Домой / Faq / Что такое девиация частоты

Что такое девиация частоты

Дата публикации 07.02.2013 01:35

Частота – это одна из характеристик колебаний амплитуды некоторой физической величины относительно ее среднего значения. В физике имеется много видов колебаний различной природы, например, колебания электромагнитного поля. Кроме спонтанных электромагнитных колебаний природного характера, имеются и колебания, возникновение которых задается волей человека для решения определенных задач, вытекающих из потребностей человеческой деятельности. Наиболее часто при помощи колебательных процессов решаются вопросы передачи энергии и/или информации, т.е. осуществляется связь, радиовещание, работа телевидения и т.д.

Процесс передачи информации включает подготовку соответствующего энергетического поля и его модуляцию полезным сигналом и заключается в генерации передатчиком несущей частоты с определенными значениями параметров - амплитудой и частотой. Первый параметр пропорционален энергии поля и определяет дальность передачи, а второй - адресата. На этом этапе мы имеем только сигнал несущей частоты, выполняющей роль «перевозчика» информации.

Информационное содержание энергетического поля привносится в сигнал соответствующим изменением какого-либо его параметра. На практике применяют различные варианты изменения параметров поля – этот процесс и называется модуляцией несущей частоты. При этом применяется изменение амплитуды несущей или девиация частоты несущей. На этапе становления радиосвязи чаще применялась амплитудная модуляция, когда информация содержится в амплитуде сигнала несущей частоты. При этом изменения амплитуды несущей в точности повторяют информационный аналоговый сигнал. Потребитель принимает сигнал по признаку несущей частоты, а затем выделяет демодулятором содержащуюся в нем информацию. На малых частотах, вплоть до коротковолнового диапазона, используют только амплитудную модуляцию. Основным ее недостатком является изменение амплитуды несущей частоты, из-за чего соотношение сигнал – шум, очень важный показатель качества канала связи, снижается.

Кроме амплитудной модуляции, для передачи информации используется и частотная, при которой применяется девиация частоты . Преимущество частотной модуляции – более высокая помехоустойчивость, поэтому в профессиональных системах связи применяют исключительно частотномодулированные сигналы. Пример применения таких сигналов - УКВ радиовещание, телевидение, спецсвязь.

Девиация – это максимальное изменение несущей частоты относительно среднего ее значения. При этом спектр частотно-модулированного колебания несущей зависит от значения амплитуды полезного сигнала, а ее амплитуда не меняется, благодаря чему устойчивость связи изначально значительно выше.

Устройства для модуляции несущей частоты сигналом называются частотными модуляторами. Их роль в процессе передачи радиосигнала - управление генераторами несущей частоты передатчика. Девиация частоты определяет требования к ширине полосы пропускания как передатчика, так и приемника.

Также было показано, что при управлении в соответствии с модулирующим сигналом амплитудой полосового радиосигнала получим различные разновидности амплитудной модуляции при неизменной . В данной статье мы рассмотрим класс сигналов с угловой модуляцией, у которых будет изменятся фаза радиосигнала, а амплитуда остается постоянной.

Полная фаза и мгновенная частота. Сигналы с угловой модуляцией

Для начала вспомним понятие полной фазы радиосигнала

Сигналы, у которых изменяется полная фаза в соответствии с модулирующим сигналом называются сигналами с угловой модуляцией.

Для начала рассмотрим сигналы с фазовой модуляцией (phase modulation PM). У сигналов с PM полная фаза изменяется в соответствии с модулирующим сигналом:

А сам радиосигнал может быть представлен следующим образом:

Где называется индексом частотной модуляции или девиацией частоты, а модулирующий сигнал по модулю не превосходит единицы Тогда полную фазу радиосигнала можно рассчитать как интеграл от мгновенной частоты:

Где - произвольная постоянная интегрирования полной фазы (8). Обратите внимание, что абсолютно не верно подставлять выражение для мгновенной частоты вместо несущей частоты в выражение для полосового сигнала:

(10)

Так как Правильным является выражение (9)!

Девиация частоты и фазы

Поясним смысл девиации частоты и фазы. При PM задается девиация фазы, которая показывает максимальное фазовое отклонение модулированного сигнала относительно несущего колебания при этом при PM отклонение мгновенной частоты от несущей частоты не регулируется, а определяется частотой модулирующего сигнала. При FM задается девиация частоты, то есть максимальное отклонение мгновенной частоты от частоты сигнала вне зависимости от частоты модулирующего сигнала. Отклонения фазы при этом будут такие, какие необходимы для заданной девиации частоты. Рассмотрим вышесказанное на примере однотональной угловой модуляции при , где - частота модулирующего сигнала, - начальная фаза модулирующего сигнала. Заметим, что . Тогда сигнал с фазовой модуляцией:

Тогда сравнивая (11) и (12) учтя что при соответствующих значениях может переходить в косинус, можно сделать вывод, что при однотональной угловой модуляции девиация частоты и фазы связаны соотношением:

(13)

Можно сделать вывод: при FM, когда задана девиация частоты , девиация фазы будет тем больше чем меньше частота модулирующего колебания. И наоборот при PM и фиксированной девиации фазы , девиация частоты будет тем больше, чем больше . Рассмотрим это на примере. Пусть сигнал с FM и задана девиация частоты , частота модулирующего сигнала , тогда девиация фазы при заданных частотах будет равна Теперь уменьшим частоту модулирующего сигнала в 10 раз до , тогда при той же заданной частоте девиации девиация фазы увеличится в 10 раз до значения Таким образом, при фиксированной девиации частоты, девиация фазы увеличивается с уменьшением частоты модулирующего сигнала. Увеличение девиации фазы можно пояснить так: частота сигнала уменьшилась, а требуемое частотное отклонение осталось неизменным и для того чтобы получить тоже частотное отклонение необходимо поворачивать фазу несущего колебания на бОльший угол. Пусть теперь сигнал с PM и уже задана девиация фазы , тогда при получим девиацию частоты , но при увеличении частоты модулирующего сигнала в 10 раз получим увеличение девиации частоты в 10 раз до . Думаю, данный пример понятен. Если остались вопросы по вышесказанному, прошу на форум . Мы же перейдем к схемам формирования сигналов с угловой модуляцией.

Структурные схемы PM и FM модуляторов

Для этого рассмотрим комплексные огибающие сигналов PM и FM и воспользуемся универсальным квадратурным модулятором. Комплексная огибающая сигналов c PM представлена выражением (5), из которого следуют следующие квадратурные составляющие:
(14)

Тогда PM модулятор на базе универсального квадратурного модулятора может быть представлен следующим образом (рисунок 1).


Рисунок 1: Структурная схема PM модулятора

На вход подается модулирующий сигнал, который нормируется по амплитуде, так чтобы амплитуда не превышала единицы. Затем сигнал усиливается в раз, тем самым задается девиация фазы, затем формируется комплексная огибающая согласно выражению (14), и наконец квадратурный модулятор формирует радиосигнал. Усилитель - вынесен на выход, он усиливает радиосигнал до нужного уровня.

Комплексная огибающая FM имеет вид:

, (15)
(16)

Схема FM модулятора (рисунок 2) очень похожа на схему PM модулятора (рисунок 1):


Рисунок 2: Структурная схема FM модулятора

Отличие схемы FM модулятора от схемы PM заключается в том, что нормированный модулирующий сигнал интегрируется, и усилитель задает не девиацию фазы , а девиацию частоты . Если модулирующий сигнал нормирован по амплитуде тогда формировать PM сигнал можно при помощи FM модулятора, а FM сигнал при помощи PM модулятора, как это показано на рисунке 3.


Рисунок 3: Формирование FM при помощи PM и PM при помощи FM

Рассмотрим формирование FM сигнала при помощи PM модулятора. Входной сигнал нормируется потом интегрируется, затем подается на вход PM модулятора, выделенного желтым на рисунке 1. В качестве девиации фазы в PM модулятор вводится значение девиации частоты и на выходе будет FM сигнал. Теперь рассмотрим формирование PM сигнала при помощи FM модулятора. В FM модуляторе нормированный сигнал интегрируется, однако этого не требуется в PM модуляторе. Поэтому предварительно нормированный модулирующий сигнал дифференцируется. Таким образом, последовательное дифференцирование и интегрирование не изменяют нормированный модулирующий сигнал. В качестве девиации частоты в FM модулятор вводится девиация фазы .

Вектор может делать несколько оборотов (рисунок 4 в).


Рисунок 4: Векторная диаграмма комплексной огибающей PM сигнала

Скорость вращения вектора задается модулирующим сигналом. Векторная диаграмма комплексной огибающей FM сигнала качественно не отличается от векторной диаграммы комплексной огибающей PM сигнала. Отличие заключается в том что максимальный угол поворота вектора равный девиации фазы изменяется в зависимости от частоты входного сигнала согласно выражению (13). При низкочастотном входном сигнале, когда , согласно (13) и вектор комплексной огибающей FM сигнала отклоняется на угол , совершая при этом множество оборотов.

В конце приведем осциллограммы PM и FM сигналов (рисунок 5).

Рисунок 5: Осциллограммы PM и FM сигналов

Из рисунка 5 следует, что максимальная частота несущего колебания при PM будет при максимальной производной модулирующего сигнала (в районе 75 и 175 мкс), а минимальная частота сигнала с PM будет при минимальной отрицательной производной модулирующего сигнала (в районе 25, 125 и 225 мкс). При FM максимальная частота сигнала соответствует максимальному значению модулирующего сигнала (в районе 100 и 200 мкс), а минимальная частота будет при минимальном отрицательном значении модулирующего сигнала (в районе 50 и 150 мкс).

Выводы

Таким образом, мы рассмотрели фазовую PM и частотную FM модуляции, показали их взаимосвязь. Получены выражения для комплексной огибающей PM и FM. Рассмотрены параметры угловой модуляции девиация частоты и фазы и показана их взаимосвязь. Приведены структурные схемы PM и FM модуляторов на базе универсального квадратурного модулятора.

Системы с частотной модуляцией обладают высокой помехоустойчивостью, поэтому их применяют для высокочастотного радиовещания на ультразвуковых волнах, для передачи сигналов звукового сопровождения телевидения, в радиорелейных и спутниковых линиях связи, а также для передачи телеграфных и фототелеграфных сигналов.

Если модуляция производится одним синусоидальным тоном, то выражение для частотномодулированного колебания имеет вид

где – амплитуда высокочастотного колебания;

– значение высокой (несущей) частоты до модуляции;

– частоты модулирующего напряжения;

– индекс частотной модуляции, определяемый из выражения

, (2.5)

где – отклонение высокой частоты при модуляции – девиация частоты.

Мгновенное значение частоты частотномодулированного сигнала будет .

Девиация частоты при модуляции пропорциональна только амплитуде модулирующего напряжения и не зависит от его частоты:

На рисунке 2 приведен график частотномодулированного колебания, соответствующий выражению (2.4). Частота модулирующего колебания определяет скорость изменения мгновенного значения девиации , ( – максимальная девиация).

Рисунок 3 – График частотно-модулированного колебания

В практике радиоизмерений, особенно в условиях эксплуатации, определяется девиация частоты ; индекс частотной модуляции при модуляции одной частотой определяется по формуле (2.5). Для точных измерений частотно-модулированных колебаний при настройке передающих и калибровке измерительных устройств определяется индекс частотной модуляции , а по формуле (2.5) – девиация частоты .

Измерение девиации частоты

Наиболее просто девиацию частоты измерять методом частотного детектора. Сущность его состоит в том, что частотно-модулированные колебания преобразуются в амплитудно-модулированные, а затем детектируются амплитудным детектором, в результате чего получается напряжение, пропорциональное напряжению модулирующей частоты. Это напряжение измеряется пиковым вольтметром, включенным на выходе амплитудного детектора. Как следует из выражения (2.6), шкалу пикового вольтметра можно проградуировать непосредственно в единицах отклонения частоты – килогерцах. Частотно-модулированные колебания преобразуются в колебания низкой частоты частотным детектором (см. рисунок 4), характеристика которого имеет вид S-образной кривой. Детали частотного детектора, в особенности колебательные контуры, должны быть особо высокого качества, так как малейшее изменение их параметров во времени вызывает значительную погрешность измерений.

Рисунок 4 – Схема частотного детектора

Блок-схема прибора для измерения девиации методом частотного детектора приведена на рисунке 4. Прибор представляет собой, по существу, калиброванный высокочастотный приемник частотно-модулированных колебаний с измерительными приборами для непосредственного считывания нужных величин. Модулированный сигнал преобразуется в промежуточную частоту, усиливается, ограничивается и поступает на частотный детектор, выходное напряжение которого пропорционально девиации частоты; результат детектирования проходит через фильтр нижних частот, усиливается и измеряется пиковым вольтметром. Шкала последнего проградуирована в единицах девиации – килогерцах. При помощи внутреннего калибратора проверяются частотный детектор и вся измерительная часть прибора. Погрешность измерения составляет .

Рисунок 5 – Блок-схема измерителя девиации частоты

Задание: определить действительное значение девиации частоты, учитывая погрешность измерения и показания пикового вольтметра, шкала которого проградуирована в единицах девиации – килогерцах.

Например, на РРЛ с частотным уплотнением многоканальное сообщение передается с помощью частотной модуляции передатчика. Для осуществления соединения РРЛ необходимо чтобы девиация частоты была одинакова, т.е для различного числа каналов МККР указывает величину эффективной девиации частоты. При этом измерительный уровень и .

Обычно определяют верхний предел средней мощности многоканального сообщения и рассчитывают эффективную величину девиации частоты.

Таблица 9 – Эффективное значение девиации частоты на канал , кГц

Загрузка одного телефонного канала с уровнем создает эффективную девиацию частоты на один канал

Например, эффективная величина девиации частоты приходящаяся на один канал, при 240>N >100 .

Таблица 10

При сравнении измеренной величины с учетом погрешности с расчетной сделать вывод о соответствии рекомендациям МККР.

отклонение частоты колебаний от среднего значения. В частотной модуляции (См. Частотная модуляция) Д. ч. обычно называют максимальное отклонение частоты. От значения его существенно зависит состав и значения амплитуд составляющих спектра частотно-модулированного колебания, помехоустойчивость радиосистемы и др.

  • - появление новых признаков у организма как результат отклонения индивидуального развития на его средних стадиях...

    Словарь ботанических терминов

  • - ...

    Сексологическая энциклопедия

  • - 1) отклонение подвижной системы компаса от направления на магнитный нлн на географический полюс Земли. Возникает под влиянием магнитных и электромагнитных полей, ускоренного движения, качки...

    Словарь военных терминов

  • - 1) Д. Авиационной конструкции - в расчётах на прочность при моделировании авиационных конструкции, например, крыла, балкой Д. называется угол поворота поперечного сечения балки при её...

    Энциклопедия техники

  • - отклонение: 1) судна от заданного курса; 2) магнитной стрелки компаса от магнитного меридиана под влиянием больших масс железа и электромагн. полей...

    Большой энциклопедический политехнический словарь

  • Словарь юридических терминов

  • - отклонение морского судна от установленного или обычного пути следования...

    Большой юридический словарь

  • - поведение, нарушающее общепринятые в данном обществе нормы и правила...

    Политология. Словарь.

  • - I Девиа́ция, разновидность филэм-бриогенеза, при которой изменение в развитии органа возникает на средних стадиях его формирования и приводит к изменению строения этого органа у взрослого организма по...

    Большая Советская энциклопедия

  • - 1) отклонение движущегося тела от заданного направления движения под влиянием к.-л. случайных внеш. причин. 2) Д....

    Естествознание. Энциклопедический словарь

  • - в генетике вызванное мутациями изменение процессов онтогенеза в одном из альтернативных направлений...

    Большой медицинский словарь

  • - в коммерческой терминологии - отклонение судна от своего нормального направления...

    Морской словарь

  • - 1) Отклонение движущегося тела от заданного направления движения под влиянием каких-либо случайных внешних причин.2) Девиация магнитного компаса - Отклонение стрелки компаса от направления меридиана магнитного...

    Большой энциклопедический словарь

  • - Р., Д., Пр. девиа/ции...

    Орфографический словарь русского языка

  • - компаса, франц. уклонение его, от действия чугуна или железа, на судне. Девиация корабля, торговое; произвольное уклонение шкипера от пути, заход, без нужды, в порты...

    Толковый словарь Даля

  • - ДЕВИА́ЦИЯ, -и, жен. . 1. Отклонение стрелки компаса под влиянием находящихся вблизи больших масс железа, а также электромагнитных полей. 2...

    Толковый словарь Ожегова

"Девиация частоты" в книгах

Из попа - да в политики полымя девиация

Из книги Русский Эрос "Роман" Мысли с Жизнью автора Гачев Георгий Дмитриевич

Из попа - да в политики полымя девиация Это вот мне вспомнилось утром, когда проснулся. И долго лежал туман, рано, зачем вставать - чтоб никчемный труд свой продолжать? Спят за стеной, мои теплые Вышел к деревьям Выскочил из подъезда на свет- тряпка красная болтается -

Свободные частоты

Из книги Google. Прошлое. Настоящее. Будущее автора Лау Джанет

Свободные частоты Трудно передать восторг Ларри Пейджа, когда пришло известие, что Федеральная комиссия США по связи (Federal Communications Commission, FCC) одобрила использование свободных частот, не задействованных в трансляции телевизионных или радиопередач: Не за горами тот день,

Как контролировать частоты

Из книги Просите – и получите автора Моранси Пьер

Как контролировать частоты Этот усилитель успеха всего лишь дополняет объяснения, представленные мной в разделе о питании. Поскольку все во Вселенной вибрирует, вам следует заняться изучением внешних воздействий на ваш энергетический уровень. Какой смысл

Глава шестая Токи высокой частоты. Резонанс-трансформатор. Безопасен ли электрический ток? Лекция Теслы о токах высокой частоты

Из книги автора

Глава шестая Токи высокой частоты. Резонанс-трансформатор. Безопасен ли электрический ток? Лекция Теслы о токах высокой частоты По утверждению Теслы, год, проведенный им в Питсбурге, был потерян для исследовательских работ в области многофазных токов. Возможно, что это

9. ЧАСТОТЫ МОСКВЫ

Из книги Энциклопедия безопасности автора Громов В И

9. ЧАСТОТЫ МОСКВЫ Большинство из предлагаемых вашему вниманию частот можно прослушивать с помощью сканирующего приемника (сканера). Мы рекомендуем проверенные и надежные сканеры японской фирмы AOR Ltd модели AR-3000 (стационарный) или AR-8000 (портативный). Их, а так же любую

Умножитель частоты

Из книги Большая энциклопедия техники автора Коллектив авторов

Умножитель частоты Умножитель частоты – это радиоэлектронное устройство, предназначенное для увеличения частоты периодических электрических колебаний в целое число раз. В задачи этого электрического аппарата входит увеличение частоты приводимых к нему

Девиация (биол.)

БСЭ

Девиация (в артиллерии)

Из книги Большая Советская Энциклопедия (ДЕ) автора БСЭ

Девиация (компаса)

Из книги Большая Советская Энциклопедия (ДЕ) автора БСЭ

Девиация частоты

Из книги Большая Советская Энциклопедия (ДЕ) автора БСЭ

Делитель частоты

Из книги Большая Советская Энциклопедия (ДЕ) автора БСЭ

Боковые частоты

Из книги Большая Советская Энциклопедия (БО) автора БСЭ

Электромагнитная девиация магнитных компасов на кораблях. Магнитная девиация компасов на самолетах-торпедоносцах. Компенсационные устройства

Из книги Размагничивание кораблей Черноморского флота в годы Великой Отечественной войны автора Панченко Виктор Дмитриевич

Электромагнитная девиация магнитных компасов на кораблях. Магнитная девиация компасов на самолетах-торпедоносцах. Компенсационные устройства Во время плавания кораблей, оборудованных размагничивающими устройствами, было установлено, что в момент включения и

Позитивная девиация

Из книги Серьезный разговор об ответственности [Что делать с обманутыми ожиданиями, нарушенными обещаниями и некорректным поведением] автора Паттерсон Керри

Позитивная девиация Мы хотели научиться вести более содержательные серьезные беседы, поэтому спросили нашего менеджера, есть ли у них руководители, которым удается заставить подчиненных выполнять обязательства, и можно ли нам понаблюдать за ними в действии.Судя по

1.3.2. Частоты

Из книги Электронные фокусы для любознательных детей автора Кашкаров Андрей Петрович

1.3.2. Частоты При проведении эксперимента в сельских условиях сигнал с портативного трансивера был получен другим корреспондентом, находящимся в 22 м от меня – принят на идентичную радиостанцию, настроенную на те же частоты.При экспериментировании замечена интересная

Частота - это одна из характеристик колебаний амплитуды некоторой физической величины относительно ее среднего значения. В физике имеется много различной природы, например, колебания электромагнитного поля. Кроме спонтанных электромагнитных колебаний природного характера, имеются и колебания, возникновение которых задается волей человека для решения определенных задач, вытекающих из потребностей человеческой деятельности. Наиболее часто при помощи колебательных процессов решаются вопросы передачи энергии и/или информации, т.е. осуществляется связь, радиовещание, работа телевидения и т.д.

Процесс включает подготовку соответствующего энергетического поля и его модуляцию полезным сигналом и заключается в генерации передатчиком несущей частоты с определенными значениями параметров - амплитудой и частотой. Первый параметр пропорционален энергии поля и определяет дальность передачи, а второй - адресата. На этом этапе мы имеем только сигнал несущей частоты, выполняющей роль «перевозчика» информации.

Информационное содержание энергетического поля привносится в сигнал соответствующим изменением какого-либо его параметра. На практике применяют различные варианты изменения параметров поля - этот процесс и называется модуляцией несущей частоты. При этом применяется изменение амплитуды несущей или девиация частоты несущей. На этапе становления радиосвязи чаще применялась амплитудная модуляция, когда информация содержится в амплитуде сигнала несущей частоты. При этом изменения амплитуды несущей в точности
повторяют информационный Потребитель принимает сигнал по
признаку несущей частоты, а затем выделяет демодулятором содержащуюся в нем
информацию. На малых частотах, вплоть до коротковолнового диапазона, используют только амплитудную модуляцию. Основным ее недостатком является изменение амплитуды несущей частоты, из-за чего соотношение сигнал - шум, очень важный показатель качества канала связи, снижается.

Кроме для передачи информации используется и частотная, при которой применяется девиация частоты. Преимущество частотной
модуляции - более высокая помехоустойчивость, поэтому в профессиональных
системах связи применяют исключительно частотномодулированные сигналы. Пример применения таких сигналов - УКВ радиовещание, телевидение, спецсвязь.

Девиация - это максимальное изменение несущей частоты относительно среднего ее значения. При этом спектр частотно-модулированного колебания несущей зависит от значения амплитуды полезного сигнала, а ее амплитуда не меняется, благодаря чему устойчивость связи изначально значительно выше.

Устройства для модуляции несущей частоты сигналом называются частотными модуляторами. Их роль в процессе передачи радиосигнала - управление генераторами несущей частоты передатчика. Девиация частоты определяет
требования к ширине как передатчика, так и приемника.

Если индексы модуляции имеют большие значения, то оба параметра, которыми
характеризуется девиация частоты, имеют примерно одинаковые величины. Девиация измеряется в единицах частоты Гц.