Домой / Faq / История развития процессоров intel. Процессоры Intel P6. В то же самое время в ссср

История развития процессоров intel. Процессоры Intel P6. В то же самое время в ссср

Процессоры на персональные компьютеры получились свое распространение в семидесятых годах прошлого столетия. Они выпускались большим количеством производителей. Практически каждой компании в то время, как собственно говоря и сейчас, хотелось использовать для их производства только самые новые технологии. Однако не у всех компаний получилось получить свое развитие настолько же сильно, как у Intel и AMD. Одни производители полностью пропали с рынка, другие же перешли в другую сферу деятельности. Однако следует рассказать обо всем поэтапно.

Как началось создание процессора

Впервые мир услышал о процессорах в пятидесятых годах прошлого столетия. Они функционировали на механическом реле. Впоследствии стали появляться модели, которые работали при помощи электронных ламп и транзисторов. В те времена компьютерные устройства, на которые они устанавливались, были похожи на сложное и очень крупногабаритное оборудование. Их стоимость была очень высокой.

Все компоненты процессоров отвечали за процесс вычисления. Нужно было разобраться с тем, каким образом, их можно было соединить в единую микросхему. Данная задумка воплотилась в жизнь практически сразу после появления схем полупроводникового типа. В те времена разработчики процессоров даже предположить не могли, что данные схемы окажутся полезными в их деле. Именно по этой причине еще несколько лет они разрабатывали процессоры на нескольких микросхемах.

В конце шестидесятых годов компания Busicom начала разработку своего нового настольного калькулятора. Ей потребовалось 12 микросхем и она заказала их у компании Intel. В то время у разработчиков данной компании появились идеи соединения нескольких микросхем в одно целое. Данная идея пришлась по душе руководителю фирмы. Ее преимущество заключалось в том, что при этом была возможность значительно сэкономить. Ведь не нужно было производить сразу несколько микросхем. Кроме того благодаря расположению элементов процессора на одной микросхеме можно было создать устройство, которое подходило бы для использования на самых разных видах оборудования, применяемых для совершения вычислительных процессов.

В итоге проведенной специалистами корпорации работы появился первый в мире микропроцессор под названием Intel 4004. У него была способность совершать сразу шесть десятков тысяч операций всего за одну секунду. Он даже обрабатывал двоичные числа. Однако данный вид процессора не было возможности использовать для компьютеров, потому что для него еще не было создано таких устройств.

Самый первый персональный компьютер

Первым компьютер был создан студентом из Америки Джонатаном Титусом. В журнале «Электроника» он получил название Марк 2. В нем кроме всего прочего было дано описание данного устройства. Данное изобретение не помогло студенту заработать большие деньги. Изначально Титус планировал зарабатывать при помощи своего изобретения. Он планировал распространять за определенную стоимость печатные платы для создания собственных компьютеров. Потребителям приходилось остальные детали приобретать в магазинах. Конечно же у него не получилось заработать много, но он внес большой вклад в развитие компьютерной техники.

История развития процессоров Intel

Первым процессором компании Intel был 4004. Позже данный разработчик представил пользователям модель 8008. Она отличалась от предыдущей модели тем, что частота работы данного процессора составляла от 600 до 800 килогерц. В нем было более трех тысяч транзисторов. Его активно использовали на всевозможных вычислительных машинах.

В то же самое время в мире стали появляться первые персональные компьютерные устройства и компания Intel приняла решение осуществлять производство процессоров, подходящих для них. Спустя короткий срок времени компания разработала процессор 8080, который в десятки раз был более производительным, чем его предшественник.

Стоимость данной модели процессора была очень высокой по тем меркам. Однако производители полагали, что стоимость является совершенно оправданной для процессора, который обладает высоким уровнем производительности и способен отлично вписаться в любое компьютерное устройство. Он пользовался огромным спросом. Именно благодаря этому доходы компании только росли.

Спустя несколько лет на свет появился компьютер Altair – 8800. Его производителем стала компания MITS. Данная модель персонального компьютерного устройства осуществляла свою деятельность на процессоре от компании Intel модели 8800. Именно благодаря нему многочисленные компании стали осуществлять производство собственных микропроцессоров.

В то же самое время в СССР

В СССР стремительно развивалось производство различных видов вычислительных механизмов. Самый пик развития ЭВМ пришелся на семидесятые годы прошлого столетия. Они могли по своему уровню производительности вполне сравниться со своими зарубежными аналогами.

В 1970 году появился указ от отечественного руководства о том, что были разработаны стандарты совместимости программ и аппаратуры ЭВМ. В это время образовалась новая концепция вычислительной техники. В ее основу легли разработки IBM. Отечественные специалисты использовали технологию IBM 360.

Отечественные технологии, которые были разработаны в советские времена, потеряли свою актуальность. Вместо них стали использовать технологии импортного происхождения. Постепенно отечественная электронная отрасль стала значительно отставать от той, которая существовала на Западе. Все компьютерные устройства, которые были разработаны после восьмидесятых годов прошлого столетия осуществляли свою деятельность при помощи процессоров Zilog или Intel. Россия стала отставать по своим технологиям от Америки почти на десятилетний период.

Эволюция процессоров

В середине семидесятых годов прошлого столетия компания Motorola представила суд пользователе свой первый процессор, который получил название MC6800. Он обладал высоким уровнем производительности. У него была возможность работать с шестнадцати битными числами. Его стоимость составляла столько же, что у процессора Intel 8080. Его потребители не очень то стремились покупать. Именно по этой причине он так и не стал использоваться для персональных компьютеров. Компании пришлось расстаться с четырьмя тысячами сотрудников из-за финансовых трудностей.

В 1975 году бывшими сотрудниками Motorola была создана новая компания под названием MOS Technology. Они разработали процессор MOS Technology 6501. Он по своим характеристикам напоминал разработку Motorola, которая обвинила компанию в плагиате. Позже сотрудники MOS постарались кардинально переделать свое детище и выпустили чип 6502. Его стоимость была гораздо приемлемей, и он начал пользоваться огромным спросом. Его даже использовали для компьютерной техники Apple. Он имел принципиальное отличие от своего предшественника. У него уровень частоты работы был гораздо выше.

По пути уволенных сотрудников Motorola пошли и те, которые потеряли свое место в компании Intel. Они тоже создали компанию и запустили в производство свой процессор Zilog Z80. Он обладал не сильными отличиями от продукта Intel 8080. Он обладал единственной линией питания, и у него была приемлемая стоимость. Он мог функционировать с такими же программами. К тому же производительность данного устройства можно было сделать выше, и при этом не нужно было влияние оперативной памяти. Таким образом, Zilog начал пользоваться огромным спросом среди потребителей.

В России данная модель процессора применялась преимущественно в военной технике, в различных контроллерах и на многих других устройствах. Его даже использовали на разнообразных игровых приставках. В девяностых и восьмидесятых годах он пользовался огромной популярностью среди потребителей российского рынка.

Процессоры в фильме «Терминатор»

Фильм «Терминатор» полон моментов, когда робот сканирует все происходящее перед ним. Перед его глазами образуются странные для зрителей коды. Через несколько лет становится очевидным тот факт, что появлению таких кодов создатели фильма обязаны компании MOS с ее процессором версии 6502. Это заставляет повеселиться разработчиков, которым кажется забавным ситуация, при которой в фильме про далекое будущее используется процессор семидесятых годов.

Эволюция процессоров Intel, Zilog, Motorola

В конце семидесятых годов компания Intel представила свою очередную новинку. Она получила название Intel 8086. Благодаря этому чипу все ближайшие преследователи компании на рынке остались далеко позади. Он обладал высоким уровнем мощности, но это дало ему возможности стать популярным. В нем использовалась 16 разрядная шина, которая обладал высоким уровнем стоимости. Для этого процессора необходимо было использовать специальные микросхемы и переделывать материнскую плату.

Затем компания выпустила свой более успешный продукт Intel 8088. В нем имелось более тридцати тысяч транзисторов.

Компания Motorola в то же время выпустила свой продукт MC68000. Он был одним из самых мощных на то время. Для его использования необходимо было иметь специальные микросхемы. Однако он все равно пользовался большим спросом среди потребителей. Он предлагал пользователям огромные возможности для его использования.

В это же время компания Zilog тоже представила пользователям свою новую разработку. Она создала процессор Z8000. Данная новинка до сих пор вызывает большое количество споров. По своим техническим параметрам она была приемлемой и ее стоимость была низкой. Однако не многие пользователи хотели использовать ее на своих компьютерных устройствах.

Процессоры нового поколения от компании Intel

В начале 1993 года компания Intel представила свой процессор P5. Сегодня он известен под названием Pentium. Компании удалось усовершенствовать технологии, которые она раньше использовала для создания своих продуктов. Теперь их новинка обладала способностью справляться сразу с двумя задачами одновременно. Пропускная разрядность шины стала больше практически в два раза. Однако пользоваться данным процессором пользователи в полной мере не имели возможности, потому что для него необходимо было иметь специальную материнскую плату. Однако после выхода следующей модели процессора Pentium, ситуация стала совершенно другой.

Именно благодаря высоким технологиям чипы от производителя Intel стали пользоваться огромной популярностью у потребителей. Они занимали длительное время первые места в мире.

Недорогие разработки Intel

Для того чтобы в полной мере соперничать с компанией AMD в области доступных по цене процессоров разработчики Intel приняли решение не уменьшать стоимость своих товаров, а стали создавать не очень мощные процессоры, которые в скором времени стали называться Celeron. В 1998 году появилась первая такая маломощная модель процессора Celeron, работающая на ядре процессора Pentium второго поколения. Она не отличалась высоки уровнем производительности. Однако она вполне могла работать с технологическими новинками.

История процессоров Intel | Первенец – Intel 4004

Свой первый микропроцессор Intel продала в 1971 году. Это был 4-битный чип с кодовым названием 4004. Он предназначался для совместной работы с тремя другими микрочипами, ПЗУ 4001, ОЗУ 4002 и сдвиговым регистром 4003. 4004 выполнял непосредственно вычисления, а остальные компоненты имели критическое значение для работы процессора. Чипы 4004 главным образом использовались в калькуляторах и прочих подобных устройствах, и не предназначались для компьютеров. Его максимальная тактовая частота составляла 740 кГц.

За 4004 последовал похожий процессор под названием 4040, который, по сути, представлял улучшенную версию 4004 с расширенной системой команд и более высокой производительностью.

История процессоров Intel | 8008 и 8080

С помощью 4004 Intel заявила о себе на рынке микропроцессоров, и чтобы извлечь выгоду из ситуации представила новую серию 8-битных процессоров. Чипы 8008 появились в 1972 году, затем в 1974 году появились процессоры 8080, а в 1975 году – чипы 8085. Хотя 8008 является первым 8-битным микропроцессоров Intel, он был не так известен, как его предшественник или преемник – модель 8080. Благодаря возможности обрабатывать данные 8-битными блоками 8008 был быстрее, чем 4004, но имел довольно скромную тактовую частоту 200-800 кГц и не особо привлекал внимание проектировщиков систем. 8008 производился по 10-микрометровой технологии.

Intel 8080 оказался намного более успешным. Архитектурный дизайн чипов 8008 был изменен ввиду добавления новых инструкций и перехода к 6-микрометровым транзисторам. Это позволило Intel более чем вдвое повысить тактовые частоты, и самые быстрые процессоры 8080 в 1974 году работали при частоте 2 МГц. ЦП 8080 использовались в бесчисленном множестве устройств, в связи с чем несколько разработчиков программного обеспечения, например, недавно сформированная Microsoft, сосредоточились на программном обеспечении для процессоров Intel.

В конечном счете, появившиеся позже микрочипы 8086 имели общую архитектуру с 8080, чтобы сохранить обратную совместимость с ПО, написанным для них. В результате ключевые аппаратные блоки процессоров 8080 присутствовали во всех когда-либо произведенных процессорах на базе x86. Программное обеспечение для 8080 технически также может работать на любом процессоре с архитектурой x86.

Процессоры 8085, по сути, представляли удешевленный вариант 8080 с повышенной тактовой частой. Они были очень успешны, хотя оставили меньший след в истории.

История процессоров Intel | 8086: начало эры x86

Первым 16-битным процессором Intel был 8086. Он имел существенно большую производительность по сравнению с 8080. Кроме повышенной тактовой частоты процессор обладал 16-разрядной шиной данных и аппаратными исполнительными блоками, позволяющими 8086 одновременно выполнять две восьмибитные инструкции. Кроме того процессор мог выполнять более сложные 16-битные операции, но основная масса программ того времени была разработана для 8-битных процессоров, поэтому поддержка 16-битных операций была не так актуальна, как многозадачность процессора. Разрядность адресной шины была расширена до 20-бит, что дало процессору 8086 доступ к 1 Мбайт памяти и увеличило производительность.

8086 также стал первым процессором на архитектуре x86. Он использовал первую версию набора команд x86, на которой базируются почти все процессоры AMD и Intel с момента появления этого чипа.

Примерно в то же время Intel выпускала чип 8088. Он был построен на базе 8086, но у него была отключена половина адресной шины, и он ограничивался исполнением 8-битных операций. Тем не менее, он имел доступ к 1 Мбайт ОЗУ и работал при более высоких частотах, поэтому был быстрее предыдущих 8-битных процессоров Intel.

История процессоров Intel | 80186 и 80188

После 8086 Intel представила несколько других процессоров, все они использовали схожую 16-битную архитектуру. Первым был чип 80186. Он разрабатывался с целью упрощения проектирования готовых систем. Intel переместила некоторые аппаратные элементы, которые обычно располагались на системной плате, в ЦП, включая генератор тактовых импульсов, контроллер прерываний и таймер. Благодаря интеграции этих компонентов в ЦП 80186 стал во много раз быстрее, чем 8086. Intel также увеличила тактовую частоту чипа, чтобы еще больше повысить производительность.

Процессор 80188 также имел ряд аппаратных компонентов, интегрированных в чип, но обходился 8-битной шиной данных, как 8088, и предлагался в качестве бюджетного решения.

История процессоров Intel | 80286: больше памяти, больше производительности

После выхода 80186 в том же году появился 80286. Он имел почти идентичные характеристики, за исключением расширенной до 24-бит адресной шины, которая, в так называемом защищенном режиме работы процессора, позволяла ему работать с оперативной памятью объемом до 16 Мбайт.

История процессоров Intel | iAPX 432

iAPX 432 был ранней попыткой Intel уйти от архитектуры x86 в совершенно другую сторону. По расчетам Intel iAPX 432 должен быть в несколько раз быстрее, чем другие решения компании. Но, в конечном счете, процессор потерпел неудачу из-за существенных просчетов в архитектуре. Хотя процессоры x86 считались относительно сложными, iAPx 432 поднял сложность CISC на совершенно новый уровень. Конфигурация процессора была довольно громоздкой, что вынудило Intel выпускать ЦП на двух отдельных кристаллах. Процессор также был рассчитан на высокие нагрузки и не мог хорошо работать в условиях недостатка пропускной способности шин или поступления данных. iAPX 432 смог обогнать 8080 и 8086, но его быстро затмили более новые процессоры на архитектуре x86, и в итоге от него отказались.

История процессоров Intel | i960: первый RISC-процессор Intel

В 1984 Intel создала свой первый RISC-процессор. Он не являлся прямым конкурентом процессорам на базе x86, поскольку предназначался для безопасных встраиваемых решений. В этих чипах использовалась 32-битная суперскалярная архитектура, в которой применялись концепция дизайна Berkeley RISC. Первые процессоры i960 имели относительно низкие тактовые частоты (младшая модель работала на 10 МГц), но со временем архитектура была улучшена и переведена на более тонкие техпроцессы, что позволило поднять частоту до 100 МГц. Также они поддерживали 4 Гбайт защищенной памяти.

i960 широко использовался в военных системах а также в корпоративном сегменте.

История процессоров Intel | 80386: переход x86 на 32-бита

Первым 32-битным процессором на архитектуре x86 от Intel стал 80386, который появился в 1985 году. Его ключевым преимуществом являлась 32-битная адресная шина, которая позволяла адресовать до 4 Гбайт системной памяти. Хотя в те времени столько памяти практически никто не использовал, ограничения ОЗУ часто вредили производительности предшествующих процессоров x86 и конкурирующих ЦП. В отличие от современных ЦП, на момент появления 80386 увеличение объема ОЗУ почти всегда означало увеличение производительности. Также Intel реализовала ряд архитектурных усовершенствований, которые помогали повысить производительность выше уровня 80286, даже когда обе системы использовали одинаковый объем ОЗУ.

Чтобы добавить в продуктовую линейку более доступные модели, Intel представила 80386SX. Этот процессор был практически идентичен 32-битному 80386, но ограничивался 16-битной шиной данных и поддерживал работу с ОЗУ объемом лишь до 16 Мбайт.

История процессоров Intel | i860

В 1989 году Intel предприняла еще одну попытку уйти от процессоров x86. Она создала новый ЦП с архитектурой RISC под названием i860. В отличие от i960 этот ЦП разрабатывался как модель с высокой производительностью для рынка настольных ПК, но процессорный дизайн имел некоторые недостатки. Главный из них заключался в том, что для достижения высокой производительности процессор полностью полагался на программные компиляторы, которые должны были размещать инструкции в порядке их выполнения в момент создания исполняемого файла. Это помогло Intel сохранить размер кристалла и уменьшить сложность чипа i860, но при компиляции программ было практически невозможно корректно расположить каждую инструкцию с начала и до конца. Это вынуждало ЦП тратить больше времени на обработку данных, что резко снижало его производительность.

История процессоров Intel | 80486: интеграция FPU

Процессор 80486 стал следующим большим шагом Intel с точки зрения производительности. Ключом к успеху являлась более плотная интеграция компонентов в ЦП. 80486 был первым процессором x86 с кэшем L1 (первого уровня). Первые образцы 80486 имели на кристалле 8 Кбайт кэш-памяти и изготавливались с применением техпроцесса 1000 нм. Но с переходом на 600 нм объем кэша L1 увеличился до 16 Кбайт.

Intel также включила в ЦП блок FPU, который до этого являлся отдельным функциональным блоком обработки данных. Переместив эти компоненты в центральный процессор, Intel заметно снизила задержку между ними. Чтобы увеличить пропускную способность процессоры 80486 также использовали более быстрый интерфейс FSB. Для повышения скорости обработки внешних данных было произведено множество усовершенствований в ядре и других компонентах. Эти изменения значительно подняли производительность процессоров 80486, которые в разы обгоняли старые 80386.

Первые процессоры 80486 достигали частоты 50 МГц, а более поздние модели, произведенные по техпроцессу 600 нм, могли работать на частоте до 100 МГц. Для покупателей с меньшим бюджетом Intel выпускала версию 80486SX, в которой был заблокирован блок FPU.

История процессоров Intel | P5: первый процессор Pentium

Pentium появился в 1993 году и был первым процессором x86 Intel, который не следовал системе нумерации 80x86. Pentium использовал архитектуру P5 – первую суперскалярную микроархитектуру x86 Intel. Хотя Pentium в целом был быстрее 80486, его главной особенностью был существенно улучшенный блок FPU. FPU оригинального Pentium был более чем в десять раз быстрее старого блока в 80486. Значение этого усовершенствования лишь усилилось, когда Intel выпустила Pentium MMX. В плане микроархитектуры этот процессор идентичен первому Pentium, но он поддерживал набор команд Intel MMX SIMD, который мог значительно повышать скорость отдельных операций.

По сравнению с 80486 Intel увеличила в новых процессорах Pentium объема кэша L1. Первые модели Pentium имели 16 Кбайт кэша первого уровня, а Pentium MMX получил уже 32 Кбайт. Естественно, эти чипы работали при более высоких тактовых частотах. Первые процессоры Pentium использовали транзисторы с техпроцессом 800 нм и достигали только 60 МГц, но последующие версии, созданные с использованием производственного процесса Intel 250 нм, достигали уже 300 МГц (ядро Tillamook).

История процессоров Intel | P6: Pentium Pro

Вскоре после первого Pentium Intel планировала выпустить Pentium Pro, основанный на архитектуре P6, но столкнулась с техническими трудностями. Pentium Pro выполнял 32-битные операции значительно быстрее оригинального Pentium благодаря внеочередному исполнению команд. Эти процессоры имели сильно переработанную внутреннюю архитектуру, которая декодировала инструкции в микрооперации, которые выполнялись на модулях общего назначения. В связи с дополнительными аппаратными средствами декодирования Pentium Pro также использовал значительно расширенный 14-уровневый конвейер.

Поскольку первые процессоры Pentium Pro были предназначены для рынка серверов, Intel снова расширила адресную шину до 36-бит и добавила технологию PAE, позволяющую адресовать до 64 Гбайт ОЗУ. Это гораздо больше, чем было нужно среднему пользователю, но возможность поддержки большого объема ОЗУ была крайне важна для заказчиков серверов.

Также была переработана система кэш-памяти процессора. Кэш L1 был ограничен двумя сегментами по 8 Кбайт, один для инструкций и один для данных. Чтобы восполнить дефицит 16 Кбайт памяти по сравнению с Pentium MMX, Intel добавила от 256 Кбайт до 1 Мбайт кэша L2 на отдельной микросхеме, присоединенной к корпусу ЦП. Она соединялась с ЦП с помощью внутренней шины передачи данных (BSB).

Изначально Intel планировала продавать Pentium Pro простым пользователям, но, в конечном счете, ограничила его выпуск моделями для серверных систем. Pentium Pro имел несколько революционных функций, но продолжал конкурировать с Pentium и Pentium MMX в плане производительности. Два более старых процессора Pentium были значительно быстрее при выполнении 16-битных операций, а в то время 16-битное ПО было преобладающим. Процессору также нахватало поддержки набора команд MMX, в результате Pentium MMX обгонял Pentium Pro в оптимизированных под MMX программах.

У Pentium Pro был шанс удержаться на потребительском рынке, но он был довольно дорогим в производстве из-за отдельной микросхемы, содержащей кэш L2. Самый быстрый процессор Pentium Pro достигал тактовой частоты 200 МГц и производился по техпроцессам 500 и 350 нм.

История процессоров Intel | P6: Pentium II

Intel не отступилась от архитектуры P6 и в 1997 году представила Pentium II, в которым были исправлены почти все недостатки Pentium Pro. Лежащая в основе архитектура была похожа на Pentium Pro. Он также использовал 14-уровневый конвейер и имел некоторые улучшения ядра, повышающие скорость выполнения инструкций. Объем кэша L1 вырос – 16 Кбайт для данных плюс 16 Кбайт для инструкций.

Для снижения стоимости производства Intel также перешла к более дешевым чипам кэш-памяти, присоединенным к более крупному корпусу процессора. Это был эффективный способ сделать Pentium II дешевле, но модули памяти не могли работать на максимальной скорости ЦП. В результате частота работы кэша L2 составляла лишь половину от процессорной, но для ранних моделей ЦП этого было достаточно, чтобы увеличить производительность.

Intel также добавила набор команд MMX. Ядра ЦП в Pentium II под кодовым названием "Klamath" и "Deschutes" также продавалась под брендами Xeon и Pentium II Overdrive, ориентированными на сервера. Модели с самой высокой производительностью имели 512 Кбайт кэша L2 и тактовую частоту до 450 МГц.

История процессоров Intel | P6: Pentium III и схватка за 1 ГГц

После Pentium II Intel планировала выпустить процессор, основанный на архитектуре Netburst, но она была еще не готова. Поэтому в Pentium III компания снова использовала архитектуру P6.

Первый процессор Pentium III носил кодовое имя "Katmai" и был очень похож на Pentium II: он использовал упрощенный кэш L2, работающий лишь на половине скорости ЦП. Базовая архитектура получила существенные изменения, в частности, несколько частей 14-уровневого конвейера были объединены между собой до 10 ступеней. Благодаря обновленному конвейеру и увеличению тактовой частоты первые процессоры Pentium III, как правило, немного обгоняли Pentium II.

Katmai производился по технологии 250 нм. Однако, после перехода на производственный процесс 180 нм, Intel смогла значительно увеличить производительность Pentium III. В обновленной версии под кодовым названием "Coppermine" кэш L2 был перемещен в ЦП, а его объем был снижена наполовину (до 256 Кбайт). Но поскольку он мог работать на частоте процессора, уровень производительности все равно повысился.

Coppermine участвовал в гонке с AMD Athlon за частотой 1 ГГц и преуспел. Позднее Intel попыталась выпустить модель процессора 1,13 ГГц, но в конечном счете она была отозвана после того, как доктор Томас Пабст из Tom"s Hardware обнаружил нестабильности в его работе . В итоге чип с частотой 1 ГГц остался самым быстрым процессором Pentium III на базе Coppermine.

Последняя версия ядра Pentium III называлась "Tualatin". При ее создании использовался техпроцесс 130 нм, который позволил добиться тактовой частоты 1,4 ГГц. Кэш L2 был увеличен до 512 Кбайт, что также позволило немного повысить производительность.

История процессоров Intel | P5 и P6: Celeron и Xeon

Вместе с Pentium II Intel также представила линейки процессоров Celeron и Xeon. Они использовали ядро Pentium II или Pentium III, но с разным объемом кэш-памяти. У первых моделей процессоров под брендом Celeron, основанных на базе Pentium II, вообще не было кэша L2, и производительность была ужасной. Более поздние модели на базе Pentium III имели половину от его объема кэша L2. Таким образом мы получили процессоры Celeron, которые использовали ядро Coppermine и имели только 128 Кбайт кэша L2, а более поздние модели, на базе Tualatin уже 256 Кбайт.

Версии с половиной кэша также называли Coppermine-128 и Tualatin-256. Частота этих процессоров была сопоставима с Pentium III и позволяла конкурировать с процессорами AMD Duron. Microsoft использовала процессор Celeron Coppermine-128 с частотой 733 МГц в игровой консоли Xbox.

Первые процессоры Xeon тоже были основаны на Pentium II, но имели больше кэша второго уровня. У моделей начального уровня его объем составлял 512 Кбайт, тогда как у старших собратьев могло быть до 2 Мбайт.

История процессоров Intel | Netburst: премьера

Прежде чем обсуждать архитектуру Intel Netburst и Pentium 4, важно понимать, в чем преимущества и недостатки ее длинного конвейера. Под понятием конвейера подразумевается перемещение инструкций через ядро. На каждом этапе конвейера выполняется множество задач, но иногда может выполняться только одна единственная функция. Конвейер можно увеличить путем добавлением новых аппаратных блоков или разделением одного этапа на несколько. А также можно уменьшить за счет удаления аппаратных блоков или объединения нескольких этапов обработки в один.

Длина или глубина конвейера имеет прямое влияние на задержку, IPC, тактовую частоту и пропускную способность. Более длинные конвейеры обычно требуют большей пропускной способности от других подсистем, и если конвейер постоянно получает необходимый объем данных, то каждый этап конвейера не будет простаивать вхолостую. Также процессоры с длинными конвейерами обычно могут работать при более высоких тактовых частотах.

Недостатком длинного конвейера является повышенная задержка исполнения, поскольку данные, проходящие через конвейер, вынуждены «останавливаться» на каждом этапе на определенное число тактов. Кроме того, процессоры, имеющие длинный конвейер, могут иметь более низкий показатель IPC, поэтому для повышения скорости работы они используют более высокие тактовые частоты. Со временем процессоры, использующие комбинированный подход, доказали свою эффективность без существенных недостатков.

История процессоров Intel | Netburst: Pentium 4 Willamette и Northwood

В 2000 году архитектура Intel Netburst, наконец, была готова и увидела свет в процессорах Pentium 4, доминировав в течение последующих шести лет. Первая версия ядра называлась "Willamette", под которой Netburst и Pentium 4 просуществовали два года. Однако это было трудное время для Intel, и новый процессор с трудом обгонял Pentium III. Микроархитектура Netburst позволяла использовать более высокие частоты, и процессоры на базе Willamette смогли достичь 2 ГГц, но в некоторых задачах Pentium III с частотой 1,4 ГГц оказывался быстрее. В этот период процессоры AMD Athlon имели большее преимущество в производительности.

Проблема Willamette состояла в том, что Intel расширила конвейер до 20 этапов и планировала побить планку частоты 2 ГГц, но из-за ограничений, накладываемых энергопотреблением и тепловыделением, она не смогла достигнуть поставленных целей. Ситуация улучшилась с появлением микроархитектуры Intel "Northwood" и использованием нового техпроцесса 130 нм, который позволил увеличить тактовую частоту до 3,2 ГГц и удвоить объем кэша L2 с 256 Кбайт до 512 Кбайт. Впрочем, проблемы с потребляемой мощностью и тепловыделением архитектуры Netburst никуда не делись. Однако производительность Northwood была значительно выше, и он мог конкурировать с новыми чипами AMD.

В процессорах класса high-end Intel внедрила технологию Hyper-Threading, увеличивающую эффективность использования ресурсов ядра в условиях многозадачности. Польза от Hyper-Threading в чипах Northwood была не так велика, как в современных процессорах Core i7 – прирост производительности составлял несколько процентов.

Ядра Willamette и Northwood также использовались в процессорах серии Celeron и Xeon. Как и в предыдущих поколениях ЦП Celeron и Xeon, Intel соответственно уменьшала и увеличивала размер кэша второго уровня, чтобы дифференцировать их по производительности.

История процессоров Intel | P6: Pentium-M

Микроархитектура Netburst разрабатывалась для высокопроизводительных процессоров Intel, поэтому она была довольно энергоемкой и не подходила для мобильных систем. Поэтому в 2003 году Intel создала свою первую архитектуру, разработанную исключительно для ноутбуков. Процессоры Pentium-M базировались на архитектуре P6, но с более длинными 12-14-уровневыми конвейерами. Кроме того в ней впервые был реализован конвейер переменной длины – если необходимая для команды информация уже была загружена в кэш, инструкции могли выполняться после прохождения 12 этапов. В противном случае им нужно было пройти еще два дополнительных этапа, чтобы загрузить данные.

Первый из таких процессоров выпускался по техпроцессу 130 нм и содержал 1 Мбайт кэш-памяти L2. Он достигал частоты 1,8 ГГц при потребляемой мощности всего 24,5 Вт. Более поздняя версия под именем "Dothan" с 90-нанометровыми транзисторами была выпущена в 2004 году. Переход на более тонкий производственный процесс позволял Intel увеличить кэш второго уровня L2 до 2 Мбайт, который в сочетании с некоторыми улучшениями ядра заметно увеличивал производительность из расчета на такт. Кроме того максимальная частота ЦП поднялась до 2,27 ГГц при небольшом повышении энергопотребления до 27 Вт.

Архитектура процессоров Pentium-M впоследствии использовалась в мобильных чипах Stealey A100, на замену которых пришли процессоры Intel Atom.

История процессоров Intel | Netburst: Prescott

Ядро Northwood с архитектурой Netburst продержалось на рынке с 2002 по 2004 год, после чего Intel представила ядро Prescott с многочисленными улучшениями. При производстве использовался техпроцесс 90 нм, позволивший Intel увеличить кэш L2 до 1 Мбайт. Также Intel представила новый процессорный интерфейс LGA 775, который обладал поддержкой памяти DDR2 и расширенной в четыре раза шиной FSB. Благодаря этим изменениям Prescott обладал большей пропускной способностью, чем Northwood, а это было необходимо для повышения производительности Netburst. Кроме того на базе Prescott Intel показала первый 64-битный процессор x86, имеющий доступ к ОЗУ большего объема.

Intel рассчитывала, что процессоры Prescott станут самыми успешными среди чипов на базе архитектуры Netburst, но вместо этого они потерпели фиаско. Intel снова расширила конвейер выполнения команд, на сей раз до 31 этапа. В компании надеялись, что увеличения тактовых частот будет достаточно, чтобы компенсировать наличие более длинного конвейера, но им удалось достичь только 3,8 ГГц. Процессоры Prescott были слишком горячими и потребляли слишком много энергии. В Intel рассчитывали, что переход на техпроцесс 90 нм устранит эту проблему, однако повышенная плотность транзисторов лишь усложнила охлаждение процессоров. Добиться более высокой частоты было невозможно, и изменения ядра Prescott негативно сказались на общей производительности.

Даже со всеми улучшениями и дополнительным кэшем Prescott, в лучшем случае, выходил на один уровень с Northwood по части произвольности на такт. В то же время процессоры AMD K8 также осуществили переход на более тонкий техпроцесс, что позволило повысить их частоты. AMD некоторое время доминировала на рынке ЦП для настольных компьютеров.

История процессоров Intel | Netburst: Pentium D

В 2005 году два основных производителя соревновались за первенство в анонсе двухъядерного процессора для потребительского рынка. AMD первой анонсировала двухъядерный Athlon 64, но он долго отсутствовал в продаже. Intel стремилась обойти AMD, используя многоядерный модуль (MCM), содержащий два ядра Prescott. Компания окрестила свой двухъядерный процессор Pentium D, а первая модель носила кодовое имя "Smithfield".

Однако Pentium D подвергся критике, поскольку имел те же проблемы, что и оригинальные чипы Prescott. Тепловыделение и энергопотребление двух ядер на базе Netburst ограничивали таковую частоту на уровне 3,2 ГГц (в лучшем случае). И поскольку эффективность архитектуры сильно зависела от загруженности конвейера и скорости поступления данных, показатель IPC у Smithfield заметно снизился, поскольку пропускная способность канала делилась между двумя ядрами. Кроме того физическая реализация двухъядерного процессора не отличалась изящностью (по сути это два кристалла под одной крышкой). И два ядра на одном кристалле в ЦП AMD считались более продвинутым решением.

После Smithfield появился Presler, который был переведен на 65 нм техпроцесс. Многоядерный модуль содержал два кристалла Ceder Mill. Это помогло уменьшить тепловыделение и потребляемую мощность процессора, а также поднять таковую частоту до 3,8 ГГц.

Существовало две основных версии Presler. Первая имела более высокий тепловой пакет 125 Вт, а более поздняя модель ограничивалась значением 95 Вт. Благодаря уменьшенному размеру кристалла Intel также смогла удвоить объема кэша L2, в итоге каждый кристалл имел по 2 Мбайт памяти. Некоторые модели для энтузиастов также поддерживали технологию Hyper-Threading, позволяющую ЦП выполнять задачи в четыре потока одновременно.

Все процессоры Pentium D поддерживали 64-битное ПО и ОЗУ объемом более 4 Гбайт.

Во второй части: процессоры Core 2 Duo, Core i3, i5, i7 вплоть до Skylake.

Вступление

Сегодня мир без компьютера - это немыслимое явление. А ведь мало кто задумывается об устройстве этих "существ". И уж точно никто не знает, насколько умными стали данные аппараты за последние 50 лет. Для многих людей Искусственный интеллект и компьютер, который стоит на вашем столе, - это одно и тоже. Но как люди просвещенные, мы знаем, что до разума человека, или даже собаки любой, даже самой умной, машине еще далеко.

А ведь отличие все-таки есть: в мозге живых существ идет параллельная обработка видео, звука, вкуса, ощущений, и т. д., не говоря уже о такой элементарной вещи, как мыслительный процесс, который сопровождает многих от рождения и до самой смерти.

Сегодня любой прорыв в информационных технологиях встречается как нечто особо выдающееся. Люди хотят создать себе младшего брата, который, если еще не думает, то хотя бы соображает быстрее их. Понятно, что никакими гигагерцами не измеришь уникум человеческого мозга, но никто и не измеряет, и мы проведем краткую экскурсию в недалекое прошлое и, конечно, в непонятное настоящее развития главной части компьютера, его мозга, его сердца - его центрального процессора.

Экскурс в историю микропроцессоров

Самые первые электронно-вычислительные машины (ЭВМ) появились в 60-е годы ХХ столетия. Сначала эти машины были громоздки, и они были доступны только исследовательским центрам с огромным бюджетом. Компьютеры же, участвуя в современном сверхбыстром научно-техническом прогрессе, становятся все меньше и меньше. В настоящее время это машины, имеющие размеры дипломата и выполняющие любые мыслимые и не мыслимые операции.

Но обратимся к историческим справкам. С 1978 года был запущен в серийное производство один из первых процессоров из серии i86. Именно развитие этой серии и привело к появлению доступных и небольших по размером персональных компьютеров, так популярных в наше время.

Мы остановимся на IBM-совместимых компьютерах. Названы они так по имени фирмы производителя.

Мы остановимся на этих компьютерах лишь потому, что, к примеру, компьютеры Apple Computers можно назвать скорее специализированными, чем широко распространенными.

В1978 году фирма Intel совместно с фирмой IBM разрабатывает и выпускает в серию первые из процессоров семейства i86. Если присмотреться, то можно увидеть, что с фирмой Intel к ряду процессоров присоединяются и другие фирмы, которые производят свои устройства по зарекомендовавшей себя технологии.

Важно то, что почти с самого начала эти фирмы выливаются в конкурирующие между собой предприятия, что и приводит к резким темпам развития, снижениям цен и соответственно можно считать этот факт положительным для потребителя.

AMD - это отпочковавшийся от Intel младший брат, но пути эти фирм расходятся по всем параметрам. Сейчас наблюдается явное противостояние двух сильных конкурентов, у которых есть свои технологии, а так же сильные и слабые стороны. AMD по праву занимает свою долю на рынке процессоров, даже несмотря на то, что ее подход к развитию технологий скорее эволюционный, чем революционный. Поэтому не надо считать, что AMD просто клонирует Intel Pentium - это не так.

Сегодня многие эксперты говорят о том, что фирма Ciryx сдала позиции почти все свои позиции, хотя по-прежнему выпускает современные и недорогие процессоры, но уже и не стремится занять, хотя бы номинально, лидерство. Данную фирму всегда отличало то, что она самостоятельно разрабатывала процессоры, но не все модели были столь удачны, как у конкурентов.

Нельзя утверждать, что компания Intel с Pentium по Pentium 4 совершила что-то сверхреволюционное в области своих разработок. Однако считается, что эта фирма идет на шаг впереди своего младшего брата.

Это заблуждение было развеяно в 2000 – 2001 годах, когда из-за неправильной политики в маркетинге Intel не смогла продвинуть свой новый процессор Pentium 4 из-за большой стоимости не столько самого чипа, сколько периферии, в частности памяти RDIMM.

Компания AMD пользуется этой ситуацией и выходит в свет с процессором Athlon, а чуть погодя - Athlon XP, который по характеристикам даже превосходил Pentium 4, а по цене был гораздо ниже.

В прессе про процессоры AMD заговорили не просто как про дешевую альтернативу, но и как про более выгодное вложение средств, по крайней мере, для домашних пользователей.

Но Intel не сдается и, несмотря на провал в маркетинге, мы понимаем, что ее процессор был куда более технологически совершенен. Что мы и видим в ситуации на рынке, AMD опять входит в роль, к которой все привыкли в роль дешевой альтернативы более дорогим, но и более быстрым и современным Pentium.

Для пользователей персональных компьютеров мы скажем, что приобретение машины с процессором Pentium - это рискованное вложение средств. Мода на компьютерном рынке меняются так стремительно, что за ней почти невозможно уследить: 75, 90, 100, 120, 133, 150, 166, 200 МГц… Закончится ли когда-нибудь эта бешеная гонка? Решением может стать MMX (Multimedia eXtension - "мультимедиа — расширение") - технология, которая может превратить "простой" Pentium ПК в мощную мультимедийную систему.

Как известно, на кристалле процессора Pentium интегрирован математический сопроцессор. Этот функциональный блок, который отвечает за "перемалывание чисел", но… а практике, подобные возможности требуются все же достаточно редко, их используют в основном системы САПР и некоторые программы, решающие чисто вычислительные задачи. У большинства пользователей этот блок просто простаивает.

Создавая технологию MMX, фирма Intel стремилась решить две задачи: во-первых, задействовать неиспользуемые возможности, а во-вторых, увеличить производительность ЦП при выполнении типичных мультимедиа-программ. С этой целью в систему команд процессора были добавлены дополнительные инструкции (всего их 57) и дополнительные типы данных, а регистры блока вычислений с плавающей запятой выполняют функции рабочих регистров.

Дополнительные машинные команды предназначены для таких операций, как быстрое преобразование Фурье (функция, используемая в видеокодеках), которые зачастую выполняются специальными аппаратными средствами.

"Процессоры, использующие технологию MMX, совместимы с большинством прикладных программ, ведь для "старого" ПО регистры MMX выглядят точно так же, как обычные регистры математического сопроцессора. Однако встречаются и исключения. Например, прикладная программа может одновременно обращаться только к одному блоку - либо вычислений с плавающей запятой, либо MMX. В ином случае результат, как правило, не определен, и нередко происходит аварийное завершение прикладной программы.

Технология MMX - это генеральное направление развития архитектуры процессоров Intel на 1997 г. В первую очередь ее преимущества смогут оценить конечные пользователи - мультимедиа-компьютеры станут заметно мощнее и дешевле. Официальное объявление новой технологии запланировано на начало октября 1996 года, однако процессор, в котором реализована технология MMX, уже существует. Он известен под кодовым названием P55C, и Intel, видимо, сознательно оттягивает момент его выпуска, давая изготовителям ПК возможность ознакомиться с достоинствами этого ЦП.

Среди компаний, которые предполагают выпустить мультимедиа-ПК с процессором P55C, есть как признанные лидеры компьютерного рынка - Compaq, Dell, Acer, так и молодые, но динамичные фирмы, например, Compulink Research (CLR).

Ожидается, что большинство популярных прикладных программ будут использовать технологию MMX, причем к концу 1997 г. их количество более чем удвоится, и пользователи вновь столкнутся с проблемой выбора. Сегодня имеются три высокопроизводительных процессора - Pentium с тактовой частотой 200 МГц, Pentium Pro с той же тактовой частотой и 200-МГцовый вариант P55C. Результаты испытаний на производительность, которые предоставила фирма CLR, позволяют сделать вывод, что ПК с процессором P55C занимают промежуточное положение в этом ряду. При выполнении типичных задач результаты этого ЦП почти не отличаются от показателей "обычных" моделей Pentium с такой же тактовой частотой. Однако при исполнении фрагментов кода, который был оптимизирован для P55C (на видео-, аудио — и графических тестах), он не уступает процессору Pentium Pro, в зависимости от типа задачи выигрыш в быстродействии достигает от 70% до 400%. Как ожидается, мультимедиа-ПК с процессором P55C будет дешевле аналогичного по функциональным возможностям компьютера.

В статье использованы материалы, предоставленные фирмой CLR".

Кроме технологических решений по увеличению количества инструкций велась работа и по улучшению процесса производства. Ведь транзисторов для обработки информации становилось все больше и больше, и они, в конце концов, просто не помещались на кристалл, что приводило к более совершенным решениям. В настоящее время процессоры Intel выпускаются по техпроцессу с нормой в 0,13 мкм, и на одном квадратном миллиметре кристалла располагается миллионы транзисторов. Intel планирует перейти на 0,09 мкм уже в 2003 году.

Что такое техпроцесс 0,13 мкм

Попробую объяснить, не вдаваясь в технологию. Обычно приведенная цифра означает длину канала КМОП-транзистора. Скорость переключения каскада на КМОП зависит от крутизны ВАХ транзисторов и емкости нагрузки. Крутизна определяется током через транзистор и отношением (ширина канала - W) / (длинна канала - L). Основная емкость в КМОП технологии - емкость затворов транзисторов - пропорциональна площади затвора = ~W * L. Очевидно, что чем меньше длина канала, тем меньше площадь затвора (причем зависимость квадратичная), при том же отношении W/L. Следовательно, можно уменьшить ток, и не потерять быстродействие. А можно уменьшить W/L за счет уменьшения ширины канала и уменьшить размер транзисторов - увеличить количество элементов на кристалле (хотя в современных технологиях ширина канала, как правило, оптимальна с точки зрения минимизации размера топологического элемента).

Новый процессор от Intel

В конце мая корпорация Intel сообщила о том, что в течение ближайшего месяца производители компьютеров намерены представить первые серверы и рабочие станции на базе процессоров Itanium. Ожидается, что в этом году около 25 компаний выпустят более 35 таких моделей, а сотни поставщиков оборудования и программного обеспечения предложат продукты, работающие с данными системами. IDC прогнозирует, что в этом году будет продано 26 тыс. систем на базе Itanium, а к 2004 году их число возрастет до 540 тыс. Иными словами, сообщение Intel означало, что начался промышленный выпуск нового процессора корпорации.

Системы на основе процессоров Itanium будут поддерживаться четырьмя ОС, включая платформу Microsoft Windows (64-разрядную версию для рабочих станций - 64-bit Edition и 64-разрядную версию для серверов - 64-bit Windows Advanced Server Limited Edition 2002); HP-UX 11i v1.5 компании Hewlett-Packard, AIX-5L корпорации IBM и Linux. 64-разрядные версии последней планируют поставлять компании Caldera International, Red Hat, SuSE Linux и Turbolinux. Уже анонсировано более 500 приложений, которые предполагается портировать для архитектуры Itanium.

Буквально в день объявления Itanium о выпуске систем на его основе заявили несколько крупных компаний, в числе которых Bull, Compaq, Dell, Fujitsu-Siemens, Hewlett-Packard, IBM, NEC, SGI и Unisys. В частности, IBM анонсировала рабочую станцию IntelliStation Z Pro и сервер X380, Dell - четырехпроцессорный сервер PowerEdge 7150 и рабочую станцию Precision Workstation 730, Bull - 4 — и 16-процессорные модели серверов Escala IL. Особо хотелось бы отметить системы, представленные Hewlett-Packard: двухпроцессорную рабочую станцию HP Workstation i2000 и 4 — и 16-процессорные серверы HP Server rx4610 и HP Server rx9610. В настоящее время HP-UX - единственная 64-разрядная система UNIX, обеспечивающая переносимость на уровне двоичного кода программных приложений заказчиков при переходе с RISC (Reduced Instruction Set Computing) на архитектуру Itanium. HP-UX оптимизирована с тем, чтобы обеспечить высокий уровень производительности, масштабируемости и надежности. Кроме того, сейчас Hewlett-Packard - единственный производитель компьютеров на платформе RISC, чью технику можно перевести на платформу Itanium без повторной компиляции приложений и ПО. А дело здесь в следующем.

Путь процессоров Itanium к потребителю в Intel обычно делят на шесть этапов: завоевание поддержки отрасли, выпуск прототипов для партнеров, выпуск прототипов для разработчиков, выпуск пилотных систем, платформы и, наконец, массовое внедрение решений. Известно, что для тестирования и разработки производителям компьютеров и пользователям было поставлено более 6500 систем. Первый этап этого пути датируется ноябрем 1997 года. Однако хотелось бы напомнить, что история Itanium началась значительно раньше

Merced, он же Itanium

Еще в июне 1994г. компании Intel и Hewlett-Packard подписали соглашение о совместной разработке новой 64-разрядной архитектуры, ориентированной на применение в серверах и рабочих станциях. Преимущества микропроцессоров с большей разрядностью очевидны. Они позволяют адресовать больший объем памяти, дают возможность оперировать с большим диапазоном чисел, повышают эффективность параллельных и матричных вычислений и т. д. Заметим, что еще в 1983 г. в Hewlett-Packard было принято решение начать проект объединения различных процессоров и ОС, используемых в трех компьютерных линейках (HP1000, HP3000 и HP9000). Результаты этого решения сегодня хорошо известны: это семейство процессоров PA-RISC (Precision Architecture Reduced Instruction Set Computing) и ОС UP-UX, которые совместно применяются в высокопроизводительных рабочих станциях и Unix-серверах (N-, V-, L — и A-класса). Первый компьютер на базе PA-RISC был представлен еще в 1985 г. Исследования и разработки ведутся в лаборатории микропроцессоров, которая входит в подразделение System VLSI Technology Operation. В 1989 г. в поисках нового, наследующего PA-RISC решения Нewlett-Packard приступила к разработке архитектуры EPIC (Explicitly Parallel Instruction Computing), впоследствии переименованной в WideWorld Architecture, а затем в SuperParallel Processor Architecture (SP-PA). Но в 1993 г., когда эта 64-разрядная архитектура была практически готова, руководители проекта поняли, что компании одной не вынести огромных расходов на разработку и изготовление нового процессора. Тогда в Нewlett-Рackard впервые рассмотрели возможность привлечь к созданию высокопроизводительного процессора другую компанию.

К 1994 г. корпорация Intel, имеющая огромный опыт в области микропроцессоров, испытывала определенные трудности. Продолжавшаяся два года разработка 64-разрядной архитектуры Р7 натолкнулась на серьезные трудности. Впоследствии Intel отказалась от Р7 в пользу EPIC, хотя справедливости ради стоит отметить, что некоторые особенности Р7 реализованы в Itanium.

К предложению HP работать сообща в Intel отнеслись с большим энтузиазмом. Ведь открывалась реальная возможность заполучить масштабируемую ОС корпоративного уровня HP-UX, которую можно будет реализовать на новой платформе. В совместном контракте Нewlett-Рackard пришлось пойти на крупные уступки. Корпорация согласилась на то, что Intel будет принимать все конструктивные решения по новому процессору, даже те, которые затрагивают архитектуру EPIC, разработанную инженерами Нewlett-Рackard. Кстати, новый процессор получил название Merced в честь реки в Калифорнии.

Два года спустя, когда выяснилось, что мощности Merced недостаточно, чтобы при использовании HP-UX обойти архитектуру PA-RISC, в Нewlett-Рackard решили самостоятельно создавать новый процессор на том же фундаменте, что и Merced, но с иной реализацией внутренних функциональных блоков. Когда об этом проекте узнали в Intel, начались переговоры о распространении партнерства, которое первоначально ограничивалось созданием только процессора Merced, на 64-разрядную архитектуру в целом, с тем чтобы включить в соглашение и новый кристалл. Так Merced, в свое время рассматриваемый в качестве потенциального могильщика RISC-архитектуры, превратился в промежуточную ступеньку. Поскольку подписанное соглашение не имело жесткого срока, обе компании без труда расширили свое сотрудничество уже над новым 64-разрядным процессором McKinley (так называется высочайшая гора в Северной Америке). Кстати, первоначально предполагалось, что системы Merced появятся в 1997 или 1998 г. Но скоро только сказка сказывается.

Важность успеха Intel и НР в деле создания мощной 64-разрядной платформы для компьютерной индустрии невозможно переоценить. Свои ставки здесь есть у каждого. Почти все фирмы-производители компьютеров создают новые системы, а все разработчики ОС UNIX планируют перенести свои версии на новую платформу. Аналитики уверены, что Itanium заставит компании, выпускающие серверы и рабочие станции RISC/Unix, пересмотреть свой модельный ряд. Однако на очень широкий выбор компьютеров Itanium рассчитывать не приходится. Процессор разрабатывался слишком долго, к тому же с середины 1999 г. разработка то и дело наталкивалась на препятствия. В результате, большинство компаний сосредоточилось на создании компьютеров на базе McKinley.

Неудивительно, что выпуск Merced неоднократно задерживался, если учесть, что два гиганта индустрии преследовали общую цель, но использовали совершенно разные тактические подходы. Некоторые эксперты тогда утверждали, что компании оказались партнерами поневоле: их свели внешние силы рынка, разрабатываемые изделия и финансовые трудности, которые они решили преодолевать вместе.

Intel рассматривает Itanium в качестве родоначальника нового семейства процессоров, которое будет развиваться в ближайшие 25 лет. За первой моделью с кодовым названием Merced последуют McKinley, Madison, Deerfield и другие новые версии. По официальным данным, шесть моделей подобных кристаллов уже находятся на стадии разработки. Опытные партии процессора McKinley планируется выпустить в конце текущего года, а первые системы на его основе должны появиться в 2002 г. Ожидается, что этот процессор дебютирует с тактовой частотой в 1 ГГц или выше. По имеющейся информации, все 64-разрядные процессоры Intel будут содержать в своем названии слово Itanium, а McKinley, Madison и прочие имена так и останутся кодовыми названиями. Таким образом, скорее всего, официально анонсированы будут Itanium II, Itanium III и т. д.

Только через три года после подписания соглашения, в ноябре 1997 г. Intel и Hewlett-Packard представили архитектуру будущего процессора и планы разработки целого семейства IA-64 (Intel Architecture). Не полагаясь только на собственные ресурсы, в мае 1999 г. Intel объявила о создании инвестиционного фонда, получившего название Intel 64 Fund с капиталом 250 млн. долл. Эти средства должны были быть направлены на инвестиционную поддержку компаний, занимающихся разработкой Интернет-приложений и ПО уровня предприятий. В создании фонда, помимо Intel и Hewlett-Packard, приняли участие 16 компаний и организаций. Среди них не только компьютерные фирмы - Compaq, Dell, SGI, но и Reuters, Ford Motor Company, General Electric, Bank of America. На сегодняшний день более 150 млн. долл. инвестировано более чем в 40 компаний, работающих в сфере инфраструктуры Интернет, электронной торговли, производства и финансов на вертикальных рынках.

Тогда же, в 1997 г., Intel и Hewlett-Packard представили архитектуру и набор команд IA-64. В августе 1999 г. впервые появились опытные образцы процессора, а осенью Intel представила Itanium как коммерческое наименование своего первого 64-разрядного процессора, дотоле носившего рабочее название Merced. Введены были термины "семейство процессоров Itanium" (IPF, Itanium Processor Family) и "архитектура Itanium" (Itanium Architecture). Через год, в октябре 2000 г. появились пилотные образцы систем на основе Itanium. Примерно в то же время прошло второе промышленное тестирование программ и оборудования на платформе Itanium. Приоритетной задачей этого мероприятия было жесткое тестирование платформы перед пилотным выпуском, причем в программу тестирования входила проверка работы в сети и обеспечение телекоммуникаций. На территории Caesar’s Palace площадью 34 тыс. кв. футов, где проходило тестирование, было проложено более 3 миль кабеля, более ста 20-амперных силовых линий, установлены хранилища данных суммарной емкостью более 2 Тбайт. Активно проводились и другие мероприятия, включая широкое распространение ключевой технической информации и средств разработки, а также поставку более 6000 прототипов серверов, как в одно-, так и в многопроцессорной конфигурации. Кроме того, Intel открыла в разных странах мира более 30 центров разработки приложений, где инженеры Intel и разработчики программного и аппаратного обеспечения совместно работали над оптимизацией прикладных программ под системы на основе Itanium.

Особенности архитектуры

По мнению представителей Intel, архитектура процессора Itanium - это самая значительная разработка со времени презентации 386-го процессора в 1985 г. Первые образцы 64-разрядного процессора Intel представляют собой картридж размером примерно 10 х 6 см, который включает в себя кэш-память третьего уровня емкостью 2 либо 4 Мбайт и радиатор. Картридж монтируется в разъем типа Slot и имеет 418 выводов. Процессор имеет трехуровневую иерархию сверхоперативной памяти. Если кэш-память первого и второго уровней интегрирована на кристалле процессора, то микросхемы кэш-памяти третьего уровня расположены на самой плате картриджа. На реализацию процессора с соблюдением проектных норм 0,18 мкм потребовалось около 320 млн. транзисторов, из которых только 25 млн. пришлось на реализацию самого ядра, а остальные - на кэш-память. Самый большой модуль процессора - это блок вычислений с плавающей запятой, он занимает около 10% площади кристалла. Производительность Itanium составляет до 6,4 млрд. операций с плавающей запятой в секунду. Благодаря архитектуре EPIC и 15 исполнительным устройствам процессор может выполнять до 20 операций одновременно. При этом он может непосредственно адресовать до 16 Тбайт памяти при пропускной способности до 2,1 Гбайт/с. В процессоре реализована поддержка всех расширений Intel (технологий MMX, SIMD и симметричной мультипроцессорной обработки), за исключением SSE2.

Одна из самых интересных деталей в плане размещения узлов процессора - это система синхронизации работы узлов. Одновременная передача тактовых импульсов при большой площади процессора представляет сложную задачу для разработчиков, поскольку задержки в распространении импульсов тактового генератора могут вызывать рассинхронизацию узлов. Для этой цели по всей площади кристалла разместили большое число точек распространения тактовых импульсов.

Архитектура Itanium включает такие уникальные средства повышения надежности, как система расширенного самоконтроля EMCA (Enhanced Machine Check Architecture), обеспечивающая обнаружение, коррекцию и протоколирование ошибок, а также поддержку обработки кода ECC (Error Correcting Code) и контроля четности.

Для двух — и четырехпроцессорных систем Intel выпустила специальный набор микросхем Intel 460GX, которые могут включаться каскадно, увеличивая число одновременно используемых процессоров. Поскольку конфигурация таких систем изначально предусматривает объемы оперативной памяти в несколько гигабайт, то в системах Itanium применяются сравнительно недорогие микросхемы памяти типа SDRAM. При этом для увеличения производительности, по словам представителей Intel, используются такие методы, как буферирование, чередование и деление памяти на несколько банков. Набор микросхем реально поддерживает работу с 64 Гбайт памяти при максимальной пропускной способности 4,2 Гбайт/с, хотя 64-разрядная адресация памяти теоретически позволяет обращаться к гораздо большему количеству адресов.

Процессоры Itanium будут работать на тактовой частоте 800 или 733 МГц, а их стоимость в зависимости от объема кэш-памяти составит от 1177 до 4227 долл.

Современные тенденции развития микропроцессоров связаны с выполнением большего числа команд за один такт. Разработчики IA-64 полагают, что добиваться более высокого уровня суперскалярности (распараллеливания) в процессоре можно, только если отказаться от обычных последовательных кодов и ввести параллелизм прямо на уровень системы команд. В этом случае задача распараллеливания ложится не на аппаратуру процессора, а на компилятор. Как уже отмечалось, в основе IA-64 лежит технология EPIC, главная идея которой - введение явного параллелизма. Преимущества такого подхода понятны. В схемотехнических решениях процессоров исчезает сложная логика, отвечающая за внеочередное суперскалярное выполнение команд, и можно отвести больше места на кристалле под кэш-память, файл регистров и исполнительные устройства. Однако, с другой стороны, возникает необходимость разрабатывать сложные и эффективно распараллеливающие компиляторы.

Несомненно, что между технологиями EPIC и VLIW (Very Long Instruction Word) много общего. VLIW обычно рассматривают как статическую суперскалярную архитектуру. Имеется в виду, что распараллеливание кода происходит на этапе компиляции, а не динамически во время исполнения. Иными словами, в машинном коде VLIW присутствует явный параллелизм. В свою очередь, к основным особенностям EPIC относят:

большое количество регистров,

масштабируемость архитектуры до большого количества исполнительных функциональных устройств,

параллелизм в машинном коде,

предсказание ветвлений (предикацию),

спекулятивное выполнение (загрузку по предположению).

Основная особенность EPIC та же, что и у VLIW, - распараллеливанием потока команд занимается компилятор, а не процессор. Достоинства данного подхода заключаются в том, что упрощается архитектура процессора, причем он не тратит время на анализ потока команд. Кроме того, в отличие от процессора, компилятор способен проводить анализ по всей программе, а не по сравнительно небольшому ее участку. Поскольку практически любая программа должна запускаться многократно, выгоднее распараллелить ее один раз (при компиляции), а не каждый раз, когда она исполняется на процессоре.

В архитектуре Itanium насчитывается по 128 64-разрядных целочисленных регистров общего назначения и 80-разрядных регистров вещественной арифметики, а также 64 одноpазpядных пpедикатных pегистpа. Все они доступны для программирования; кроме того, имеется множество недоступных внутренних служебных регистров, используемых самим процессором. 64 одноразрядных регистра используются для организации логики предсказания ветвления и выполнения команд в порядке, отличном от последовательного.

Для достижения явного параллелизма в формат команд IA-64 введены дополнительные разряды маски, которые явно указывают на зависимости между командами. До сих пор задача определения таких зависимостей полностью ложилась на аппаратуру процессора. Здесь же вводится понятие групп команд. Все они независимы, и их следует выдавать на выполнение в разные исполнительные устройства. Разряды маски указывают на зависимости не только внутри нескольких команд, но и между группами команд. По три команды IA-64 объединяются в так называемую связку, имеющую емкость 128 разрядов. Связка содержит три команды и шаблон, в котором указано, какие есть зависимости между командами (например, можно ли с первой командой запустить параллельно вторую или же она должна выполниться только после первой и т. п.).

Заключение

В заключение отметим, что в современных процессорах активно используются методики предсказания ветвлений и спекулятивного выполнения.

Сегодня очень много времени уходит на вычисление ветвей программы, которые впоследствии не используются - и это проблема, которую решает Itanium.

При наличии в программе условного ветвления команды из разных ветвей помечаются разными предикатными регистрами (команды имеют для этого предикатные поля); далее они выполняются совместно, но их результаты не записываются, пока значения предикатных регистров не определены. При вычислении условия ветвления предикатный регистр, соответствующий правильной ветви, устанавливается в 1, а другой - в 0, и перед записью результатов процессор проверяет предикатное поле, записывает результаты только тех команд, предикатное поле которых содержит предикатный разряд, установленный в единицу.

Архитектура Itanium предсказывает и исполняет по предположению. Этот механизм является еще одной особенностью данной технологии и должен снизить простои процессора, связанные с ожиданием выполнения команд загрузки из относительно медленной основной памяти. Компилятор перемещает команды загрузки данных из памяти так, чтобы они выполнились как можно раньше. Следовательно, когда данные из памяти понадобятся какой-либо команде, процессор не будет простаивать.

Командами загрузки в данном случае называются перемещенные таким образом инструкции по предположению; они помечаются особым образом. Перед командой, использующей загружаемые по предположению данные, компилятор вставит команду проверки предположения. При возникновении исключительной ситуации во время загрузки, процессор сгенерирует исключение только тогда, когда встретит команду проверки предположения.

Например, команда загрузки выносится из ветвления, а ветвь, из которой она вынесена, не запускается. В этом случае возникшая исключительная ситуация игнорируется.

Важно отметить тот факт, что с выходом Itanium сравнение процессоров по частоте практически теряет смысл. Придется применять новые методики, учитывающие не только количество реально выполненных за один такт инструкций, но и качество анализа компилятором исполняемой программы, поскольку результирующая производительность будет сильно зависеть от этого (процессор ведь может работать с огромной скоростью, вычисляя ненужные ветви программы).

Процессор Itanium полностью совместим с современными 32-разрядными приложениями, но вряд ли эти программы будут работать на 64-разрядном кристалле быстрее.

Как полагают некоторые специалисты, возможно, придется привыкать и к более медленным темпам работы. В альтернативе то, что новые, специализированные приложения оставят всех позади. Например, уже на этапе опытного производства кристаллов архитектура процессора Itanium продемонстрировала высокое быстродействие алгоритмов защиты информации, интенсивно использующих вычислительные мощности.

Корпорация AMD тоже обнародовала свои планы создания 64-разрядных кристаллов. Она добавила 32 разряда к уже имеющимся 32, и регистры расширились до 64 разрядов, появились команды манипуляции с 64-разрядными данными, да и шина адреса увеличилась до 64 разрядов. В итоге родилась архитектура x86-64. Первоначально подобный процессор был назван Sledgehammer. Команды нового кристалла отличаются от команд процессоров x86 только наличием префикса, указывающего на их разрядность.

Здесь имеются восемь 64-разрядных регистров для операций вещественной арифметики. И это в прибавке к шестнадцати регистрам общего назначения.

Восемь первых регистров Sledgehammer обозначаются названиями, отражающими их x86-происхождение: RAX, RBX, RCX, RDX, RSP, RBP, RSI, RDI.

Восемь младших разрядов RAX фактически эквивалентны регистру A аккумулятору процессора i8080 и регистру AL i8086. Разряды 8 – 15 эквивалентны регистру AH i8086. Если объединить эти два поля, то получится регистр AX i8086. Битовое поле 0 – 31 - полный эквивалент регистра EAX в 32-разрядных 80 x 86.

А вот архитектуру нового процессора дополняют шестнадцать 128-разрядных регистров для хранения операндов SIMD-инструкций.

Итак, корпорацией AMD была обеспечена полная аппаратная поддержка выполнения инструкций x86-32 на уровне ядра. В отличие от процессора Itanium, здесь должна обеспечиваться полноценная реализация 8-, 16 — и 32-разрядных приложений без потери производительности, т. е. на одном процессоре смогут одновременно и независимо работать 16 — и 32-разрядные приложения. Данное обстоятельство должно сделать переход пользователей на новую платформу безболезненным, ведь процессоры смогут работать в двух режимах:.

в технологии Long кристалл будет работать как x86-64;

в технологии Legacy Mode кристалл будет работать как x86-процессор, совместимый с 16 — и 32-разрядными приложениями и поддерживающий расширение SSE.

В ближайшем будущем планируется выпустить две модели 64-разрядного микропроцессора: собственно Sledgehammer и младшую модель - Clawhammer. Главные отличия состоят главным образом в размере кэш-памяти второго уровня:

Clawhammer позиционируется как процессор для рабочих станций и будет поддерживать двухпроцессорные системы. Причем размер кристалла не должен превысить 100 кв. мм, что сделает его в достаточной мере дешевым;

Sledgehammer же, как планируется, будет поддерживать до восьми процессоров.

Оба процессора будут содержать интегрированный контроллер памяти, совместимый с технологией HyperTransport. Данный факт позволит напрямую работать с системной памятью, минуя системную шину и набор микросхем.

Для возможности обращения к одному и тому же сегменту памяти в мультипроцессорных системах будет использоваться архитектура NUMA (Non-Uniform Memory Access).

Каждому процессору будет отведен отдельный сегмент памяти, но при необходимости будет доступен и сегмент памяти другого процессора. AMD разрабатывает два набора микросхем с поддержкой HyperTransport. Первый чипсет Golem предназначен для серверов и оснащен мостом HyperTransport-PCI-X, а второй - Lokar для рабочих станций, имеет встроенную поддержку интерфейса AGP 8X и мост HyperTransport-AGP.

В заключение отметим, что новые процессоры будут изготавливаться с учетом проектных норм 0,13 мкм и технологии SOI (Silicon On Insulator - "кремний на изоляторе"). Т. к. массовое производство кристаллов начнется не ранее 2002 г., то говорить о конкуренции между семействами Itanium и Hammer пока рановато.

Библиографический список

http://www.bytemag.ru/.

http://www.maxwolf.ru/faq/cpu.html.

http://www.intel.com/ .

http://www.amd.com .

Сегодня уже никто не удивится тому факту, что любимая семейная фотография, хранимая и оберегаемая от коварных неожиданностей в виде, например, воды от незадачливых соседей с верхнего этажа, забывших закрыть кран, может представлять собой какой-то непонятный набор цифр и, вместе с тем, оставаться семейной фотографией. Домашний компьютер стал столь же банальной вещью, что и «ящик» с голубым экраном. Не удивлюсь, если скоро домашний ПК будет приравниваться к бытовой электротехнике. Кстати, «двигатель прогресса», всем знакомая Intel, это нам и пророчит, продвигая идею цифрового дома.
Итак, персональный компьютер занял свою нишу во всех сферах жизни человека. Его появление и становление как неотъемлемого элемента уклада жизни уже стало историей. Когда мы говорим о ПК, то имеем в виду IBM PC-совместимые системы, и вполне справедливо. Мало кто из читателей вообще своими глазами видел не IBM PC-совместимую систему, тем более пользовался такой.

Все компьютеры IBM PC и совместимые с ними основываются на процессорах с архитектурой х86. Честно говоря, иногда мне кажется, что это не только процессорная архитектура, а архитектура всего ПК, вроде идеологии строения системы в целом. Сложно сказать, кто кого тянул за собой, то ли разработчики периферийного оборудования и конечных продуктов подстраивались под архитектуру х86, или, наоборот, они прямо или косвенно формировали пути развития х86 процессоров. История х86 — не ровная асфальтированная дорожка, а совокупность различных по «степени тяжести» и гениальности шагов разработчиков, сильно переплетающихся с экономическими факторами. Знание истории процессоров х86 вовсе не обязательно. Сравнивать процессор сегодняшней реальности с его давними предками попросту бессмысленно. Но чтобы отследить общие тенденции развития и попытаться сделать прогноз, экскурс в историческое прошлое архитектуры х86 необходим. Конечно, серьезный исторический труд может занять не один том, и претендовать на объективный и широкий охват темы бессмысленно. Поэтому вдаваться в перипетии «лайф-тайма» каждого поколения процессоров х86 не будем, а ограничимся важнейшими событиями во всей эпопее х86.

1968 год
Четверо сотрудников компании Fairchild Semiconductor: Боб Нойс, менеджер и изобретатель интегральной микросхемы в 1959 году, Гордон Мур, возглавлявший научные исследования и конструкторские разработки, Энди Гроув, специалист в области химических технологий, и Артур Рок, осуществлявший финансовую поддержку, основали фирму Intel. Это название образовано от Integral Electronic.


1969 год
Бывшим директором маркетингового отдела Fairchild Semiconductor Джерри Сандерсом и несколькими его единомышленниками была основана фирма AMD (Advanced Micro Devices), занявшаяся производством микроэлектронных устройств.

1971 год
При выполнении одного из заказов на микросхемы оперативной памяти сотрудник Intel Тед Хофф предложил создать универсальную «умную» ИМС. Разработку возглавил Федерико Феджин. В итоге родился первый микропроцессор Intel 4004.

1978 год
Весь период до этого — предыстория, хотя и неотрывная от случившихся далее событий. В этом году началась эра х86 — фирмой Intel был создан микропроцессор i8086, который имел частоты 4.77,8 и 10MHz. Смешные частоты? Да, это частоты современных калькуляторов, но с них все начиналось. Чип изготавливался по 3-мкм технологии и имел внутренний 16-битный дизайн и 16-битную шину. То есть появились 16-битная поддержка и, следовательно, 16-разрядные операционные системы и программы.
Чуть позже, в том же году, был разработан i8088, основным отличием которого являлась 8-разрядная внешняя шина данных, обеспечивавшая совместимость с 8-разрядной обвязкой и памятью, использовавшейся ранее. Также доводом в его пользу была совместимость с i8080/8085 и Z-80, относительно низкая цена. Как бы там ни было, но в качестве ЦП для своего первого ПК IBM выбрала i8088. С тех пор процессор Intel станет неотъемлемой частью персонального компьютера, а сам компьютер долго будут именовать IBM PC.

1982 год
Объявлен i80286. «Двести восемьдесят шестой» стал первым процессором х86, проникшим на советское и постсоветское пространство большим количеством. Тактовые частоты 6, 8, 10 и 12 МГц, производился по 1.5-мкм техпроцессу и содержал около 130000 транзисторов. Данный чип имел полную 16-битную поддержку. Впервые с появлением i80286 появилось такое понятие, как «защищенный режим», но тогда еще разработчики программного обеспечения не использовали его возможности в полной мере. Процессор мог адресовать более 1 Мб памяти, переключившись в защищенный режим, но назад вернуться можно было после полного перезапуска, а сегментированная организация доступа к памяти требовала значительных дополнительных усилий при написании программного кода. Из этого вытек тот факт, что i80286 использовался скорее как быстрый i8086.

Производительность чипа по сравнению с 8086 (а особенно по сравнению с i8088) увеличилась в несколько раз и достигала 2.6 миллионов операций в секунду. В те годы производители стали активно использовать открытую архитектуру IBM PC. Тогда же начался период клонирования процессоров архитектуры х86 от Intel сторонними производителями. То есть чип выпускался другими фирмами в виде точной копии. Intel 80286 стал основой новейшего по тем меркам ПК IBM PC/AT и его многочисленных клонов. Основными преимуществами нового процессора оказались повышенная производительность и дополнительные режимы адресации. И главное — совместимость с существующим программным обеспечением. Естественно, процессор был также лицензирован сторонними производителями…
В том же году фирма AMD заключает с Intel лицензионное соглашение и на его основе начинает производство клонов процессоров x86.

1985 год
В этом году произошло, наверное, самое значительное событие в истории процессоров с архитектурой х86 — компанией Intel был выпущен первый процессор i80386. Он стал, можно сказать, революционным: 32-разрядный многозадачный процессор с возможностью одновременного выполнения нескольких программ. В сущности, самые современные процессоры представляют собой ничто иное, как быстрые 386-е. Современное программное обеспечение использует ту же архитектуру 386, просто современные процессоры делают то же самое, только быстрее. Intel 386™ стал большим шагом вперед по сравнению с i8086 и i80286. В сущности, самые современные процессоры представляют собой ничто иное, как быстрые 386-е. Современное программное обеспечение использует ту же архитектуру 386, просто современные процессоры делают то же самое, только быстрее. Intel 386™ стал большим шагом вперед по сравнению с i8086 и i80286. Intel 386™ имел значительно улучшенную систему управления памятью по сравнению с i80286, а встроенные средства многозадачности позволили разработать операционную систему Microsoft Windows и OS/2.

В отличие от i80286 Intel 386™ мог свободно переключаться из защищенного режима в реальный и обратно и имел новый режим — виртуальный 8086. В этом режиме процессор мог выполнять несколько различных программных нитей одновременно, так как каждая из них выполнялась на изолированной «виртуальной» 86-й машине. В процессоре были введены дополнительные режимы адресации памяти с переменной длиной сегмента, что значительно упростило создание приложений. Процессор производился по 1-мкм технологическому процессу. Впервые процессор Intel был представлен несколькими моделями, которые образовали семейство 386-х. Здесь и начинается знаменитая маркетинговая игра компании Intel, позднее вылившаяся в разделение одного разработанного ядра на два торговых варианта, в некотором круге пользователей и специалистов называемое: «Pentium для богатых, Celeron для бедных». Хотя что здесь плохого — и волки сыты, и овцы целы.
Были выпущены следующие модели:

386DX с частотой 16, 20, 25 и 33 МГц имел 4 ГБ адресуемой памяти;
386SX с частотой 16, 20, 25 и 33 МГц в отличие от 386DX имел 16, а не 32-битную шину данных, и соответственно 16 Мб адресуемой памяти (подобным образом в свое время процессор i8088 был «создан» из i8086 за счет уменьшения разрядности внешней шины для обеспечения совместимости с имеющимися внешними устройствами);
386SL в октябре 1990 года — мобильная версия процессора Intel 386SX с частотой 20 и 25MHz.

1989 год
Корпорация Intel выпускает свой очередной процессор — Intel 486™ DX с частотой 25, 33 и 50 МГц. Intel 486 ™ DX стал первым процессором в семействе 486 и имел значительный (более чем в 2 раза при той же частоте) прирост производительности по сравнению с семейством 386. У него появился кэш первого уровня объемом 8 Кб, интегрированный в чип, а максимальный размер L2-кэша увеличился до 512 Kb. В i486DX был интегрирован блок вычислений с плавающей точкой (FPU — Floating Point Unit), который раньше выполнялся в виде внешнего математического сопроцессора, устанавливаемого на системную плату. Кроме того, это первый процессор, ядро которого содержало пятиступенчатый конвейер. Таким образом, команда, прошедшая первую ступень конвейера, продолжая обрабатываться на второй, высвобождала первую для следующей инструкции. По своей сути, процессор Intel 486™DX представлял собой быстрый Intel 386DX™, объединенный с математическим сопроцессором и 8 кБ кэш-памяти на одном кристалле. Такая интеграция позволила увеличить скорость коммуникаций между блоками до очень высоких значений.
Фирмой Intel была развернута рекламная кампания с лозунгом «Intel: The Computer Inside». Пройдет время, и она превратится в знаменитую рекламную кампанию «Intel Inside».

1991 год
Был создан собственный процессор фирмы AMD — Am386™. Этот был частично построен под действием лицензии, частично по собственной разработке и работал на максимальной частоте 40 МГц, что превышало аналогичный показатель процессора Intel.
Немного ранее произошли первые судебные разбирательства между Intel и AMD по поводу намерения AMD продавать свой клон Intel 386™. Крепко укрепившая свои позиции Intel перестала нуждаться в раздаче лицензий сторонним производителям и делиться пирогом собственного приготовления ни с кем не собиралась. В результате AMD впервые вступила на рынок х86 процессоров как конкурент. За ней последовали и другие компании. Так началось продолжающееся до сих пор великое противостояние двух гигантов (остальные конкуренты сошли с дистанции), которое дало миру много хорошего. Негласным лозунгом конкурентов Intel стала фраза: «то же, что у Intel, но за меньшую цену».
В то же время Intel выпускает i486SX, в котором для удешевления продукта отсутствует блок FPU (интегрированный сопроцессор), что, конечно же, негативно сказалось на производительности. Других отличий от i486DX не было.

1992 год
С выходом процессора Intel 486DX2 впервые был использован коэффициент умножения частоты шины. До этого момента внутренняя частота ядра была равна частоте внешней шины данных (FSB), но появилась проблема ее наращивания, так как локальные шины периферии (в то время VESA VL-bus), да и сами периферийные устройства проявляли нестабильность работы при частоте, превышающей 33 МГц. Теперь при частоте шины FSB 33 МГц тактовая частота ядра составляла 66 МГц за счет умножения на 2. Такой прием надолго вошел в историю и используется поныне, только множитель в современных CPU может превышать 20. Intel 486™ DX2 надолго стал популярным процессором и продавался в огромных количествах, впрочем, как и его клоны от конкурентов (AMD, Cyrix и другие), которые теперь уже имели некоторые отличия от «интеловского оригинала».

1993 год
В свет вышел первый суперскалярный процессор х86, то есть способный выполнять более одной команды за такт — Pentium (кодовое название P5). Это достигалось наличием двух независимых параллельно работающих конвейера. Первые процессоры имели частоту 60 и 66 МГц и получили 64-разрядную шину данных. Впервые кэш-память первого уровня была разделена на две части: отдельно для инструкций и данных. Но одним из самых значительных нововведений был полностью обновленный блок вычислений с плавающей точкой (FPU). Фактически до этого на платформе x86 еще не было настолько мощного FPU, и лишь через многие годы после выхода Intel Pentium конкуренты смогли достичь его уровня производительности. Также впервые в процессор был включен блок предсказания ветвлений, с тех пор активно развивающийся инженерами.

Суть заключается в следующем: в любой программе присутствует множество условных переходов, когда в зависимости от условия выполнение программы должно пойти по тому или иному пути. В конвейер можно поместить только одну из нескольких ветвей перехода, и если он оказывается заполненным кодом не той ветви, то его приходится очищать и заполнять заново несколько тактов (в зависимости от количества ступеней конвейера). Для решения этой проблемы и используются механизмы предсказания ветвлений. Процессор содержал 3,1 млн. транзисторов и изготавливался по 0.8-мкм процессу. Все эти изменения позволили поднять производительность нового процессора на недосягаемую высоту. В действительности же оптимизация кода «под процессор» первое время была редкой и требовала применения специальных компиляторов. И еще долго новейшему процессору приходилось выполнять программы, предназначенные для процессоров семейств 486 и 386.
В том же году появилось второе поколение Pentium на ядре P54, в котором были устранены все недостатки Р5. При изготовлении использовались новые технологические процессы 0.6, а позднее и 0.35-мкм. До 1996 года новым процессором были охвачены тактовые частоты от 75 до 200 МГц.
Первый Pentium сыграл важную роль в переходе на новые уровни производительности персонального компьютера, дал толчок и определил ориентиры развития на будущее. Но при большом рывке в производительности он не привнес никаких кардинальных изменений в архитектуру х86.

1994 год
Появившиеся Intel 486™DX4, AMD Am486DX4 и Cyrix 4х86 продолжили линейку 486-х и использование умножения частоты шины данных. Процессоры имели утроение частоты. Процессоры DX4 от Intel работали на 75 и 100 МГц, а Am486DX4 от AMD достиг 120 МГц. В процессорах стала широко применяться система управления энергопотребления. Других принципиальных отличий от 486DX2 не обнаружилось.

1995 год
Анонсирован Pentium Pro (ядро P6). Новая процессорная шина, три независимых конвейера, оптимизация под 32-битовый код, от 256 Kb до 1 Mb L2-кэша, интегрированного в процессор, причем работающего на частоте ядра, усовершенствованный механизм предсказания ветвлений — по количеству нововведений новый процессор чуть ли не бил рекорды, ранее установленные Intel Pentium.

Процессор позиционировался на использование в серверах и имел очень высокую цену. Самое примечательное, что вычислительное ядро Pentium Pro фактически не было ядром архитектуры х86. Машинные коды x86, поступающие в CPU, внутри декодировались в RISC-подобный микрокод, и уже именно его исполняло ядро процессора. Набор CISC-команд, как набор команд процессора х86, подразумевал переменную длину команд, что определяло сложность нахождения каждой отдельной команды в потоке и, следовательно, создавало трудности в разработке программ. CISC-команды являются сложными и комплексными. RISC-команды упрощенные, короткие, требующие значительно меньшее время на выполнение команды с фиксированной длиной. Использование RISC-команд позволяет значительно увеличить распараллеливание процессорных вычислений, то есть использовать больше конвейеров и, следовательно, уменьшать время исполнения команд. Ядро P6 легло в основу трех следующих процессоров Intel — Pentium II, Celeron, Pentium III.
В этом году состоялось также знаковое событие — компания AMD купила фирму NexGen, имеющую к тому времени передовые архитектурные разработки. Слияние двух инженерных команд позже принесет миру процессоры х86 с отличной от Intel микроархитектурой и даст толчок новому витку жестокой конкуренции.
На Микропроцессорном Форуме впервые был представлен новый процессор MediaGX от Cyrix, и его отличительной особенностью являются интегрированные контроллер памяти, графический ускоритель, интерфейс шины PCI и производительность, соизмеримая с производительностью Pentium. Это была первая попытка такой плотной интеграции устройств.

1996 год
Появился новый процессор AMD К5 с суперскалярным RISC-ядром. Однако RISC-ядро с его набором команд (ROP-команд) скрыты от программного обеспечения и конечного пользователя, а команды х86 преобразуются в RISC-команды. Инженеры AMD использовали уникальное решение — команды х86 частично преобразуются еще во время помещения в кэш-память процессора. В идеале процессор K5 может выполнять до четырех команд х86 за один такт, но на практике в среднем за такт обрабатываются только 2 инструкции.

Кроме того, традиционные для RISC-процессоров изменения порядка вычислений, переименование регистров и другие «приемы» позволяют увеличить производительность. Процессор К5 явился детищем объединенной команды инженеров AMD и NexGen. Максимальная тактовая частота так и не превысила 116 МГц, но производительность К5 была выше, чем у процессоров Pentium с такой же тактовой частотой. Поэтому в маркетинговых целях впервые в практике маркировки CPU был использован рейтинг производительности (Performance Rating), который явно противопоставлялся тактовой частоте равных по производительности Pentium. Но процессор все-таки не мог достойно потягаться с ним, так как Pentium уже тогда достиг частоты 166 МГц.
В том же году увидел свет Intel Pentium MMX. Главное нововведение процессора P55C — дополнительные команды MXX к набору команд, который почти не претерпевал изменений со времен создания процессоров третьего поколения. Технология MMX — это использование команд, ориентированных на работу с мультимедиаданными. Специальный набор команд SIMD (Single Instruction — Multiple Data — одна команда — множественные данные) повышает производительность при выполнении векторных, циклических команд и обработке больших массивов данных — при применении графических фильтров и различных спецэффектов.

По сути это 57 новых инструкций, призванных ускорить обработку видео и звука. Остальными изменениями ядра стали уже типичные увеличение объема кэш-памяти, улучшение схем работы кэш-памяти и других блоков. Производился процессор по 0.35-мкм процессу, 4.5 млн. транзисторов. Максимальная частота 233 МГц.
Начался выпуск суперскалярных процессоров Cyrix 6х86 на ядре М1, который на самом деле являлся процессором 5-го поколения, отличительной особенностью которого были «глубокие» конвейеры и использование классических х86 команд без каких-либо дополнительных наборов инструкций.
В конце года, пока в Intel велась разработка PentiumII, снова заявила о себе AMD, выпустив процессор шестого поколения К6. В основу AMD-K6 легло ядро, разработанное инженерами компании NexGen для процессора Nx686 и существенно доработанное в AMD. Как и К5, ядро К6 оперировало не х86 инструкциями, а RISC-подобным микрокодом. Процессор поддерживал команды MMX и 100-мегагерцевую системную шину и имел увеличенный до 64 Кб объем кэш-памяти первого уровня. Вскоре стало ясно, что PentiumII окажется К6 не по зубам.

с 1997 года до наших дней…
К 1997 году уже сложились направления инженерных разработок архитектуры х86 ведущих производителей. Следующий этап в развитии процессоров x86 можно охарактеризовать как противостояние архитектур, которое продолжается и поныне. На дистанцию по крупному счету вышли: захватившая 90 % рынка Intel, упорно с ней бьющаяся AMD, многократно проигрывающая в производственных мощностях, и Cyrix, которая впоследствии будет куплена компанией VIA, а затем и вовсе, не выдержав конкуренции, канет в неизвестность. Остальные производители не смогут достойно конкурировать и будут вынуждены искать другие ниши на рынке. Намечен переход от CISC к RISC-подобным микрокомандам в меньшей степени у Intel, в большей у AMD. Причем на вход и выход процессоров х86 по-прежнему поступают CISC-команды. А почему, собственно, стали вводить в х86 процессоры с родной ей CISC-архитектурой внутреннюю RISC-архитектуру, позволяющую углублять распараллеливание выполнения команд? Да просто из CISC-архитектуры х86 еще во времена четвертого поколения было выжато все, и способов повышать производительность на уровне базисных наборов команд не осталось.

Принципиально новых изменений и прорывов в развитии архитектуры с тех пор не было, хотя современные процессоры быстрее, например, «386-го» в сотни раз. Инженеры оттачивают и совершенствуют уже существующие микроархитектуры ядер, а новые представляют собой лишь переработанные старые. Все усовершенствования и попытки повысить производительность сводятся к оптимизации существующих решений, введению различных исправлений и «костылей» для хромающих FPU, системы организации конвейеров и кэшей. Избитыми, но все же действенными средствами является постоянное увеличение объема кэш-памяти и частоты шины FSB. Современные процессоры имеют до 2 Мб кэш-памяти, работающей на частоте ядра, а частоты системных шин достигают 800 МГц, и то с использованием множителя, так как реальная генерируемая частота всего 200 МГц. За последние 7 лет в процессоры х86 были введены следующие «новшества-подпорки»: кэш-память окончательно переехала на кристалл процессора и переведена на частоту ядра, введены и постоянно совершенствуются блоки предсказания ветвлений как компенсация увеличению длины (количества стадий) конвейера, механизм динамического изменения порядка исполнения инструкций, уменьшающий количество холостых тактов, механизм предвыборки данных для более рационального использования кэш-памяти. Множатся дополнительные наборы команд: SSE, SSE2, SSE3, 3DNow!, 3DNow Professional. Если MMX еще можно было с натяжкой назвать дополнительным набором инструкций х86, то все последующие наборы вряд ли, так как к командам х86 добавлять уже нечего. Смысл же появления этих наборов заключается в попытке как можно меньше использовать блок вычислений с плавающей точкой (FPU) в таком виде, в каком он есть, так как, обладая высокой производительностью, он отличается малой приспособленностью для высокоточных вычислений, капризностью внутренней архитектуры и ее непредсказуемостью, что усложняет жизнь программистам. То есть фактически ввели специализированный расчетный блок, ориентированный не на вычисления вообще, а на реальные, часто встречающиеся задачи, выполнять которые предлагается в обход классического FPU.

Как-то это больше похоже на борьбу с последствиями интеграции математического сопроцессора в CPU в далеком 1989 году. Во всяком случае, если задуматься и подсчитать, то большую часть времени процессор тратит «на себя» — на всевозможные преобразования, предсказания и многое другое, а не на выполнение программного кода.
Глядя назад, видно, что не все было гладко. Введение коэффициента умножения и полученная в итоге асинхронность, а также увеличение количества стадий конвейера — все это палки о двух концах. С одной стороны, это позволило увеличить тактовые частоты процессора почти до 4 ГГц (и это еще не предел), с другой — получили узкое место в виде шины FSB и проблему с условными переходами. Но всему свое время, и тогда, видимо, это были разумные решения, так как всегда присутствует очень злой экономический фактор.
Нельзя не отметить, что по-настоящему блистательных успехов за последние годы добились в области полупроводникового производства. Уже освоен 90-нанометровый технологический процесс изготовления процессоров х86, который позволяет достигать близких к СВЧ-диапазону тактовых частот, а количество транзисторов в кристалле достигает 170 млн (Pentium 4 EE).
Мы привыкли считать, что процессор — это главное устройство в ПК и что именно он задает тон глобальной компьютеризации. А ведь победоносное шествие архитектуры х86, длящееся более четверти века, началось не конкретно с процессора, а с конечного пользовательского устройства в целом — IBM PC. Тогда еще в компании IBM не догадывались, какое блистательное будущее ждет этот ПК и, не придав проекту никакого значения, сделали его открытым для всех. Именно открытости концепции, успеху программного обеспечения и MS DOS обязан успех IBM PC. А процессор в нем мог стоять любой архитектуры, но так уж получилось, что IBM выбрала i8088 и i8086, а потом уже все закрутилось, завертелось… Но из процессора х86 в итоге не получилось эдакого универсального вычислителя на все случаи жизни или «умного» устройства, вездесущего и все способного сделать, как об этом мечтали раньше. Да и «закон» Гордона Мура (каждые 2 года количество транзисторов в кристалле процессора будет увеличиваться вдвое) стал законом только для Intel, которая поставила его на острие своей маркетинговой политики, а отказываться от данного слова ей неудобно, видимо.

Сегодня можно уже твердо сказать, что архитектура х86 зашла в тупик. Вклад ее в популяризацию компьютера как устройства огромен, и с этим никто не спорит. Однако нельзя быть актуальной вечно. Молодой и сильный некогда жеребец стал старой клячей, которую продолжают запрягать в телегу. Аппетиты пользователей ненасытны, и вскоре архитектура х86 не сможет их удовлетворить. Конечно, переход связан с титаническими усилиями в связи с тем, что многомиллионный мировой парк ПК в своем почти абсолютном большинстве использует процессоры архитектуры х86, и что самое важное, использует программное обеспечение для х86 кода. Одним днем все не перевернуть, нужны годы. Но разработки 64-битных процессоров и программ набирают обороты с завидной скоростью, Intel представила Itanium2, а AMD уже почти год выпускает свои Athlon 64, которые имеют совсем не х86 архитектуру, хотя и полностью совместимы с ней и еще могут выполнять все старые программы. Таким образом, можно сказать, что AMD Athlon 64 положил начало уходу от архитектуры х86 и тем самым открыл переходный период.
Как видите, заявления о том, что процессор — самый быстро развивающийся компонент ПК, далеко не беспочвенны. Представьте себе, какими процессорами будут оснащаться компьютеры наших детей. Подумать страшно!

В Одноклассники

История развития процессоров

Характеристики МП

Контрольные вопросы

История развития процессоров с 1971 года до наших дней

Интересен тот факт, что первый процессор был выпущен на 10 лет раньше первого ком­пьютера IBM PC. Компания Intel создала свой первый процессор в 1971 году, а компания IBM свой первый ПК - в 1981 году. Но даже теперь, спустя более четверти века, мы продол­жаем использовать системы, в той или иной мере сходные по архитектуре с первым ПК. Про­цессоры, установленные в наших компьютерах сегодня, большей частью имеют обратную совместимость с процессором 8088, который компания IBM выбрала для своего первого персо­нального компьютера в 1981 году.

15 ноября 2001 года микропроцессор отпраздновал свое 30-летие. За эти годы его быстро­действие увеличилось более чем в 18500 раз (с 0,108 МГц до 2 ГГц). Процессор 4004 был представлен 15 ноября 1971 года; он работал на частоте 108 кГц (108000 тактов в секунду, или всего 0,1 МГц). Про­цессор 4004 содержал 2300 транзисторов и производился с использованием 10-микронной технологии. Это означает, что все линии, дорожки и транзисторы располагались от других элементов на расстоянии около 10 микрон (миллионная часть метра). Данные передавались блоками по 4 бит за такт, а максимальный адресуемый объем памяти составлял 640 байт. Процессор 4004 предназначался для использования в калькуляторах, однако в конечном ито­ге нашел и другие применения в связи с широкими возможностями программирования. На­пример, процессор 4004 использовался для управления светофорами, при анализе крови и даже в исследовательской ракете Pioneer 10, запущенной NASA!

В апреле 1972 года Intel выпустила процессор 8008, который работал на частоте 200 кГц. Он содержал 3500 транзисторов и производился все по той же 10-микронной технологии. Шина данных была 8-разрядной, что позволяло адресовать 16 Кбайт памяти. Этот процессор предназначался для использования в терминалах и программируемых калькуляторах.

Следующая модель процессора, 8080, была анонсирована в апреле 1974 года. Этот процессор содержал 6000 транзисторов и мог адресовать уже 64 Кбайт памяти. На нем был собран первый персональный компьютер (не PC) Altair 8800. В этом компьютере использовалась операционная система CP/M, а Microsoft разработала для него интерпретатор языка BASIC. Это была первая массовая модель компьютера, для которого были написаны тысячи программ.

Со временем процессор 8080 стал настолько известен, что его начали копировать. В конце 1975 года несколько бывших инженеров Intel, занимавшихся разработкой процессора 8080, создали компанию Zilog. В июле 1976 года эта компания выпустила процессор Z-80, который представлял собой значительно улучшенную версию 8080. Этот процессор был несовместим с 8080 по контактным выводам, но сочетал в себе множество различных функций, например интерфейс памяти и схему обновления ОЗУ (RAM), что давало возможность разрабатывать более дешевые и простые компьютеры. В Z-80 был также включен расширенный набор ко­манд процессора 8080, позволяющий использовать его программное обеспечение. В этот про­цессор вошли новые команды и внутренние регистры, поэтому программное обеспечение, разработанное для Z-80, могло использоваться практически со всеми версиями 8080. Перво­начально процессор Z-80 работал на частоте 2,5 МГц (более поздние версии работали уже на частоте 10 МГц), содержал 8500 транзисторов и мог адресовать 64 Кбайт памяти.


Компания Intel не остановилась на достигнутом, и в марте 1976 года выпустила процессор 8085, который содержал 6500 транзисторов, работал на частоте 5 МГц и производился по 3-микронной технологии. Несмотря на то что он обогнал процессор Z-80 на несколько меся­цев, ему так и не удалось достичь популярности последнего. Он использовался в основном в качестве управляющей микросхемы различных компьютеризованных устройств.

В этом же году компания MOS Technologies выпустила процессор 6502, который был аб­солютно не похож на процессоры Intel. Он был разработан группой инженеров компании Mo­torola. Эта же группа работала над созданием процессора 6800, который в будущем трансфор­мировался в семейство процессоров 68000. Цена первой версии процессора 8080 достигала 300 долларов, в то время как 8-разрядный процессор 6502 стоил всего около 25 долларов. Та­кая цена была вполне приемлема для Стива Возняка (Steve Wozniak), и он встроил процессор- 6502 в новые модели Apple I и Apple II. Процессор 6502 использовался также в системах, соз­данных компанией Commodore и другими производителями. Этот процессор и его преемники с успехом работали в игровых компьютерных системах, в число которых вошла приставка Nintendo Entertainment System (NES). Компания Motorola продолжила работу над созданием серии процессоров 68000, которые впоследствии были использованы в компьютерах Apple Macintosh. Второе поколение компьютеров Mac использовало процессор PowerPC, являю­щийся преемником 68000. Сегодня компьютеры Mac снова перешли на архитектуру PC и ис­пользуют с ними одни процессоры, микросхемы системной логики и прочие компоненты.

В июне 1978 года Intel выпустила процессор 8086, который содержал набор команд под ко­довым названием х86. Этот же набор команд до сих пор поддерживается в самых современных процессорах Core 2 и AMD Athlon 64 X2. Процессор 8086 был полностью 16-разрядным - внут­ренние регистры и шина данных. Он содержал 29000 транзисторов и работал на частоте 5 МГц. Благодаря 20-разрядной шине адреса он мог адресовать 1 Мбайт памяти. При создании про­цессора 8086 обратная совместимость с 8080 не предусматривалась. Но в то же время значи­тельное сходство их команд и языка позволили использовать более ранние версии программ­ного обеспечения. Это свойство впоследствии сыграло важную роль для быстрого перевода программ системы CP/M (8080) на рельсы PC.

Несмотря на высокую эффективность процессора 8086 его цена была все же слишком вы­сока по меркам того времени и, что гораздо важнее, для его работы требовалась дорогая мик­росхема поддержки 16-разрядной шины данных. Чтобы уменьшить себестоимость процессо­ра, в 1979 году Intel выпустила процессор 8088 - упрощенную версию 8086. Процессор 8088 использовал те же внутреннее ядро и 16-разрядные регистры, что и 8086, мог адресовать 1 Мбайт памяти, но в отличие от предыдущей версии использовал внешнюю 8-разрядную шину данных. Это позволило обеспечить обратную совместимость с ранее разработанным 8-разрядным процессором 8085 и тем самым значительно снизить стоимость создаваемых системных плат и компьютеров. Именно поэтому IBM выбрала для своего первого ПК "урезанный" процессор 8088, а не 8086.

Это решение имело далеко идущие последствия для всей компьютерной индустрии. Про­цессор 8088 был полностью программно-совместимым с 8086, что позволяло использовать 16-разрядное программное обеспечение. В процессорах 8085 и 8080 использовался очень по­хожий набор команд, поэтому программы, написанные для процессоров предыдущих версий, можно было легко преобразовать для процессора 8088. Это, в свою очередь, позволяло разра­батывать разнообразные программы для IBM РС, что явилось залогом его будущего успеха. Не желая останавливаться на полпути, Intel была вынуждена обеспечить поддержку обратной совместимости 8088/8086 с большинством процессоров, выпущенных в то время.

В те годы еще поддерживалась обратная совместимость процессоров, что ничуть не меша­ло вводить различные новшества и дополнительные возможности. Одним из основных изме­нений стал переход от 16-разрядной внутренней архитектуры процессора 286 и более ранних версий к 32-разрядной внутренней архитектуре 386-го и последующих процессоров, относя­щихся к категории IA-32 (32-разрядная архитектура Intel). Эта архитектура была представ­лена в 1985 году, однако потребовалось еще 10 лет, чтобы на рынке появились такие операци­онные системы, как Windows 95 (частично 32-разрядные) и Windows NT (требующие ис­пользования исключительно 32-разрядных драйверов). И только еще через шесть лет появилась операционная система Windows XP, которая была 32-разрядной как на уровне драйверов, так и на уровне всех компонентов. Итак, на адаптацию 32-разрядных вычислений потребовалось 16 лет. Для компьютерной индустрии это довольно длительный срок.

Теперь наблюдается очередной "скачок" в развитии архитектуры ПК - компании Intel и AMD представили 64-разрядные расширения 32-разрядной архитектуры Intel IA-64 (Intel Archi­tecture, 64-bit - 64-разрядная архитектура Intel), выпустив процессоры Itanium и Itanium 2. Од­нако данная архитектура была абсолютно несовместима с существовавшей 32-разрядной. Архи­тектура IA-64 была анонсирована в 1994 году в рамках проекта по разработке компаниями Intel и HP нового процессора с кодовым именем Merced; первые технические детали были опубликованы в октябре 1997 года. В результате в 2001 году был выпущен процессор Itanium, поддерживающий архитектуру IA-64.

К сожалению, IA-64 не являлась расширением архитектуры IA-32, а была совершенно но­вой архитектурой. Это хорошо для рынка серверов (собственно, для этого IA-64 и разрабаты­валась), однако совершенно неприемлемо для мира ПК, который всегда требовал обратной совместимости. Хотя архитектура IA-64 и поддерживает эмуляцию IA-32, при этом обеспечи­вается очень низкая производительность.

Компания AMD пошла по другому пути и разработала 64-разрядные расширения для архи­тектуры IA-32. В результате появилась архитектура AMD64 (которая также называется x86-64). Через некоторое время Intel представила собственный набор 64-разрядных расширений, кото­рый назвала EM64T (IA-32e). Расширения Intel практически идентичны расширениям AMD, что означает их совместимость на программном уровне. В результате впервые в истории сложи­лась ситуация, когда Intel следовала за AMD в разработке архитектуры ПК, а не наоборот.

Для того чтобы 64-разрядные вычисления стали реальностью, необходимы 64-разрядные операционные системы и драйверы. В апреле 2005 года компания Microsoft начала распро­странять пробную версию Windows XP Professional x64 Edition, поддерживающую дополни­тельные инструкции AMD64 и EM64T. Основные производители компьютеров уже постав­ляют готовые системы с предустановленной Windows XP Professional x64 и с 64-разрядной системой Windows Vista; они также разработали 64-разрядные драйверы для достаточно со­временных моделей устройств. Выпускаются и 64-разрядные версии Linux, благодаря чему каких-либо серьезных препятствий для перехода к 64-разрядным вычислениям нет.

Последним достижением можно считать выпуск компаниями Intel и AMD двух- и четы-рехъядерных процессоров. Они содержат два или четыре полноценных ядра на одной под­ложке; в результате один процессор теоретически может выполнять работу двух или четырех процессоров. Хотя многоядерные процессоры не обеспечивают значительного увеличения быстродействия в играх (которые в основном предполагают выполнение данных в один по­ток), они просто незаменимы в многозадачной среде. Если вы когда-нибудь пытались одно­временно выполнять проверку компьютера на наличие вирусов, работать с электронной по­чтой, а также запускать какие-то другие приложения, то наверняка знаете, что такая нагрузка может "поставить на колени" даже самый быстрый одноядерный процессор. Поскольку двухъядерные процессоры сейчас выпускаются обеими компаниями, Intel и AMD, шансы на то, что вам удастся выполнить работу гораздо быстрее благодаря многозадачности, значи­тельно возрастают. Современные двухъядерные процессоры также поддерживают 64-разряд­ные расширения AMD64 или EM64T, что позволяет воспользоваться преимуществами как двухъядерности, так и 64-разрядных вычислений.

Персональные компьютеры прошли долгий путь развития. Первый используемый в ПК процессор 8088 содержал 29 тыс. транзисторов и работал с частотой 4,77 МГц. Процессор AMD Athlon 64 FX содержит больше 105 млн. транзисторов, процессор Pentium 4 670 (ядро Prescott) работает с частотой 3,8 ГГц и содержит 169 млн. транзисторов, преимущественно благодаря наличию кэш-памяти второго уровня L2 объемом 2 Мбайт. Двухъядерные процес­соры, содержащие два ядра и кэш-память на одной подложке, характеризуются еще большим количеством транзисторов. Процессор Intel Pentium D содержит 230 млн. транзисторов, а AMD Athlon 64 X2 - более 233 млн. Последние процессоры Core 2 Duo и Core 2 Quad содер­жат 291 и 582 млн. транзисторов соответственно; при этом в последний интегрирована кэш­память второго уровня объемом 8 Мбайт. Многоядерная архитектура и постоянно растущий объем кэш-памяти второго уровня приводят к постоянному росту количества транзисторов. Скоро эта отметка перевалит за один миллиард. Все это является практическим подтвержде­нием закона Мура, в соответствии с которым быстродействие процессоров и количество со­держащихся в них транзисторов удваивается каждые 1,5-2 года.

ПРИМЕЧАНИЕ В сфере выпуска микропроцессоров с фирмой Intel постоянно конкурирует фирма AMD. Микропроцессоры фирмы AMD выпуска 2003- 2004 годов (Athlon ХР, Athlon 64) мало в чем уступают процессорам Pentium 4, а в некоторых режимах работы даже превосходят последние по быстродействию. Но, как и прежде, МП AMD сильнее греются (их штатная температура - 55-80 °С, в то время, как у МП Pentium 30-60 °С), поэтому для них необходим мощный вентилятор и надежная система защиты от катастрофического перегрева. Все МП Pentium такой системой снабжены: у них имеется датчик, который при превышении температуры 120-130 °С мгновенно выключает МП, спасая его от «сгорания». У МП Pentium есть еще более совершенная система - Thermal Monitor, принудительно замедляющая работу микропроцессора при превышении допустимой температуры