований.

Выдающийся советский ядерщик Георгий Флеров говорил: «Объяснять важному начальству научную проблему нужно не так, как правильно, а так, как ему будет понятно. Это ложь во благо». Правильно. Руководство не нужно смущать лекциями про «спонтанные нарушения электрослабой симметрии». Расскажите лучше про «частицу Бога» и «Великую тайну гравитации». Вранья, кстати, в этом особого нет - а инвестиции есть. Не беда, что околонаучные сказки порождают завышенные ожидания и, как следствие, избыточное вливание денег, заканчивающееся разорением. Общая польза в итоге перевешивает. Пузырь доткомов в 2001 году лопнул, но интернет-технологии получили мощнейший импульс.

Нечеткой логике в этом смысле повезло не только с собственным названием, но и с причислением к списку наук и технологий, объединенных названием «искусственный интеллект» - наряду с нейронными сетями, логическим программированием, экспертными системами и др. Это уже большая маркетинговая игра, где участники списка получают эффект от пакетной рекламы в рамках раскрутки единого научного мегабренда. Шутка ли: искусственный интеллект! Вот уж чарующая перспектива понятней некуда. Каждому в дом по железному слуге. Пусть умные кибернетические организмы делают всю работу, а мы будем только вводить пин-коды и пить пина-колады. Ради такого света в конце тоннеля не жаль никаких денег.

Флеровская «ложь во благо» на примере искусственного интеллекта сработала на 100%. Японское правительство с 1982-го по 1992 год потратило полмиллиарда долларов на разработку «компьютера пятого поколения» с элементами «мышления». Как задумывалось, не получилось. В частности, скис язык логического программирования Prolog, которому в 1980-е прочили первые роли. Ну и ладно. Все ж как с доткомами: роботов в некоторых странах в итоге все равно научились делать отличных.

Сегодня кибернетические системы видят, слышат и читают почти как люди, обыгрывают шахматных гроссмейстеров и зачастую эффективнее дипломированных специалистов управляют производственными процессами. Спасибо за столь мощное развитие темы помимо непосредственных разработчиков нужно сказать авторам удачной терминологии, а также Айзеку Азимову, Артуру Кларку, братьям Вачовски и всему коллективу киностудии имени Горького, подарившей советским детям образы роботов-вершителей.

Никаких разумных киборгов при этом на самом деле не создано. Пока даже нельзя уверенно сказать, что, пытаясь их сотворить, мы движемся в правильном направлении. Чтобы убедиться в этом, давайте посмотрим, как в самых общих чертах работает «умная» стиральная машина, которая благодаря блоку управления с нечеткой логикой умеет определять, когда одежда стала уже «достаточно чистой», чтобы слить воду и начать отжим. Пример любопытен еще и тем, что показывает, как практический результат достигается на стыке нескольких дисциплин: физики, химии и математики.
Задача управляющего устройства машины состоит в следующем. Принять на вход данные о степени загрязнения одежды и типе загрязнения. Проанализировать их и сформировать выходной параметр: время стирки.

За оба входных показателя отвечает оптический датчик, который определяет, насколько прозрачен моющий раствор. По степени его прозрачности можно судить о степени загрязнения: чем более грязная одежда загружена в бак, тем менее прозрачен раствор. А тип загрязнения определяется по скорости изменения прозрачности раствора. Жирные вещества плохо растворяются, поэтому чем медленнее изменяется концентрация раствора, тем с более жирным загрязнением приходится иметь дело. Все, датчик работу закончил.

Отметим, что он выдал два точных параметра, два конкретных числа: степень прозрачности раствора и скорость изменения прозрачности раствора. А вот дальше начинает работать алгоритм Ибрагима Мамдани.

На первом этапе, который называется фаззификацией (введением нечеткости), оба числа превращаются в нечеткие понятия. Допустим, мы ввели три градации загрязнения: «слабое», «среднее» и «сильное». Тогда вместо уровня прозрачности раствора появляются три нечетких суждения о загрязнении, скажем: «0,3; слабое», «0,6; среднее», «0,1; сильное».

Что значат эти цифры? Как и в случае с девушкой, чью нечеткую красоту мы обсуждали в начале текста, их можно считать результатами некоего референдума, на котором 30% граждан проголосовали, что загрязнение при данном уровне прозрачности раствора слабое, 60% - что среднее, 10% - сильное. А что, кто-то этот референдум проводил? Можно считать, что да.

В ходе разработки изделия собрались эксперты по машинной стирке и прикинули, как разложатся голоса «избирателей» в зависимости от уровня прозрачности раствора. А не шарлатанство ли это, спросите вы, математика же точная наука, какие еще эксперты по стирке? Да вот такие. Если вы всерьез хотите решить задачу, то найдете стоящих специалистов, чьи прикидки и оценки будут осмысленными и полезными.

Итак, у нас есть один нечеткий параметр «степень загрязнения», теперь нужен второй: «тип загрязнения». Проводим еще один «референдум». Допустим, он показал, что при такой скорости изменения концентрации раствора, которую нам выдал датчик, загрязнение следует считать, например, «0,2; малой жирности», «0,5; средней жирности», «0,3; большой жирности».

Наступает второй этап алгоритма: применение нечетких правил. Теперь вместе с экспертами мы обсуждаем, каким должно быть время стирки в зависимости от степени и типа загрязнения. Перебирая все возможные варианты, получаем - трижды три - девять правил следующего вида: «если загрязнение сильное и средней жирности, то время стирки - большое». Далее по законам логики (мы их для простоты пропустим) подсчитываем степень истинности для времени стирки. Пусть в результате нечеткое время стирки получилось таким: «0,1; малое», «0.7; среднее», «0,2; большое». Можно приступать к заключительному этапу.

Он называется дефаззификацией, то есть ликвидацией нечеткости - нам ведь необходимо дать машине точную вводную, сколько времени вращать барабан. Подходы есть разные, один из распространенных заключается в вычислении «центра тяжести». Допустим, эксперты сказали, что малое время стирки это 20 минут, среднее - 40 минут, большое - 60 минут. Тогда с учетом «веса» каждого значения получаем итоговый параметр: 20*0,1 + 40*0,7 + 60*0,2 = 42. Одежда будет «достаточно чистой» после 42 минут стирки. Ура.

Ибрагим Мамдани придумал красивую штуку, не правда ли? На первый взгляд, чуть ли не шаманство. У вас есть точные исходные цифры и нужно из них получить другие точные цифры. Но вы не корпите над выводом формул, а погружаетесь в мир нечетких понятий, как-то там ими оперируете, а потом возвращаетесь обратно в «точный» мир - с готовым ответом на руках.

Производители стиральных машин даже принялись рекламировать применение нечеткой логики и прямо на изделиях или в инструкциях писать Fuzzy Logic, Fuzzy Control, Logic Control. Бизнесмены люди прагматичные и не размещают каких попало слов на своем товаре. Так что если вы увидели на машине надпись Fuzzy Logic, это значит: она «продает» товар. Технология помимо своих сугубо потребительских свойств гипнотизирует покупателя еще и названием, мотивируя на расставание с лишней сотней долларов. Уж не знаю, получает ли с этого роялти Лотфи Заде, но это было бы справедливо. Ни один другой раздел математики на бытовой технике не упоминается.

Но вы же заметили, наверное, что по ходу описания работы стиральной машины с нечеткой логикой не встретилось ни одного места, где можно было бы заподозрить, что у машины появился собственный разум. Только инструкции вроде служебных, только решение запрограммированных задач. Машина будет вовремя сливать воду. Но она не будет понимать, что она делает и зачем. В ее микропроцессорную голову никогда не придет мысль перестать стирать и ради прикола устроить в ванной потоп. Если только эта мысль не посетит программиста, который для прикола встроит в машину еще какую-нибудь Funny Logic. Сама же машина до такого додуматься не может.

Вот вам и весь искусственный интеллект. Роботы учатся только имитировать человеческую деятельность, пусть даже такую, на которую мы сейчас тратим интеллектуальные усилия, например, на перевод с другого языка. Пусть даже они переводят лучше. Вы же не обижаетесь на подъемный кран, что он сильнее вас. И появление кранов не привело к исчезновению штангистов. Только теперь поднятие тяжестей это спорт и удовольствие, а таскать на себе мешки с цементом на стройке не надо. С переводами то же самое. Программа не умнее нас, просто мы смогли формализовать и эффективно сгрузить на нее некоторые наши умения, и теперь можем не тратить свои интеллектуальные усилия на технические переводы, а заняться, скажем, Шекспиром.
Считать, что машины приобретают интеллект благодаря передовым достижениям кибернетики - все равно что верить в карго-культ. Помните, как жители затерянного острова, увидев в небе самолет, сделали такую же фигуру из соломы и думали, что полетит? Они тогда ничего не знали о металлах и керосине, не говоря уже о подъемной силе - и поди объясни.

Так и у нас с «искусственным интеллектом». Роботы скоро смогут водить автомобили и наверняка когда-нибудь обыграют команду людей в футбол - тем более, что этот момент приближают не только японские инженеры, но и наша сборная. Но это будет не более чем имитация разумных действий на поле. Как те аборигены, мы не знаем пока чего-то критически важного, что позволило бы создать разумное существо.

У нас, говоря словами Станислава Лема, обязательно получится Усилитель Умения Водить Авто - как уже получился Усилитель Умения Остановить Стирку. А вот Усилитель Интеллекта, появление которого предсказывал великий фантаст, на основе нынешних технологий «искусственного интеллекта», в том числе нечеткой логики, несмотря на все ее изящество и полезность, не получится. Нечеткая логика это всего лишь способ сократить объем вычислений при решении некоторого класса задач. И на том спасибо.

Можно не бояться роботов-вершителей. Муки творчества, благородные порывы, научный поиск, мечтательность, достоинство, самопожертвование, готовность к подвигу, авантюризм, честь, дружба, гордость, предубеждение, зависть, алчность, жлобство, чванство, подлость, пошлость, доносительство, разводки, сливы, подставы - во всех этих номинациях мы с вами еще долго будем выступать куда круче наших меньших полупроводниковых собратьев.

Стандартная статья о нечеткой логике обычно грешит двумя вещами:

  1. В 99% случаев статья касается исключительно применения нечеткой логики в контексте нечетких множеств, а точнее нечеткого вывода, а еще точнее алгоритма Мамдани. Складывается впечатление, что только этим способом нечеткая логика может быть применена, однако это не так.
  2. Почти всегда статья написана на математическом языке. Замечательно, но программисты пользуются другим языком с другими обозначениями. Поэтому оказывается, что статья просто непонятна тем, кому, казалось бы, должна быть полезна.
Все это грустно, потому что нечеткая логика - это одно из величайших достижений математики XX-ого века, если критерием брать практическую пользу. В этой статье я попытаюсь показать, насколько это простой и мощный инструмент программирования - настолько же простой, но гораздо более мощный, чем система обычных логических операций.

Самым замечательным фактом о нечеткой логике является то, что это прежде всего логика . Из начал мат-логики известно, что любая логическая функция может быть представлена дизъюнктивной или конъюнктивной нормальной формой, из чего следует, что для реализации исчисления высказываний достаточно всего трех операций: конъюнкции (&&), дизъюнкции (||) и отрицания (!). В классической логике каждая из этих операций задана таблицей истинности:

A b || a b && a ! -------- -------- ---- 0 0 0 0 0 0 0 1 0 1 1 0 1 0 1 0 1 0 1 1 0 0 1 1 1 1 1 1
В нечеткой логике, в отличие от классической, вместо величин истина и ложь используется величина степень истинности , принимающая любые значения из бесконечного множества от 0 до 1 включительно. Следовательно логические операции уже нельзя представить таблично. В нечеткой логике они задаются фукнциями.

Есть два способа реализации дизъюнкции и конъюнкции:

#Максиминный подход: a || b => max(a, b) a && b => min(a, b) #Колорометрический подход: a || b => a + b - a * b a && b => a * b
Отрицание задается единственным способом (не трудно догадаться):

A => 1 - a
Легко проверить, что для крайних случаев - когда значения переменных исключительно 1 или 0 - приведенные выше функции дают таблицы истинности операций классической логики. Готово! Теперь у нас есть расширенная логика, обладающая невероятной мощью, простотой и при этом полностью совместимая с классической логикой в предельных случаях. Значит везде, где мы [программисты] используем логические выражения, мы можем использовать выражения нечеткой логики? Не совсем.

Дело в том, что все операторы языков программирования требуют четких условий, поэтому в какой-то момент всегда приходится из нечеткой степени истинности получать четкий критерий срабатывания. Это похоже на то, что происходит в квантовом мире: до тех пор, пока система эволюционирует в соответствии с уравнением Шредингера, ее квантовое состояние изменяется детерминированно и непрерывно, но как только мы прикасаемся к системе, происходит квантовый скачок, и система сваливается в одно из дискретных состояний. В нечеткой логике это называется дефаззификацией. Природа просто превращает квантовое состояние в вероятность и бросает кости, но вообще говоря методы дефаззификации бывают разные. Я не буду углубляться в эту тему, потому что объем ее тянет на отдельную статью. Упомяну лишь только, что метод дефаззификации следует выбирать, учитывая семантику задачи.

Для примера представим себе систему управления ракетой, использующую нечеткую логику для обхода препятствий. Представим себе, что ракета летит точно в гору, и система управления вычисляет решение: лететь вправо - 0.5, лететь влево - 0.5. Если использовать дефаззификацию методом центра масс, то система управления даст команду - лететь прямо. Бум! Очевидно, что в этом случае правильное решение - бросить кости и получить команду «влево» или «вправо» с вероятностью 50%.

В простейшем случае, когда нужно принять решение на основании степени истинности, можно разбить множество на интервалы и использовать if-else-if.

Если нечеткая логика используется для поиска по нечеткому критерию, то дефаззификация вообще может быть не нужна. Производя сравнения, мы будем получать некоторое значение степени равенства для каждого элемента пространства поиска. Мы можем определить некоторую минимальную степень равенства, значения ниже которой нас не интересуют; для оставшихся элементов степень равенства будет релевантностью, по убыванию которой мы будем сортировать результаты, и пускай пользователь решит, какой результат правильный.

В качестве примера приведу использование нечеткой логики для решения задачи, которой я развлекался еще в институте - это задача поиска китайского иероглифа по изображению.

Я сразу отбросил идею распознавать любой каракуль, нарисованный пользователем на экране (тогда это был экран КПК). Вместо этого программа предлагала выбрать тип черты из порядка 23-х, определенных правилами японской каллиграфии. Выбрав тип черты, пользователь рисовал прямоугольник, в который вписывалась черта. Фактически, иероглиф - и введенный, и хранимый в словаре - представлялся в виде множества прямоугольников, для которых был определен тип.

Как определить равенство иероглифов в таком представлении? Для начала сформулируем критерий в четкой постановке:

Иероглифы A и B равны тогда и только тогда, когда для каждой черты в A существует равная ей черта в B и для каждой черты в B существует равная ей черта в A.

Неявно предполагается, что иероглифы не содержат черт-дубликатов, то есть, если некоторая черта совпала с чертой в другом иероглифе, то ни с одной другой чертой в том же иероглифе она совпасть не может.

Равенство черт можно определить следующим образом:

Черты равны тогда и только тогда, когда относятся к одному типу и их прямоугольники занимают одну и ту же площадь.

Эти два определения дают нам систему утверждений, которой достаточно для реализации алгоритма поиска.

Для начала построим матрицу E следующим образом:

For i in 1..n for j in 1..n E = A[i] == B[j] end end #A и B - это иероглифы; A[i] и B[j] - это их черты, и оператор "==" вычисляет их нечеткое равенство. #Предполагается, что оба иероглифа имеют одинаковое количество черт - n.
Затем сомкнем эту матрицу в вектор M[n]:

For i in 1..n M[i] = E.max_in_row(i) end #Метод max_in_row вычисляет максимальное значение в строке матрицы.
Я использую максиминный подход, потому что, на практике, колорометрический дает слишком маленькие значения для конъюнкций. Если вспомнить, что max - это дизъюнкция, то получается, что мы вычисляем утверждение, что i-я черта A равна первой черте B или второй или третьей и т.д. Таким образом M - это вектор совпадений черт A с чертами B.

#Просто нечеткой конъюнкцией. e = M.min #Либо так: e = M.sum / M.length #(отношение суммы элементов к длине вектора).
Оба способа работают, но по-разному, причем второй способ работает даже если сравнивать черты четко. Какой из них правильней - вопрос философский.

Еще пару слов стоит сказать о сравнении черт. В соответствии с определением, равенство черт - это конъюнкция двух условий: равенства типов и равенства прямоугольников. Черты некоторых типов очень похожи. Вводя, пользователь легко может их перепутать, поэтому стоит иметь таблицу похожести, значения которой будут отражать насколько черта i похожа на черту j (на главной диагонали, естественно, будут единицы). Как степень равенства прямоугольников можно брать отношение площади их пересечения к площади большего из прямоугольников.

Вобщем, область применения нечеткой логики весьма обширна. В любом алгоритме, в любой системе правил попробуйте заменить истину и ложь на степень истинности и, возможно, эта система правил или алгоритм станут более точно отражать реальность. В конце концов, мы живем в мире, который фундаментально нечеток.

2.1 Основные понятия нечеткой логики

Как было упомянуто в предыдущих главах, классическая логика оперирует только двумя понятиями: «истина» и «ложь», и исключая любые промежуточные значения. Аналогично этому булева логика не признает ничего кроме единиц и нулей.

Нечеткая же логика основана на использовании оборотов естественного языка. Человек сам определяет необходимое число терминов и каждому из них ставит в соответствие некоторое значение описываемой физической величины. Для этого значения степень принадлежности физической величины к терму (слову естественного языка, характеризующего переменную) будет равна единице, а для всех остальных значений ‒ в зависимости от выбранной функции принадлежности.

При помощи нечетких множеств можно формально определить неточные и многозначные понятия, такие как «высокая температура», «молодой человек», «средний рост» либо «большой город». Перед формулированием определения нечеткого множества необходимо задать так называемую область рассуждений (universe of discourse). В случае неоднозначного понятия «много денег» большой будет признаваться одна сумма, если мы ограничимся диапазоном и совсем другая–в диапазоне .

Лингвистические переменные:

Лингвистической переменной является переменная, для задания которой используются лингвистические значения, выражающие качественные оценки, или нечеткие числа. Примером лингвистической переменной может быть скорость или температура, примером лингвистического значения - характеристика: большая, средняя, малая, примером нечеткого числа - значение: примерно 5, около 0.

Лингвистическим терм-множеством называется множество всех лингвистических значений, используемых для определения некоторой лингвистической переменной. Областью значений переменной является множество всех числовых значений, которые могут принимать определенный параметр изучаемой системы, или множество значений, существенное с точки зрения решаемой задачи.

Нечеткие множества:

Пусть ‒ универсальное множество,‒ элемент, а‒ некоторое свойство. Обычное (четкое) подмножествоуниверсального множества, элементы которого удовлетворяют свойству, определяются как множество упорядоченных пар
,где
‒ характеристическая функция, принимающая значение 1, если удовлетворяет свойству, и 0 - в противном случае.

Нечеткое подмножество отличается от обычного тем, что для элементов изнет однозначного ответа ”да-нет” относительно свойства. В связи с этим, нечеткое подмножество универсального множестваопределяется как множество упорядоченных пар
, где
‒ характеристическая функция принадлежности, принимающая значения в некотором упорядоченном множестве (например,
). Функция принадлежности указывает степень принадлежности элементамножеству. Множество
называют множеством принадлежностей. Если
, то нечеткое множество может рассматриваться как обычное четкое множество.

Множество элементов пространства
, для которых
, называется носителем нечеткого множества и обозначается supp A :

Высота нечеткого множества определяется как

Нечеткое множество называется нормальным тогда и только тогда, когда
. Если нечеткое множествоне является нормальным, то его можно нормализовать при помощи преобразования

,

где
‒ высота этого множества.

Нечеткое множество
, является выпуклым тогда и только тогда, когда для произвольных
и
выполняется условие

2.1.1 Операции над нечеткими множествами

Включение. Пусть и‒ нечеткие множества на универсальном множестве. Говорят, чтосодежится в, если

Равенство. и равны, если

Дополнение. Пусть
,и‒ нечеткие множества, заданные на.идополняют друг друга, если.

Пересечение.
‒ наибольшее нечеткое подмножество, содержащееся одновременно ви:

Объединение.
‒ наибольшее нечеткое подмножество, содержащее все элементы изи:

Разность.
‒ подмножество с функцией принадлежности:

2.1.2 Нечеткие отношения

Пусть
‒ прямое произведение универсальных множеств и
‒ некоторое множество принадлежностей. Нечеткое n-арное отношение определяется как нечеткое подмножествона, принимающее свои значения в
. В случае
и
нечетким отношениеммежду множествами
и
будет называться функция
, которая ставит в соответствие каждой паре элементов
величину
.

Пусть ­­­­ ‒ нечеткое отношение
между
и, инечеткое отношение
междуи. Нечеткое отношение между
и, обозначаемое
, определенное черезивыражением, называется композицией отношенийи.

Нечеткая импликация.

Нечеткая импликация представляет собой правило вида: ЕСЛИ
ТО
,где
– условие, а
– заключение, причеми‒ нечеткие множества, заданные своими функциями принадлежности
,
и областями определения
,соответственно. Обозначается импликация как
.

Различие между классической и нечеткой импликацией состоит в том, что в случае классической импликации условие и заключение могут быть либо абсолютно истинными, либо абсолютно ложными, в то время как для нечеткой импликации допускается их частичная истинность, со значением, принадлежащим интервалу . Такой подход имеет ряд преимуществ, поскольку на практике редко встречаются ситуации, когда условия правил удовлетворяются полностью, и по этой причине нельзя полагать, что заключение абсолютно истинно.

В нечеткой логике существует множество различных операторов импликации. Все они дают различные результаты, степень эффективности которых зависит в частности от моделируемой системы. Одним из наиболее распространенных операторов импликации является оператор Мамдани, основанный на предположении, что степень истинности заключения
не может быть выше степени выполнения условия
:

2.2 Построение нечеткой системы

Из разработок искусственного интеллекта завоевали устойчивое признание экспертные системы, как системы поддержки принятия решений. Они способны аккумулировать знания, полученные человеком в различных областях деятельности. Посредством экспертных систем удается решить многие современные задачи, в том числе и задачи управления. Одним из основных методов представления знаний в экспертных системах являются продукционные правила, позволяющие приблизиться к стилю мышления человека. Обычно продукционное правило записывается в виде: «ЕСЛИ (посылка) (связка) (посылка)… (посылка) ТО (заключение)».Возможно наличие нескольких посылок в правиле, в этом случае они объединяются посредством логических связок «И», «ИЛИ».

Нечеткие системы (НС) тоже основаны на правилах продукционного типа, однако в качестве посылки и заключения в правиле используются лингвистические переменные, что позволяет избежать ограничений, присущих классическим продукционным правилам.

Таким образом, нечеткая система - это система, особенностью описания которой является:

нечеткая спецификация параметров;

нечеткое описание входных и выходных переменных системы;

нечеткое описание функционирования системы на основе продукционных «ЕСЛИ…ТО…»правил.

Важнейшим классом нечетких систем являются нечеткие системы управления (НСУ).Одним из важнейших компонентов НСУ является база знаний, которая представляет собой совокупность нечетких правил «ЕСЛИ–ТО», определяющих взаимосвязь между входами и выходами исследуемой системы. Существуют различные типы нечетких правил: лингвистическая, реляционная, модель Такаги-Сугено и др.

Для многих приложений, связанных с управлением процессами, необходимо построение модели рассматриваемого процесса. Знание модели позволяет подобрать соответствующий регулятор (модуль управления). Однако часто построение корректной модели представляет собой трудную проблему, требующую иногда введения различных упрощений. Применение теории нечетких множеств для управления процессами не предполагает знания моделей этих процессов. Следует только сформулировать правила поведения в форме нечетких условных суждений типа «ЕСЛИ-ТО».

Рисунок 2.1 -. Структура нечеткой системы управления

Процесс управления системой напрямую связан с выходной переменной нечеткой системы управления, но результат нечеткого логического вывода является нечетким, а физическое исполнительное устройство не способно воспринять такую команду. Необходимы специальные математические методы, позволяющие переходить от нечетких значений величин к вполне определенным. В целом весь процесс нечеткого управления можно разбить на несколько стадий: фаззификация, разработка нечетких правил и дефаззификация.

Фаззификаия подразумевает переход к нечеткости. На данной стадии точные значения входных переменных преобразуются в значения лингвистических переменных посредством применения некоторых положений теории нечетких множеств, а именно ‒ при помощи определенных функций принадлежности.

В нечеткой логике значения любой величины представляются не числами, а словами естественного языка и называются «термами». Так, значением лингвистической переменной «Дистанция» являются термы «Далеко», «Близко» и т. д. Для реализации лингвистической переменной необходимо определить точные физические значения ее термов. Допустим переменная «Дистанция» может принимать любое значение из диапазона от 0 до 60 метров. Согласно положениям теории нечетких множеств, каждому значению расстояния из диапазона в 60 метров может быть поставлено в соответствие некоторое число, от нуля до единицы, которое определяет степень принадлежностиданного физического значения расстояния (допустим, 10 метров) к тому или иному терму лингвистической переменной «Дистанция». Тогда расстоянию в 50 метров можно задать степень принадлежности к терму «Далеко», равную 0,85, а к терму «Близко» ‒ 0,15. Задаваясь вопросом, сколько всего термов в переменной необходимо для достаточно точного представления физической величины принято считать, что достаточно 3-7 термов на каждую переменнуюдля большинства приложений. Большинствоприменений вполне исчерпывается использованием минимального количества термов.Такое определение содержит два экстремальных значения (минимальное и максимальное) и среднее. Что касается максимального количества термов, то оно не ограничено и зависит целиком от приложения и требуемой точности описания системы. Число 7 же обусловлено емкостью кратковременной памяти человека, в которой, по современным представлениям, может храниться до семи единиц информации.

Принадлежность каждого точного значения к одному из термов лингвистической переменной определяется посредством функции принадлежности. Ее вид может быть абсолютно произвольным, однако сформировалось понятие о так называемых стандартных функциях принадлежности

Рисунок 2.2 ‒ Стандартные функции принадлежности

Стандартные функции принадлежности легко применимы к решению большинства задач. Однако если предстоит решать специфическую задачу, можно выбрать и более подходящую форму функции принадлежности, при этом можно добиться лучших результатов работы системы, чем при использовании функций стандартного вида.

Следующей стадией является стадия разработки нечетких правил.

На ней определяются продукционные правила, связывающие лингвистические переменные. Большинство нечетких систем используют продукционные правила для описания зависимостей между лингвистическими переменными. Типичное продукционное правило состоит из антецедента (частьЕСЛИ …) и консеквента (часть ТО…). Антецедент может содержать более одной посылки. В этом случае они объединяются посредством логических связок«И» или «ИЛИ».

Процесс вычисления нечеткого правила называется нечетким логическим выводом и подразделяется на два этапа: обобщение и заключение.

Пусть имеется следующее правило:

ЕСЛИ «Дистанция» = средняя И «Угол» =малый, ТО «Мощность» = средняя.

На первом шаге логического вывода необходимо определить степень принадлежности всего антецедента правила. Для этого в нечеткой логике существуют два оператора: Min(…) и Max(…). Первый вычисляет минимальное значение степени принадлежности, а второй ‒ максимальное значение. Когда применять тот или иной оператор, зависит от того, какой связкой соединены посылки в правиле. Если использована связка «И», применяется оператор Min(…). Если же посылки объединены связкой «Или», необходимо применить оператор Max(…). Ну а если в правиле всего одна посылка, операторы вовсе не нужны.

Следующим шагом является собственно вывод или заключение. Подобным же образом посредством операторов Min/Maxвычисляется значение консеквента. Исходными данными служат вычисленные на предыдущем шаге значения степеней принадлежности антецедентов правил.

После выполнения всех шагов нечеткого вывода мы находим нечеткое значение управляющей переменной. Чтобы исполнительное устройство смогло отработать полученную команду, необходим этап управления, на котором мы избавляемся от нечеткости и который называется дефаззификацией.

На этапе дефаззификации осуществляется переход от нечетких значений величин к определенным физическим параметрам, которые могут служить командами исполнительному устройству.

Результат нечеткого вывода, конечно же, будет нечетким. Например, если речь идет об управлении механизмом и команда для электромотора будет представлена термом «Средняя» (мощность), то для исполнительного устройства это ровно ничего не значит. В теории нечетких множеств процедура дефаззификации аналогична нахождению характеристик положения (математического ожидания, моды, медианы) случайных величин в теории вероятности. Простейшим способом выполнения процедуры дефаззификации является выбор четкого числа, соответствующего максимуму функции принадлежности. Однако пригодность этого способа ограничивается лишь одно экстремальными функциями принадлежности. Для устранения нечеткости окончательного результата существует несколько методов: метод центра максимума, метод наибольшего значения, метод центроида и другие. Для многоэкстремальных функций принадлежности наиболее часто используется дефаззификация путем нахождения центра тяжести плоской фигуры, ограниченной осями координат и функцией принадлежности.

2.3. Модели нечеткого логического вывода

Нечеткий логический вывод - это аппроксимация зависимости «входы–выход» на основе лингвистических высказываний типа «ЕСЛИ–ТО» и операций над нечеткими множествами. Нечеткая модель содержит следующие блоки:

‒ фаззификатор, преобразующий фиксированный вектор влияющих факторов Xв вектор нечетких множеств , необходимых для выполнения нечеткого логического вывода;

‒ нечеткая база знаний, содержащая информацию о зависимости
в виде лингвистических правил типа «ЕСЛИ–ТО»;

‒ машина нечеткого логического вывода, которая на основе правил базы знаний определяет значение выходной переменной в виде нечеткого множества, соответствующего нечетким значениям входных переменных;

‒ дефаззификатор, преобразующий выходное нечеткое множество в четкое число Y.

Рисунок 2.3 ‒ Структура нечеткой модели.

2.3.1Нечеткая модель типа Мамдани

Данный алгоритм описывает несколько последовательно выполняющихся этапов. При этом каждый последующий этап получает на вход значения полученные на предыдущем шаге.

Рисунок 2.4 – Диаграмма деятельности процесса нечеткого вывода

Алгоритм примечателен тем, что он работает по принципу «черного ящика». На вход поступают количественные значения, на выходе они же. На промежуточных этапах используется аппарат нечеткой логики и теория нечетких множеств. В этом и состоит элегантность использования нечетких систем. Можно манипулировать привычными числовыми данными, но при этом использовать гибкие возможности, которые предоставляют системы нечеткого вывода.

В модели типа Мамдани взаимосвязь между входами X = (x 1 , x 2 ,…, x n)и выходом y определяется нечеткой базой знаний следующего формата:

,

где
- лингвистический терм, которым оценивается переменная x i в строке с номером
;
), где- количество строк-конъюнкций, в которых выходоценивается лингвистическим термом;
- количество термов, используемых для лингвистической оценки выходной переменной.

С помощью операций ∪(ИЛИ) и ∩ (И) нечеткую базу знаний можно переписать в более компактном виде:

(1)

Все лингвистические термы в базе знаний (1) представляются как нечеткие множества, заданные соответствующими функциями принадлежности.

Нечеткая база знаний (1) может трактоваться как некоторое разбиение пространства влияющих факторов на подобласти с размытыми границами, в каждой из которых функция отклика принимает значение, заданное соответствующим нечетким множеством. Правило в базе знаний представляет собой «информационный сгусток», отражающий одну из особенностей зависимости «входы–выход». Такие «сгустки насыщенной информации» или «гранулы знаний» могут рассматриваться как аналог вербального кодирования, которое, как установили психологи, происходит в человеческом мозге при обучении. Видимо поэтому формирование нечеткой базы знаний в конкретной предметной области, как правило, не составляет трудностей для эксперта.

Введем следующие обозначения:

- функция принадлежности входа нечеткому терму
,
т.е

- функция принадлежности выхода y нечеткому терму
, т.е.

Степень принадлежности входного вектора
нечетким термам из базы знаний (1) определяется следующей системой нечетких логических уравнений:

Наиболее часто используются следующие реализации: для операции ИЛИ - нахождение максимума, для операции И- нахождение минимума.

Нечеткое множество , соответствующее входному вектору X * , определяется следующим образом:

где imp- импликация, обычно реализуемая как операция нахождения минимума; agg- агрегирование нечетких множеств, которое наиболее часто реализуется операцией нахождения максимума.

Четкое значение выхода , соответствующее входному вектору
, определяется в результате дефаззификации нечеткого множества. Наиболее часто применяется дефаззификация по методу центра тяжести:

Модели типа Мамдани и типа Сугэно будут идентичными, когда заключения правил заданы четкими числами, т. е. в случае, если:

1) термы d j выходной переменной в модели типа Мамдани задаются синглтонами - нечеткими аналогами четких чисел. В этом случае степени принадлежностей для всех элементов универсального множества равны нулю, за исключением одного со степенью принадлежности равной единице;

2) заключения правил в базе знаний модели типа Сугэно заданы функциями, в которых все коэффициенты при входных переменных равны нулю.

2.3.2 Нечеткая модель типа Сугэно

На сегодняшний день существует несколько моделей нечеткого управления, одной из которых является модель Такаги-Сугено.

Модель Такаги-Сугено иногда носит называние Takagi-Sugeno-Kang. Причина состоит в том, что этот тип нечеткой модели был первоначально предложен Takagi и Sugeno. Однако Канг и Сугено провели превосходную работу над идентификацией нечеткой модели. Отсюда и происхождение названия модели.

В модели типа Сугэно взаимосвязь между входами
и выходом y задается нечеткой базой знаний вида:

где - некоторые числа.

База знаний (3) аналогична (1) за исключением заключений правил , которые задаются не нечеткими термами, а линейной функцией от входов:

,

Таким образом, база знаний в модели типа Сугэно является гибридной - ее правила содержат посылки в виде нечетких множеств и заключения в виде четкой линейной функции. База знаний (3) может трактоваться как некоторое разбиение пространства влияющих факторов на нечеткие подобласти, в каждой из которых значение функции отклика рассчитывается как линейная комбинация входов. Правила являются своего рода переключателями с одного линейного закона «входы–выход» на другой, тоже линейный. Границы подобластей размытые, следовательно, одновременно могут выполняться несколько линейных законов, но с различными весами. Результирующее значение выхода определяется как суперпозиция линейных зависимостей, выполняемых в данной точке
n-мерного факторного пространства. Это может быть взвешенное среднее

,

или взвешенная сумма

.

Значения
рассчитываются как и для модели типа Мамдани, т. е. по формуле (2).Обратим внимание, что в модели Сугэно в качестве операций ˄ и ˅обычно используются соответственно вероятностное ИЛИ и умножение. В этом случае нечеткая модель типа Сугэно может рассматриваться как особый класс многослойных нейронных сетей прямого распространения сигнала, структура которой изоморфна базе знаний. Такие сети получили название нейро-нечетких.

Нечеткая логика (fuzzy logic )возникла как наиболее удобный способ построения сложными технологическими процессами, а также нашла применение в бытовой электронике, диагностических и других экспертных системах. Математический аппарат нечеткой логики впервые был разработан в США в середине 60-х годов прошлого века, активное развитие данного метода началось и в Европе.

Классическая логика развивается с древнейших времен. Ее основоположником считается Аристотель. Логика известна нам как строгая наука, имеющая множество прикладных применений: например, именно на положениях классической (булевой) логики основан принцип действия всех современных компьютеров. Вместе с тем классическая логика имеет один существенный недостаток - с ее помощью невозможно адекватно описать ассоциативное мышление человека. Классическая логика оперирует только двумя понятиями: ИСТИНА и ЛОЖЬ (логические 1 или 0), и исключая любые промежуточные значения. Все это хорошо для вычислительных машин, но попробуйте представить весь окружающий вас мир только в черном и белом цвете, вдобавок исключив из языка любые ответы на вопросы, кроме ДА и НЕТ. В такой ситуации вам можно только посочувствовать.

Традиционная математика с ее точными и однозначными формулировками закономерностей также имеет в своей основе классическую логику. А поскольку именно математика, в свою очередь, представляет собой универсальный инструмент для описания явлений окружающего мира во всех естественных науках (физика, химия, биология и т. д.) и их прикладных приложениях (например, теория измерений, теория управления и т. д.), неудивительно все эти науки оперируют математически точными данными, такими как: «средняя скорость автомобиля на участке пути длиной 62 км равнялась 93 км/ч». Но мыслит ли в действительности человек такими категориями? Представим, что в вашей машине вышел из строя спидометр. Означает ли это, что отныне вы лишены возможности оценивать скорость вашего перемещения и не в состоянии ответить на вопросы типа «быстро ли ты доехал вчера домой?». Разумеется нет. Скорее всего вы скажете в ответ что-то вводе: «Да, довольно быстро». Собственно говоря, вы скорее всего ответите примерно в том же духе, даже и в том случае, если спидометр вашей машины был в полном порядке, поскольку, совершая поездки, не имеете привычки непрерывно отслеживать его показания в режиме реального времени. То есть, в своем естественном мышлении применительно к скорости мы склонны оперировать не точными значениями в км/ч или м/с, а приблизительными оценками типа: «медленно», «средне», «быстро» и бесчисленным множеством полутонов и промежуточных оценок: «тащился как черепаха», «катился, не торопясь», «не выбивался из потока», «ехал довольно быстро», «несся как ненормальный» и т. п.

Если попытаться выразить наши интуитивные понятия о скорости графически, то получится нечто вроде рисунка ниже.

Здесь по оси X отложены значения скорости в традиционной строгой математической записи, а по оси Y – т. н. функцию принадлежности (изменяется от 0 до 1) точного значения скорости к нечеткому множеству , обозначенному тем или иным значением лингвистической переменной «скорость»: очень низкая, низкая, средняя, высокая и очень высокая. Этих градаций (гранул) может быть меньше или больше. Чем больше гранулированность нечеткой информации, тем больше она приближается к математически точной оценке (не забудем, что и выраженная в традиционной форме измерительная информация всегда обладает некоторой погрешностью, а значит в определенном смысле также является нечеткой). Таким образом, например значение скорости 105 км/ч принадлежит к нечеткому множеству «высокая» со значением функции принадлежности 0.8, а к множеству «очень высокая» со значением 0.5.

Другой пример – оценка возраста человека. Часто мы не имеем абсолютно точной информации о возрасте того или иного знакомого нам человека и поэтому, отвечая на соответствующий вопрос, вынуждены давать нечеткую оценку типа: «ему лет 30» или «ему далеко за 60» и т. п. Особенно часто используются такие значения лингвистической переменной «возраст» как: «молодой», «средних лет», «старый» и т. п. На рисунке ниже приведен графически возможный вид нечеткого множества «возраст = молодой» (очевидно, с точки зрения человека, которому самому ну никак не больше 20 лет;)

Нечеткие числа, получаемые в результате “не вполне точных измерений”, во многом похожи (но не тождественны! см. пример с двумя бутылками) распределениям теории вероятностей, но свободны от присущих последним недостатков: малое количество пригодных к анализу функций распределения, необходимость их принудительной нормализации, соблюдение требований аддитивности, трудность обоснования адекватности математической абстракции для описания поведения фактических величин. По сравнению с точными и, тем более, вероятностными методами, нечеткие методы измерения и управления позволяют резко сократить объем производимых вычислений, что, в свою очередь, приводит к увеличению быстродействия нечетких систем.

Как уже говорилось, принадлежность каждого точного значения к одному из значений лингвистической переменной определяется посредством функции принадлежности. Ее вид может быть абсолютно произвольным. Сейчас сформировалось понятие о так называемых стандартных функциях принадлежности (см. рисунок ниже).

Стандартные функции принадлежности легко применимы к решению большинства задач. Однако если предстоит решать специфическую задачу, можно выбрать и более подходящую форму функции принадлежности, при этом можно добиться лучших результатов работы системы, чем при использовании функций стандартного вида.

Процесс построения (графического или аналитического) функции принадлежности точных значений к нечеткому множеству называется фаззификацией данных.

Основы теории нечетких множеств и нечеткой логики

Одним из методов изучения множеств без уточнения их границ является теория нечетких множеств, которая была предложена в 1965 г. профессором Калифорнийского университета Лотфи Заде. Первоначально она разрабатывалась как средство моделирования неопределенности естественного языка. Однако впоследствии круг задач, решаемых с использованием аппарата нечетких множеств, значительно расширился и сейчас включает в себя такие области, как анализ данных, распознавание, исследование операций, моделирование сложных систем, поддержка принятия решений и т. д. .

Нередко при определении и описании характеристик объектов оперируют не только количественными, но и качественными значениями. В частности, рост человека можно количественно измерить в сантиметрах, а можно описать, используя качественные значения: карликовый, низкий, средний, высокий или гигантский. Интерпретация качественных значений носит субъективный характер, т.е. они могут по-разному трактоваться разными людьми (субъектами). В силу нечеткости (размытости) качественных значений, при необходимости перехода от них к количественным величинам возникают определенные трудности.

В системах, построенных на базе нечетких множеств, используются правила вида «ЕСЛИ А ТО В» (А ® В), в которых как в А (условие, предпосылку), так и в В (результат, гипотезу) могут входить качественные значения. Например, «ЕСЛИ Рост = "высокий" ТО Вид_спорта = "баскетбол"».

Переменная, значение которой определяется набором качественных значений некоторого свойства, в теории нечетких множеств называются лингвистической . В приведенном примере правила используются две лингвистические переменные: Рост и Вид_спорта.

Каждое значение лингвистической переменной определяется через так называемое нечеткое множество. Нечеткое множество определяется через некоторую базовую шкалу X и функцию принадлежности (характеристическую функцию) m(х ), где х Î Х . При этом, если в классическом канторовском множестве элемент либо принадлежит множеству (m(х ) = 1), либо не принадлежит (m(х ) = 0), то в теории нечетких множеств m(х ) может принимать любое значение в интервале . Над нечеткими множествами можно выполнять стандартные операции: дополнение (отрицание), объединение, пересечение, разность и т. д. (рис. 33).

Для нечетких множеств существует также ряд специальных операций: сложение, умножение, концентрирование, расширение и т. д.

При задании лингвистической переменной ее значения, т. е. нечеткие множества, должны удовлетворять определенным требованиям (рис. 34).

1. Упорядоченность. Нечеткие множества должны быть упорядочены (располагаться по базовой шкале) в соответствии с порядком задания качественных значений для лингвистической переменной.

2. Ограниченность. Область определения лингвистической переменной должна быть четко обозначена (определены минимальные и максимальные значения лингвистической переменной на базовой шкале). На границах универсального множества, где определена лингвистическая переменная, значения функций принадлежности ее минимального и максимального нечеткого множества должны быть единичными. На рисунке Т 1 имеет неправильную функцию принадлежности, а Т 6 – правильную.

3. Согласованность. Должно соблюдаться естественное разграничение понятий (значений лингвистической переменной), когда одна и та же точка универсального множества не может одновременно принадлежать с m(х ) = 1 двум и более нечетким множествам (требование нарушается парой Т 2 – Т 3).

4. Полнота. Каждое значение из области определения лингвистической переменной должно описываться хотя бы одним нечетким множеством (требование нарушается между парой T 3 – Т 4).

5. Нормальность. Каждое понятие в лингвистической переменной должно иметь хотя бы один эталонный или типичный объект, т. е. в какой-либо точке функция принадлежности нечеткого множества должна быть единичной (требование нарушается T 5).

X

Нечеткое множество «низкий рост» m н (х )

0 20 40 60 80 100 110 120 140 160 X

Нечеткое множество «высокий рост» m в (х )

0 20 40 60 80 100 110 120 140 160 X

Д = Н: Дополнение нечеткого множества «низкий рост»

m д (х ) = 1 – m н (х )

0 20 40 60 80 100 110 120 140 160 X

Н È В: Объединение нечетких множеств «низкий рост» и «высокий рост»

m нв (х ) = mах (m н (х ), m в (х ))

0 20 40 60 80 100 110 120 140 160 X

Н Ç В: Пересечение нечетких множеств «низкий рост» и «высокий рост»

m нв (х ) = min (m н (х ), m в (х ))

Рис. 33. Операции над нечеткими множествами

m(х ) Т 1 Т 2 Т 3 Т 4 Т 5 Т 6

Рис. 34. Пример задания нечетких множеств для линг­вис­тической переменной с нарушением требований

Требования 2–4 можно заменить одним универсальным – сумма функций принадлежности m(х ) по всем нечетким множествам в каждой точке области определения переменной должна равняться 1.

При обработке правил с лингвистическими переменными (нечетких правил) для вычисления истинности гипотезы применяются правила нечеткой логики. Нечеткая логика – разновидность непрерывной логики, в которой предпосылки, гипотезы и сами логические формулы могут принимать истинностные значения с некоторой долей вероятности.

Основные положения нечеткой логики:

· истинность предпосылки, гипотезы или формулы лежит в интервале ;

· если две предпосылки (Е 1 и Е 2) соединены Ù (логическим И), то истинность гипотезы Н рассчитывается по формуле t(Н) = MIN(t(Е 1), t(Е 2));

· если две предпосылки (Е 1 и Е 2) соединены Ú (логическим ИЛИ), то истинность гипотезы Н рассчитывается по формуле t(Н) = MAX(t(Е 1), t(Е 2));

· если правило (П) имеет свою оценку истинности, тогда итоговая истинность гипотезы Н итог корректируется с учетом истинности правила t(Н итог) = MIN(t(Н), t(П)).